Next Article in Journal
Assessment of the Impact of Climate Change on Dam Hydrological Safety by Using a Stochastic Rainfall Generator
Next Article in Special Issue
Refining Rainfall Derived from Satellite Radar for Estimating Inflows at Lam Pao Dam, Thailand
Previous Article in Journal
Water-Sensitive Urban Design (WSUD) Performance in Mitigating Urban Flooding in a Wet Tropical North Queensland Sub-Catchment
Previous Article in Special Issue
Assessing the Risk of Natural and Socioeconomic Hazards Caused by Rainfall in the Middle Yellow River Basin
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Regional Frequency Analysis Using L-Moments for Determining Daily Rainfall Probability Distribution Function and Estimating the Annual Wastewater Discharges

by
Pau Estrany-Planas
1,
Pablo Blanco-Gómez
2,*,
Juan I. Ortiz-Vallespí
3,
Javier Orihuela-Martínez
1 and
Víctor Vilarrasa
4
1
Empresa Municipal de Agua y Alcantarillado (EMAYA), Son Pacs, Camí dels Reis, 400, 07010 Palma, Spain
2
Vielca Ingenieros, S.A., Avda. Aragón 17, 46010 Valencia, Spain
3
Vielca Medio Ambiente, S.L., Avda. Aragón 17, 46010 Valencia, Spain
4
Global Change Research Group, IMEDEA, CSIC-UIB, C/ Miquel Marqués, 21, 07190 Esporles, Spain
*
Author to whom correspondence should be addressed.
Hydrology 2025, 12(6), 152; https://doi.org/10.3390/hydrology12060152
Submission received: 7 May 2025 / Revised: 12 June 2025 / Accepted: 13 June 2025 / Published: 16 June 2025

Abstract

The spatial distribution of precipitation is one of the major unknowns in hydrological modeling since meteorological stations do not adequately cover the territory, and their records are often short. In addition, regulations are increasingly restricting the amount of wastewater that can be discharged each year. Therefore, understanding the annual behavior of rainfall events is becoming increasingly important. This paper presents Rainfall Frequency Analysis (RainFA), a software package that applies a methodology for data curation and frequency analysis of precipitation series based on the evaluation of the L-moments for regionalization and cluster classification. This methodology is tested in the city of Palma (Spain), identifying a single homogeneous cluster integrated by 7 (out of 11) stations, with homogeneity values less than 0.6 for precipitation values greater than or equal to 0.4 mm. In the evaluation of the prediction capacity, the selected cluster of 7 stations performed in the first quartile of the 120 possible combinations of 7 stations, both for the detection of the occurrence of rainfall—in terms of Probability of Detection (POD), False Alarm Ratio (FAR), Critical Success Index (CSI) and Bias Score (BS) statistics—and for the accuracy of rainfall—according to Root Mean Square Error (RMSE), Nash–Sutcliffe Efficiency coefficient (NSE) and Percent Bias (PBIAS). The cluster was also excellent for predicting different rainfall ranges, resulting in the best combination for both light—i.e., [1, 5) mm—and moderate—i.e., [5, 20) mm—rainfall prediction. The Generalized Pareto gave the best probability distribution function for the selected region, and it was used to simulate daily rainfall and system discharges over annual periods using Monte Carlo techniques. The derived discharge values were consistent with observations for 2023, with an average discharge of about 700,000 m3 of wastewater. RainFA is an easy-to-use and open-source software programmed using Python that can be applied anywhere in the world.

1. Introduction

The Mediterranean climate is characterized by complex spatial and seasonal variability, with significant interannual fluctuations in precipitation levels [1]. Furthermore, in the context of anthropogenic climate change, there is a consensus that the frequency and intensity of heavy precipitation events have increased since the 1950s and will continue to increase [2]. In urban contexts, the occurrence of precipitation events, coupled with the intensification of urbanization activities, underscores the necessity to enhance the capacity of urban drainage systems. It is, therefore, evident that the statistical characterization of precipitation constitutes an indispensable component of the implementation of reliable hydrological and hydraulic models [3].
Frequency analysis of rainfall from weather station records depends on both the quality of the data and the length of the historical series. Despite the importance of developing in situ frequency analysis [4,5] both for extreme events [6,7] or drought periods [8], the lack of sufficiently long records limits the robustness of the required statistical data treatment [9]. Neighboring climate observatories are often used for quality control and gap filling, requiring long data series with few missing records and significant time overlap with the data series to be completed [10].
A notable improvement in accuracy can be achieved through regional frequency analysis [4,6,11], using data from the neighboring observatories to complete the information. In terms of statistical analysis, the L-moments method is particularly well-suited to the task, offering a number of advantages over alternative techniques [6,9,11,12,13,14]. These advantages include [4]: (1) their robustness in the presence of outliers, (2) a more effective discrimination of probability density functions (PDF), (3) a less biased estimation method, and (4) successful implementation experiences worldwide. The implementation of such techniques for hydrological applications has been widely distributed as an R package under an open-source license [3,4,10,12] and, to the best of our knowledge, it is not common practice to find such analysis using Python libraries.
This paper presents a new software package coded in Python for Rainfall Frequency Analysis (RainFA) [15] and applies its procedures to the case study of the city of Palma (Spain), where the insufficient capacity of its sewerage system determines the number of discharges into the Mediterranean Sea, affecting the water quality and increasing the possibility of beach closures, which ultimately affects the tourism sector [16,17]. Starting with subdaily rainfall data from 11 stations for the period 2015–2021, RainFA is used to homogenize to daily and curate the registers and, after a statistical analysis and clustering process, to determine a homogeneous group of 7 stations that can be considered to be a region. Next, a PDF is fitted for both the daily rainfall and the number of rainy days per year. The resulting runoff generates pollution vectors that have a significant impact on fresh and estuary waters; consequently, efforts to minimize their impact are required, in accordance with European regulations [18,19] and their respective state transpositions [20]. In response to these challenges, RainFA implements a methodology to quantify the annual discharges into the Mediterranean Sea, which will improve the capabilities of the future digital twin of the sewerage system that EMAYA is currently developing in the area [16].

2. Materials and Methods

2.1. RainFA

RainFA develops a methodology for data curation and frequency analysis of rainfall series, programmed in Python, that allows (see Figure 1): (1) preliminary data analysis, by means of (a) homogenizing the time-step; (b) performing data quality control—i.e., detecting anomalous values based on user-defined thresholds as well as through statistical analysis to identify outliers, performing homogeneity tests, and using double-mass curves and HDR boxplots between tuples of data series; (2) clustering, supported by the Silhouette width and Mantel statistics, as well as the Ward’s dendrogram and evaluating the Discordancy and Homogeneity measures using the L-moments method; (3) IDW interpolation, for geospatial and temporal distribution of precipitation within the homogeneous regions; (4) frequency analysis, to adjust the best-fitting PDF function for the daily precipitation determination; and (5) wastewater discharge estimation, according to a simplified methodology based on the Monte Carlo simulations of N years of daily precipitation events as described in Section 2.7. This methodology has been applied to the time series (2015–2021) of 11 weather stations and the urban drainage system of the metropolitan area of Palma (Spain).

2.2. Preliminary Data Analysis

Data continuity and stationarity are two of the most important concerns associated with historical series analysis [4,12]. In terms of continuity and data quality, a set of control tests are planned, including user-defined homogenization of the temporal discretization and rainfall thresholds, descriptive statistics—e.g., boxplots and outliers—and double-mass graphs. In addition, the non-parametric Mann–Kendall [21,22] trend test is applied for stationarity.

2.2.1. Temporal Homogenization

First of all, RainFA adjusts the sample size of the data using the resample function of the Pandas library of Python [23]. To do this, the time-step is determined with the least common multiple of the different series, and the sum is used to complete the series in cases where the original frequency is smaller.

2.2.2. Daily Quality Control

After the time homogenization, a series of different tests and procedures for quality control are proposed to ease the detection of unusual values that should be discarded from the data series. A daily timestamp has been selected for the data curating procedure in accordance with [3,10,12,24] and the different methods are described in the following paragraphs.
User-Defined Thresholds
A user-defined threshold option has been implemented within the RainFA software package (v1.0.1) to allow a manual series cleaning procedure to discard some values that may influence the following statistical analysis. Default values are set in Not a Number (NaN) for negative numbers and will require a completeness procedure in further steps of the method. Additionally, an equivalent to 40 mm for 10 min cumulative rainfall has been adopted for the definition of the upper threshold.
Outlier Detection and Bivariate HDR Boxplots
Rainfall time series are cataloged as functional data to provide measurements in a temporal continuum that can be plotted on curves or surfaces for their analysis [25]. According to [26], a side benefit of some of the functional data analysis techniques is the identification of outliers that may not be obvious from a standard statistical analysis or a graphical representation of the original data. An early approach to this representation was John Tukey’s box and whiskers plot (or boxplot) that represents, in a compact form, the distribution summary statistics [27]. RainFA introduces boxplots of each data series to identify the potential outliers of the dataset, after the definition of a lower threshold that would be used to trigger rainfall. The default considered value is 0.2 mm, as it corresponds to a common error in a telemetry rain gauge device.
In addition, ref. [28] introduced the concept of 2D dimensions to the boxplot analysis, relying on a density estimate of the selected variable to compare between two different data series. To implement this comparison, ref. [29] presented a method of calculating and plotting Highest Density Regions (HDR), which are often considered the most appropriate subset to use to summarize a probability distribution. According to [26], the Bivariate HDR boxplot is constructed using a bivariate kernel density estimate f ^ ( z ) , which is defined as:
f ^ ( z ) = 1 n i = 1 n K h i ( z Z i ) ,
where z correspond with the data points of the time series, Z i represents a set of bivariate points, K h i is the kernel function, and h i is the bandwidth for dimension i.
Next, from the kernel density estimates, an HDR is defined as:
R α = z : f ^ ( z ) f α ,
where f α is such that R α f ^ ( z ) d z = 1 α , which corresponds to a region with probability coverage 1 α , meaning that all points within the region have a higher density estimate than any point outside its boundaries. RainFA considers an outer 90% highest density region for the outer contour, which defines the outlier consideration.
Double-Mass Curves
Double-mass curves were presented as a tool for evaluating the consistency of hydrological data—e.g., streamflow, rainfall, sediment series, etc.—from a single station by comparing it with a pattern composed of several nearby stations [30]. The principle of the double-mass curve is based on the fact that the cumulative graph of one variable against the accumulation of another variable over the same period is represented as a straight line as long as the two quantities are proportional, with the slope of this line being the constant of proportionality between them.
A change in the slope of the curve could mean a variation in the constant of proportionality or perhaps that there is no relationship. For this reason, it is common practice in hydrology to plot the double-mass curves of each individual time series against the average registers of all stations.
RainFA considers both the Bivariate HDR boxplots—as mentioned in the previous sub-section—and the double-mass curves to study the rainfall patterns and the existing proportionality between the different stations, expecting to detect potential anomalies and the cluster relationships between stations.
Trend Analysis
Non-stationarity of hydroclimatic series is one of the main concerns in the analysis of historical data and has been particularly considered in the regional frequency analysis of rainfall and flood series [4,12]. As noted in [31,32,33], the Mann–Kendall test is a robust procedure to the influence of extremes and suitable for use with skewed data because it does not require that the data be normally distributed, only that they be independent [31,34].
The null hypothesis, H 0 , assumes that the data ( x 1 , . . . , x n ) are samples of n independent and equally distributed random variables [4,31]. The alternative hypothesis, H 1 , of a two-sided test assumes that the distributions of x j and x k are not identical for all j , k n with j k [31]. First, the statistic S, which has mean zero and is asymptotically normal [31,33], is computed with the following equations:
S = k = 1 n 1 j = k + 1 n s g n ( x j x k ) ,
s g n ( x j x k ) = + 1 if s g n ( x j x k ) > 0 0 if s g n ( x j x k ) = 0 1 if s g n ( x j x k ) < 0
The variance of S is determined with the following equation [32], which takes into account that ties might be present:
V a r ( S ) = 1 18 n ( n 1 ) ( 2 n + 5 ) p = 1 q t p ( t p 1 ) ( 2 t p + 5 ) ,
where q corresponds with the number of tied groups and t p is the number of data values in the p t h group.
And finally, statistic S and its variance—i.e., V a r ( S ) —are used to determine the test statistic Z as:
Z = S 1 V a r ( S ) if S > 0 0 if S = 0 S + 1 V a r ( S ) if S < 0
The Z value evaluates the presence of a statistically significant trend, where a positive trend corresponds to a positive Z value and a negative trend corresponds to a negative Z value. Since Z has a normal distribution, the goodness of the H 0 hypothesis associated with a α -confidence level is determined by the expression Z Z 1 α 2 , corresponding the Z 1 α 2 with 1.96 for a confidence level of 95%. RainFA uses the existing pyMannKendall software package to apply the Mann–Kendall trend test [35].

2.3. Identification of Candidate Homogeneous Regions

2.3.1. Cluster Overview

Cluster analysis is used to identify the candidate homogeneous regions by comparing different site characteristics, either related to spatial or meteorological conditions, which are analyzed using multivariate statistics and classified according to their similarity [11,12,36]. RainFA considers the spatial characteristics, which are UTM coordinates for latitude and longitude, together with the elevation in meters. It also includes three rainfall characteristics from the AEMET gauging stations: the maximum rainfall in 24 h per year, the average annual rainfall, and the average number of days with daily rainfall above 1 mm [37]. If rainfall characteristics are not available for the site, they can be extracted from the rain gauge data series (site statistics).
As recommended in [12], RainFA rescales the features using the Min-Max normalization methodology, which involves determining the minimum and maximum values of the different parameters and the features are ranged between 0—used for the minimum value—and 1—set for the maximum value—according to the aforementioned methodology. Then, the optimal number of clusters is identified using the Silhouette width and Mantel curve comparison methodologies [38], while the homogeneous regions are determined by applying Ward’s dendrogram [39]. Finally, the homogeneity of the selected regions is evaluated using the statistics derived from the L-moments [11]: (1) the Discordancy measure ( D i ), which is a measure of the dissimilarity of a given site from the rest of the sites within a group; and (2) the Heterogeneity measure (H), or H-statistic, which compares the dispersion of the L-moments from what would be expected for a homogeneous region.

2.3.2. Cluster Optimization

The optimal number of clusters is determined by measuring the degree to which an object—in this case, a gauging station—belongs to its cluster compared to its membership in the next closest cluster [38]. According to [40], the Silhouette width, s ( i ) , is defined as:
s ( i ) = b ( i ) a ( i ) max a ( i ) , b ( i ) ,
where a ( i ) corresponds to the average dissimilarity of object i to all other objects of cluster A and b ( i ) is determined as
b ( i ) = min C A ( d ( i , C ) ) ,
where C represents a cluster different from A and d ( i , C ) corresponds to the average dissimilarity of object i to all other objects in cluster C. Thus, b ( i ) corresponds to the closest cluster to A and is denoted as cluster B. s ( i ) varies between −1 and 1, which means that i is “well clustered” when s ( i ) is close to 1 and, on the contrary, when s ( i ) is close to −1, the object i is clearly “misclassified”, and it is on average much closer to cluster B than to cluster A. An intermediate situation is reached when s ( i ) is close to 0, and it is not clear whether the object i should be assigned to cluster A or B [40].
The Silhouette width extends this cluster classification to all the objects in the dataset and determines the average of the clustering procedure, allowing the optimal number of groups to be determined. The Silhouette width is recognized as one of the strongest indices for data clustering [41].
In addition, RainFA implements Mantel’s correlation coefficient test, which examines two distance matrices from the same samples. In this case, the initial distance matrix and the distribution into clusters matrix are compared, and, as a result, a correlation matrix is determined using the Pearson r coefficient for calculations [38]. The higher the correlation between the two matrices, the better the Mantel correlation.

2.3.3. Ward’s Dendrogram

The minimum variance hierarchical clustering algorithm, or Ward’s dendrogram [39], is recommended for the identification of homogeneous regions in a clustering process such as that applied by the RainFA package for the evaluation of rainfall data in a specific geographical context [11]. Ward’s dendrogram algorithm uses the W function to minimize the sum of the squares of the deviations of the object vectors from the centroid of their respective clusters [42]:
W = k = 1 K j = 1 m i = 1 N k y i j k y · j k 2 ,
where K is the number of clusters, m corresponds with the dimension of the attribute vector, N k represents the number of feature vectors in cluster k, y i j k denotes the rescaled value of the attribute j in the feature vector i assigned to cluster k, while y · j k is the mean value of the feature j for cluster k.
The algorithm starts with single station groups where the centroids coincide with the feature vectors and W is zero. At each step of the algorithm, a group fusion is performed, and the smallest increment in the function W is the fusion criterion. Ward’s dendrogram results are very useful for identifying homogeneous regions in regionalization processes [11,39]. However, it does not allow for the reallocation of stations that may have been poorly classified in the early stages of the analysis [42].

2.3.4. L-Moments Homogeneity Measure

RainFA evaluates the homogeneity of the regions using two statistics based on L-moments and described in [6,11,43]: (1) the Discordancy ( D i ) of a station i with respect to the rest of the stations in a group; and (2) the Heterogeneity ( H i ) measure, which checks whether the variation in L-moments between the sites of a region is similar to what would be expected for a homogeneous region [4,8].
The Discordancy ( D i ) is defined according to:
D i = 1 3 ( u i u ¯ ) T ( u i u ¯ ) S 1 ,
where u i is the vector of L-moment ratios corresponding to the site i—and includes the L-variation (L-CV), the L-skewness ( τ 3 ) and the L-kurtosis τ 4 , u ¯ is the vector of average L-moments ratios in the selected cluster and S is the sample covariance matrix of the L-moments of all sites in the cluster. In general terms, sites with D i 3 are considered discordant [11,12].
The second statistic, the Heterogeneity ( H i ), requires the Monte Carlo simulations of regions with equal L-moments and length registers, which may allow the determination of homogeneous regions to compare with [11,44]. This is carried out by first fitting a four-parameter kappa distribution function that is adjusted to the previously mentioned L-moments ratios, i.e., L-variation (L-CV), L-skewness ( τ 3 ) and L-kurtosis ( τ 4 ); and then the computed function is used to carry out the Monte Carlo simulations [4,11].
The Heterogeneity (based on the L-variation ratio [6,43]) is then calculated using:
H = V μ v σ v ,
where μ v and σ v are the mean and standard deviation of the simulated values, and the V-statistic is determined from the observed regional data as:
V = i = 1 N n i [ t ( i ) t R ] 2 i = 1 N n i 1 2 ,
where i refers to a station with a registration length of n i , t i corresponds to the L-variation ratio, N is the total number of stations of the homogeneous region and t R represents the average L-variation ratio of the region, which is determined as:
t R = i = 1 N n i · t ( i ) i = 1 N n i ,
According to the original criterion [11], the region can be considered “acceptably homogeneous” if H < 1 , “possibly heterogeneous” if 1 H < 2 , and “definitely heterogeneous” if H 2 .

2.4. Generalized IDW Interpolation for Homogeneous Regions

The Inverse Distance Weighted (IDW) is a widely used interpolation method for both image and spatial data contexts [45]. The main characteristic of this method is that all the points on the Earth’s surface are considered to be interdependent, based on a relationship that is inversely proportional to the distance to each point [46]. By generalizing this relationship in the selected cluster regions, it is possible to determine an influence weight parameter for each station and thus to compound the variable to be simulated, which in this case is rainfall. Since rainfall varies over time, it is advisable to first determine the weights and then apply them to the time series, using the following procedure in a Geographical Information System (GIS) program: (1) represent the stations according to their coordinates; (2) create a new field called Weights in the station point layer; (3) assign the value 1 to station i and 0 to the rest of the stations; (4) apply the IDW interpolation method to calculate the weighted raster map of station i; (5) repeat the steps (3) and (4) for all the stations; (6) combine the calculated weighted raster maps into a multiband raster map, integrating the weights of all the stations into a single file.

2.5. Probability Distribution Functions Selection for Homogeneous Regions

The regional probability distribution function is selected according to the goodness-of-fit statistic Z D i s t , described in [11] and applied in [4,12,47], as an alternative of different statistical tests, such as Anderson-Darling (AD), Kolmogorov–Smirnov (KS) or Chi-Squared (CS), as described and applied in [9,44,48]. The different candidate distributions are fitted to the regional average L-moments, and its L-kurtosis ( τ 4 ) is determined. As indicated in [4] and its sources, and in accordance with the determination of the Heterogeneity measure, the simulated length records of each site correspond to the observed data. The Z D i s t is then calculated as:
Z D i s t = τ 4 D i s t t 4 R + B 4 σ 4 ,
where τ 4 D i s t is the L-kurtosis of the fitted distribution and t 4 R the regional average L-kurtosis, while σ 4 and B 4 are the standard deviation and bias of t 4 R , which can be obtained by repeated simulation of a homogeneous region whose sites have the same fitted frequency distribution and record lengths as those in the observed data. [11] declares the fit to be adequate if Z D i s t is close to zero, which is a reasonable criterion: Z D i s t 1.64 .

2.6. Evaluation Criteria

2.6.1. Detection of Occurrence of Rainfall

The ability of each precipitation product to detect the occurrence of rainfall events is assessed using four categorical indices (see Table 1): (1) probability of detection (POD); (2) false alarm ratio (FAR); (3) critical success index (CSI); and (4) bias score (BS). POD indicates the ability of precipitation products to accurately capture the actual occurrence of precipitation. FAR assesses the proportion of false alarms detected by rainfall products. The ability of the data to comprehensively detect true precipitation events is measured by CSI. CSI is an accurate and balanced detection metric and is based on POD and FAR. BS is the ratio of the estimated rainfall to observed rainfall.
In Table 1, N 11 denotes the observed rainfall that is correctly detected, N 01 represents the observed rainfall that has not been detected, and N 10 is the precipitation that is detected but not observed.

2.6.2. Accuracy of the Simulations

Three quantitative performance metrics are employed to measure the accuracy of the precipitation datasets in terms of daily rainfall (see Table 2): (1) Root Mean Square Error (RMSE); (2) Nash–Sutcliffe Efficiency coefficient (NSE); and (3) Percent Bias (PBIAS). The RMSE explains the deviation between two data sets, i.e., the degree of dispersion between observed and estimated precipitation data. The NSE indicates how well the correlation of observed and simulated data fits the 1:1 line when plotted together. In contrast, PBIAS indicates the degree to which the observed value is overestimated or underestimated as a percentage.
In Table 2, O i and S i are the observed and simulated data, respectively, i is the data index, and n is the total number of measurements, while O ¯ is the mean of the observed data.
In addition, the ability of the simulated rainfall to predict different daily rainfall intensities is evaluated according to the thresholds [49,50] shown in Table 3.

2.7. Annual Sewage Discharge Estimation

The Royal Decree 665/2023 [20] and the proposal of adaptation of the Urban Wastewater Treatment Directive [18] establish criteria for the design of sewerage infrastructure, limiting the system’s outflows and direct discharges into the sea. The calculations of the former are based on daily rainfall, while the latter considers annual flows. To evaluate them, RainFA adjusts the daily rainfall probability function for the calculated region and determines both (1) the expected number of annual sewer system discharges and (2) the total discharge volume. This approach is based on the simulation of all rainfall events occurring during the N years simulated using the Monte Carlo method.
The probability distribution function for the annual number of precipitation events can be fitted as a normal distribution, denoted as N ( μ V , σ V 2 ) , where V represents an array with the total number of significant precipitation events (greater than 0.4 mm) in one year in the selected homogeneous region:
μ V = i = 1 n V i n ,
σ V 2 = i = 1 n ( V i μ V ) 2 n .
n precipitation events (n = 1000) can be simulated for both probability distribution functions. For each year i, n different daily precipitation events P i j are simulated with the selected probability distribution function (PDF) of the homogeneous region. The goodness of fit of the distribution is checked with the Shapiro–Wilk test [51].
The other variables that are needed to estimate the annual average discharge are:
Effective Area (EA): non-permeable area in the watershed.
Rainfall Inflow ( RI ij ): total rainfall entering the system for the event j of the year i. R I i j = E A × P i j .
Attenuation and Treatment Capacity ( C A + T ): defined as the sum of the volume of the sewer system and attenuation tanks ( C A ), and the capacity volume of the treatment plant ( C T ). The parameter C T depends on the duration of the rainfall, as shown in Figure 2.
Dry Volume ( V dry ): average daily volume of wastewater during dry days.
Discharge event ( D ij ): discharge for the event P i j when the attenuation and treatment capacity is exceeded.
D i j = R I i j + V d r y C A + T if R I i j + V d r y C A + T > 0 0 if R I i j + V d r y C A + T 0 ,
Figure 3 shows the complete procedure for estimating the annual sewage discharge. It should be noted that the methodology does not take into account the duration of the rainfall, so it is recommended to use the time of concentration in the catchment as the duration of all rainfall events to obtain a conservative estimate of the discharge to the environment.
Figure 2. Example of hydrogram showing the treated water in the wastewater treatment plant and the discharged volume without being treated.
Figure 2. Example of hydrogram showing the treated water in the wastewater treatment plant and the discharged volume without being treated.
Hydrology 12 00152 g002
Finally, the defined methodology allows the estimation of the Annual Average Discharge ( A A D ¯ ), which can then be evaluated for compliance with future European discharge limits as [18]:
A A D ¯ = i = 1 N j = 1 n D i j > 0 ,
Figure 3. Example of a hydrogram showing the treated water in the wastewater treatment plant and the discharged volume without being treated.
Figure 3. Example of a hydrogram showing the treated water in the wastewater treatment plant and the discharged volume without being treated.
Hydrology 12 00152 g003

3. Description of the Study Area and Data Sources

3.1. Case Study

The city of Palma is located in the southwest of the island of Mallorca, Spain, with an area of 208.63 km 2 and a population of 420,000 inhabitants. The metropolitan area, which discharges its wastewater into the municipal sewerage system, includes three other municipalities—Esporles, Bunyola, and Marratxí—so that the total area associated with the study area is 382.8 km 2 with 471,000 inhabitants.
Specifically, the study area is in the lower depression and estuary of the Sa Riera, na Bàrbara, and Gros gullies. Geomorphologically, the basin is bounded by the Serra de Tramuntana to the north and the Serra de na Burguesa to the west. It is also bordered by the lower hills near Pòrtol, known as Serra de Son Mayol to the northeast and Costes des Xorrigo slopes to the east [52] (Figure 4).
Annual rainfall in the area has averaged 449 mm over the period 1980–2010, with a rainy season in autumn—i.e., from September to November—accounting for 52.2% of annual rainfall [53]. Furthermore, the interannual variability of rainfall is considerable, with pluviometric irregularity indices reaching 3.49 at the Portopí station (B228) for the 1980–2010 data series [54].
In addition, the maximum daily rainfall series shows a high spatial variability. The barrier effect of the Tramuntana mountain range is transformed into a reduction of the maximum daily rainfall in the area of Palma. In particular, for a 10-year return period, precipitation levels can vary considerably, from 130 mm/day in the municipality of Bunyola—in the northern part of the study area—to 70 mm/day in the coastal area of the city of Palma [55]. Specifically, the area surrounding Sant Jordi is characterized by the lowest maximum daily rainfall records due to the sheltering effect of the Serra de Son Mayol to the north and the Costes des Xorrigo to the east, which prevents the penetration of the north and east winds, respectively [56].

3.2. Data Sources

This study uses data from 11 rain gauges collected between 2015 and 2021. Three of these rain gauges are managed by AEMET [37]: (1) Palma Portopí (B228); (2) Palma Universitat Illes Balears (B236); and (3) Palma Aeropuerto (B278). The remaining 8 stations are operated by the non-profit organization BalearsMeteo [57], with which EMAYA has an agreement for access to the data recorded by their stations in the municipalities where they both operate. Table 4 shows the date-time range for each station.
In the present case study, the different meteorological stations have recorded every 1, 5, and 10 min, so the 10 min time-step was chosen for homogenization, with the sum of 2 or 10 values being used for resampling, as appropriate. The daily rainfall was used for clustering and homogeneity evaluation.
Finally, the period chosen to assess the accuracy of the simulated rainfall datasets was from 2021 to 2022. All rain gauges were operational during this period.

4. Results

4.1. Data Curation and Stationarity

After the temporal homogenization to a 10-min time-step, four different data quality control tests were performed: (1) user-defined thresholds; (2) boxplots, both the traditional Box and Whisker and the Bivariate HDR boxplot; (3) double-mass curves; and (4) the Mann–Kendall trend test.
No values exceeded the 40 mm threshold defined for the 10-min time-step. Next, individual boxplots were constructed for all the stations (see Figure 5), both for precipitation values greater than 0.2 mm and values exceeding 2 mm, showing consistent outlier densities and similar ranges across the different stations, except for the Son Ferriol station, which had no daily records greater than 2 mm. Furthermore, both the double-mass curves (see Figure 6) and the Bivariate HDR boxplots (see Appendix A) show that the Son Ferriol station has no correspondence with the mean values of all the stations or with the rest of the stations in tuples. In addition, as shown in Table 4, there are only about 13 months of records. As a result of both findings, the time series of Son Ferriol was excluded from the rest of the study.
From the analysis of the double-mass curves (Figure 6), a fairly uniform behavior is observed among all stations, albeit with certain peculiarities: B228, B236, El Pil·lari, and Pont d’Inca align with the overall station average; meanwhile, La Bonanova, Secar de la Real, and Pòrtol exhibit rainfall levels that exceed the average; finally, B278, Puntiró, and Son Rapinya present rainfall levels that are below the average. Furthermore, when looking at the results of the Bivariate HDR boxplot (see Appendix A), additional insights emerge both from the shape and the average of the individual density plots of each station, and especially from the common density regions, where the higher the correspondence between the values of the axes and the shape of their 50% and 90% HDR regions, i.e., with a smaller deviation from the 1:1 line, the greater the similarity between the stations.
The stationarity of the data is tested using the non-parametric Mann–Kendall test [21,22], the results of which are summarized in Table 5. Four out of ten stations show a certain trend, i.e., Pont d’Inca and Puntiró, and two other stations can be considered in the threshold area so that the region as a whole could be considered to be stationary.

4.2. Clustering and Homogeneity

According to the Mantel Score and the Silhouette Width graphs, between two and three cluster regions could be defined in the selected stations (Figure 7). This result is consistent with the results of Ward’s dendrogram (Figure 8) findings, as there is a group of six stations that could be associated with two different station tuples. However, an alternative interpretation of Ward’s dendrogram result is that there is a single cluster with four possible exclusions.
According to the above results, the only region to be studied would include six rainfall stations located in the floodplain of the Sa Riera, na Bàrbara and Gros torrents. In addition, the station B278 shows rainfall patterns very similar to those of this group, so it could be included, also in line with the Heterogeneity results that will be presented subsequently in this section. The selected region has a maximum distance from the sea of just over five kilometers, an average altitude of around 40 m, and an average annual rainfall of 400 (±50) mm/year. Furthermore, the region geomorphologically corresponds to a semicircular depression open to the sea in the Palma watershed [52].
Next, the L-moments homogeneity measure [11] statistics, i.e., Discordancy and Heterogeneity, are applied. First, for the Discordancy measure, all the stations within the selected region agree with the statistical data of the region. Table 6 shows the results of applying the Discordancy test to the data.
The results of the Heterogeneity test (see Table 7) show that the extended cluster (W. group*), including the B278 station, has an acceptable measure of homogeneity (H < 1) for daily rainfall greater than 0.4 mm. The lack of homogeneity in daily rainfall data, including the ’No rain’ consideration (i.e., <1 mm), can be attributed to wind effects, dew, installation errors, or other types of error [58]. Consequently, precipitation inference calculations and PDF selection are performed for the acceptably homogeneous region ( P d 0.4 mm).
Moreover, for rainfall events greater than 1 mm, all the studied combinations could be considered to be homogeneous regions. Further investigation of these results, including the study of different combinations of stations, the addition of new stations with completely different characteristics within the island of Mallorca, and the clustering capacity of the Heterogeneity measure, would be beneficial.

4.3. Evaluation of the Precipitation Inference Model Using the IDW Method in the Selected Homogeneous Region

All the indices referred to in Table 1, Table 2 and Table 3 (see Section 2.6.1 and Section 2.6.2) are calculated not only for the selected homogeneous region but also for the 120 possible combinations of seven out of the ten available stations. This allows for the determination of whether the selected homogeneous region performs well in comparison to the other possible combinations.

4.3.1. Detection of Occurrence of Rainfall

The values of our categorical indices for the selected homogeneous region are found to be highly satisfactory, both in absolute terms and in relation to the other possible combinations of seven stations (see Table 8 and Appendix B for the complete set of results). The POD, FAR, and CSI obtained values are significantly higher than the thresholds typically considered acceptable for this type of meteorological inference. Furthermore, it is noteworthy that the combination of the homogeneous regions presents the sixth-best performance in terms of rainfall detection and false alarm avoidance, as quantified by the CSI index. The BS index suggests that the model may have a slight tendency to overestimate the probability of rainfall.

4.3.2. Accuracy of Rainfall

The NSE index shows favorable values in both absolute and relative terms, as summarized in Table 9—the complete results are presented in Appendix D. Furthermore, the PBIAS values show favorable results, indicating a minimal degree of overestimation of the proposed inference model. Unfortunately, the RMSE for this combination is about 70% of the mean observed rainfall. Nevertheless, this suboptimal performance in absolute, though not in relative terms, could be improved by incorporating more robust inference methods, such as the Inverse Distance Weighting (IDW) method or Krigging [36,59].
Figure 9 shows that the model performs suboptimally in absolute terms, especially for rainfall below 10 mm. However, the results of the homogeneous regions combination are comparable to the best of the combinations. It is also noteworthy that the model shows a slight tendency to underestimate, except for moderate daily rainfall (Pd < 10 mm), where it clearly overestimates. It is, therefore, essential to carry out a cluster analysis before implementing any inference method to ensure that the most appropriate approach is taken for each type of rainfall. This is particularly important in regions such as the case study presented here, where summer convective rainfall can be highly localized.
The ability of the simulated precipitation to predict different ranges of daily rainfall according to WMO criteria is a remarkable achievement, both in absolute and relative terms, as shown in Table 10. The complete results are presented in Appendix C.

4.4. PDF Selection

A number of candidate distributions are tested, including lognormal (GLO), Generalized Extreme Value (GEV), Generalized Pareto (GPA), and the Pearson type III (PE3), with the aim of identifying the optimal PDF for the case study homogeneous region. The goodness-of-fit statistic Z D i s t is used to evaluate the quality of fit for the different probability functions. The results, which are summarized in Table 11 and Table 12, indicate that the GPA PDF provides the best fit (Figure 10).
Furthermore, the PDF selection was applied at the different rainfall station locations, showing that the GPA PDF also provides the best local fit, according to the Z D i s t statistic (see Table 13). The graphical results, represented in Appendix A, range from 13.85 mm to 19.23 mm of cumulative rainfall for the 10-year return period or 0.9 marked quantile, indicating clear variability in volume among the stations despite them being part of a homogeneous group.

4.5. Sewage Discharge Estimation

The sewerage system of the city of Palma is evaluated using the discharge estimation methodology presented in Section 2.7. The effective ‘impervious’ area (EA) is estimated at 605 ha, which is considered a high figure for an almost completed separate sewerage system, but includes both (1) roofs that are incorrectly connected to the sewerage network and (2) an old mixed network in the city center that is challenging to remove. The latter accounts for 25% of the total contribution.
The urban wastewater treatment plant (known as EDAR II) receives a daily inflow of 78,000 m3 ( V d r y ) of wastewater from its catchment area. In addition, the treatment capacity of this plant, combined with the support of the other urban treatment plant (known as EDAR I), is 90,000 m3 ( C T ). This estimate takes into account that the treatment plants can operate at a maximum capacity of 6000 m3/h during a 2-h rainfall event (corresponding to the time of concentration of the tributary area). Furthermore, in terms of the attenuation capacity, a stormwater tank with a capacity of 40,000 m3 has recently been added; this, together with the capacity of the sewerage network, including both the collection system and the treatment plants, calculated at 30,000 m3, gives a total for attenuation and treatment capacity ( C A + T ) of 160,000 m3.
The wastewater discharged into the environment has an approximate mean value of 715,000 m 3 ± 33.000 with a 95% confidence interval (see Figure 11), which is in line with the annual discharge estimate of 700,000 m3 calculated by EMAYA using its level and flow sensors at the discharge points for the year 2023.
As can be seen in Figure 11, the volume distribution of annual discharges is considerably scattered due to the high dispersion obtained previously for the annual rainfall with the n = 1000 years of simulations using the Monte Carlo method. These results are due to the fact that the proposed methodology does not take into account the interdependence of the two statistical variables—i.e., the number of rainy days, with a mean of 56.35 ± 0.88 with a 95% confidence interval; and the daily rainfall selected in Section 4.4 (generalized Pareto). The data show that years with a high number of episodes have a lower rainfall per episode, suggesting that the expected dispersion should not be as high as observed.

5. Discussion

As can be seen in the results, after the first stage of the data curation process, the time series from the Son Ferriol station were discarded from the evaluation both for the short length of their records and for their inconsistency with the magnitude of the precipitation records of the other stations. Next, from the analysis of the double-mass curves, and especially from the Bivariate HDR boxplots (see Appendix A, it is possible to detect relationships between stations that are consistent with the results of the clustering process. In this sense, for example, there is a clear alignment with the 1:1 line and density distribution in the Bivariate HDR boxplots of La Bonanova and B228 or Son Rapinya and Secar de la Real—and even with these last two with Pont d’Inca—as shown in the clustering hierarchy of Ward’s dendrogram (represented in Figure 8).
The two scores used to determine the number of clusters suggested the creation of either two or three distinct groups. According to Ward’s dendrogram mentioned above, this results in two groups of two stations and an additional group of six stations. Geographically, B278 and El Pil·lari stations are located on the periphery of the study area, in a drained marshland close to the Mediterranean Sea. On the other hand, Pòrtol and Puntiró stations are in a hilly area called Serra de Son Mayol, which could explain the differences in rainfall patterns with the rest of the stations (see Figure 4). Finally, the remaining stations are in the floodplain of three ephemeral streams that flow into the Bay of Palma. Notwithstanding this final conclusion, the revision of the annual rainfall, the average altitude, and the proximity to the main cluster group suggested the inclusion of B278 in the main cluster, separating it from El Pil·lari station.
Regarding the PDF selection method, different statistical methods, such as KS and AD, were introduced in Section 2.5. However, the RainFA package implements the Z D i s t statistic as described in [11] to select the most appropriate PDF. According to this, the GPA function was selected as the best fit. It is important to note that the present case has been applied to study the sewerage capacity, which is usually designed for a return period of between 10 and 25 years, which is in line with the quantity of input data. If the objective were different and required a higher return period, additional goodness-of-fit methods would need to be applied and compared to determine the best PDF selection.
From the evaluation of the 120 possible combinations of seven out of ten available stations, the selected cluster performed outstandingly, demonstrating the ability of the present methodology to carry out regional analysis of the hydrology of regions with poor meteorological data availability.
Finally, the results and methodology for calculating the expected mean discharge values are considered acceptable and provide a reliable order of magnitude of the runoff produced in the sewer system. In any case, future studies will investigate the relationship between the rainfall intensity per event and the average annual rainfall, together with the duration of the rainfall, which could refine the results of the discharges to the environment.
The proposed methodology makes it possible to estimate the resources required for attenuation and treatment within the sewerage system, as well as for the reduction of impervious surfaces with inadequate connection to the sewerage network. The aim is to ensure compliance with existing and future European regulations [18,19].
Figure 12 illustrates possible scenarios for achieving the requirement of discharges of less than 1% of the total volume of water treated by the system, as previously required by the proposed European Directive (it should be noted that this percentage has since been increased to 2%). [19]. It can be seen that this would require a total of up to 260,000 m3 of attenuation and treatment capacity if the current old mixed network remains connected. Conversely, a reduction of only 100 hectares would require only 230,000 m3, which would mean increasing the volume of stormwater tanks by 70,000 m3, while maintaining the current treatment capacity of the wastewater treatment plants.
In the present study, RainFA has been applied to a data curation process for 10-min time-step series to determine a homogeneous region in terms of daily rainfall. However, the software is prepared to and the method has been widely applied to different types of data (either historic or future projections under climate change scenarios), such as monthly, daily, or annual maximum rainfall in 24 h, streamflows or temperature [1,4,9,11,12,13,14,36,48,60,61,62], among others.

6. Conclusions

The spatial and temporal distribution of rainfall data is an important factor in the simulation of hydrological processes. The present study develops a comprehensive methodology for Rainfall Frequency Analysis using a Python software package called RainFA. It incorporates a number of key techniques, such as time scale homogenization, data curation, cluster analysis, L-moment homogenization measure, spatial distribution for series completion, and PDF fitting, for a complete Rainfall Frequency Analysis that could be applied worldwide. In addition, the package includes a tool for estimating sewer discharge from Monte Carlo rainfall simulations generated from the selected PDF distribution and the characteristics of the existing sewer network.
The RainFA software has been applied to the city of Palma (Spain) and has successfully identified a region with acceptable homogeneity for daily rainfall above 0.4 mm, with stations covering almost the entire catchment area of the EMAYA drainage system. Furthermore, the results show a satisfactory performance in terms of the detection of rainfall events, both in absolute and relative terms. However, the rainfall accuracy shows suboptimal performance in detecting the total amount of daily rainfall. Nevertheless, the results for our homogeneous region could be improved using more robust inference techniques. In addition, a methodology for simulating annual rainfall events and estimating annual wastewater discharges is proposed and tested to meet future European requirements [19]. This new methodology and the complete application procedure implemented in RainFA and applied to the context of the metropolitan area of Palma complements and develops the calculation procedure regulated in Spain by [20], providing a toolbox for the determination of the discharge capacity of urban drainage systems. Finally, in the case of Palma, it has allowed EMAYA to analyze its attenuation and treatment needs and to evaluate the possible measures that need to be implemented in order to comply with the objectives of the EU regulation.

Author Contributions

P.E.-P.: Conceptualization, Methodology, Investigation, Resources, Data curation, Writing—original draft, Visualization, Supervision. P.B.-G.: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Data curation, Writing—original draft, Writing—review and editing, Project administration. J.I.O.-V.: Software, Resources, Data curation. J.O.-M.: Conceptualization, Software, Data curation, Writing—review and editing. V.V.: Investigation, Resources, Data curation, Writing—original draft, Writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Funding

This research has received funding by the Instituto Mediterráneo de Estudios Avanzados (IMEDEA). IMEDEA is an accredited “Maria de Maeztu Excellence Unit” (Grant CEX2021-001198, funded by MICIU/AEI/10.13039/501100011033).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The original contributions presented in this study are included in the article. Further inquiries, including the rainfall data series, can be directed to the corresponding author.

Acknowledgments

The authors would like to thank EMAYA for providing the data it holds through an agreement with BalearsMeteo, as well as the data acquired through AEMET. The authors would also like to thank Juan Ortiz-Vallespí for his support in developing the RainFA code, as well as Vicente M. Candela Canales for his assistance to the R&D department of Vielca Ingenieros, S.A.

Conflicts of Interest

Author Pau Estrany-Planas and Javier Orihuela-Martínez were employed by the company “Empresa Municipal de Agua y Alcantarillado (EMAYA)”, Author Pablo Blanco-Gómez was employed by the company “Vielca Ingenieros, S.A.” and Author Juan I. Ortiz-Vallespí was employed by the company “Vielca Medio Ambiente, S.L.”. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Appendix A. Bivariate HDR Boxplot Results

Figure A1. Bivariate HDR boxplots of B228 and B236 rain gauge stations.
Figure A1. Bivariate HDR boxplots of B228 and B236 rain gauge stations.
Hydrology 12 00152 g0a1
Figure A2. Bivariate HDR boxplots of B228 and B278 rain gauge stations.
Figure A2. Bivariate HDR boxplots of B228 and B278 rain gauge stations.
Hydrology 12 00152 g0a2
Figure A3. Bivariate HDR boxplots of B228 and El Pil·lari rain gauge stations.
Figure A3. Bivariate HDR boxplots of B228 and El Pil·lari rain gauge stations.
Hydrology 12 00152 g0a3
Figure A4. Bivariate HDR boxplots of B228 and La Bonanova rain gauge stations.
Figure A4. Bivariate HDR boxplots of B228 and La Bonanova rain gauge stations.
Hydrology 12 00152 g0a4
Figure A5. Bivariate HDR boxplots of B228 and Pont d’Inca rain gauge stations.
Figure A5. Bivariate HDR boxplots of B228 and Pont d’Inca rain gauge stations.
Hydrology 12 00152 g0a5
Figure A6. Bivariate HDR boxplots of B228 and Pòrtol rain gauge stations.
Figure A6. Bivariate HDR boxplots of B228 and Pòrtol rain gauge stations.
Hydrology 12 00152 g0a6
Figure A7. Bivariate HDR boxplots of B228 and Puntiró rain gauge stations.
Figure A7. Bivariate HDR boxplots of B228 and Puntiró rain gauge stations.
Hydrology 12 00152 g0a7
Figure A8. Bivariate HDR boxplots of B228 and Secar de la Real rain gauge stations.
Figure A8. Bivariate HDR boxplots of B228 and Secar de la Real rain gauge stations.
Hydrology 12 00152 g0a8
Figure A9. Bivariate HDR boxplots of B228 and Son Ferriol rain gauge stations.
Figure A9. Bivariate HDR boxplots of B228 and Son Ferriol rain gauge stations.
Hydrology 12 00152 g0a9
Figure A10. Bivariate HDR boxplots of B228 and Son Rapinya rain gauge stations.
Figure A10. Bivariate HDR boxplots of B228 and Son Rapinya rain gauge stations.
Hydrology 12 00152 g0a10
Figure A11. Bivariate HDR boxplots of B236 and B278 rain gauge stations.
Figure A11. Bivariate HDR boxplots of B236 and B278 rain gauge stations.
Hydrology 12 00152 g0a11
Figure A12. Bivariate HDR boxplots of B236 and El Pil·lari rain gauge stations.
Figure A12. Bivariate HDR boxplots of B236 and El Pil·lari rain gauge stations.
Hydrology 12 00152 g0a12
Figure A13. Bivariate HDR boxplots of B236 and La Bonanova rain gauge stations.
Figure A13. Bivariate HDR boxplots of B236 and La Bonanova rain gauge stations.
Hydrology 12 00152 g0a13
Figure A14. Bivariate HDR boxplots of B236 and Pont d’Inca rain gauge stations.
Figure A14. Bivariate HDR boxplots of B236 and Pont d’Inca rain gauge stations.
Hydrology 12 00152 g0a14
Figure A15. Bivariate HDR boxplots of B236 and Pòrtol rain gauge stations.
Figure A15. Bivariate HDR boxplots of B236 and Pòrtol rain gauge stations.
Hydrology 12 00152 g0a15
Figure A16. Bivariate HDR boxplots of B236 and Puntiró rain gauge stations.
Figure A16. Bivariate HDR boxplots of B236 and Puntiró rain gauge stations.
Hydrology 12 00152 g0a16
Figure A17. Bivariate HDR boxplots of B236 and Secar de la Real rain gauge stations.
Figure A17. Bivariate HDR boxplots of B236 and Secar de la Real rain gauge stations.
Hydrology 12 00152 g0a17
Figure A18. Bivariate HDR boxplots of B236 and Son Ferriol rain gauge stations.
Figure A18. Bivariate HDR boxplots of B236 and Son Ferriol rain gauge stations.
Hydrology 12 00152 g0a18
Figure A19. Bivariate HDR boxplots of B236 and Son Rapinya rain gauge stations.
Figure A19. Bivariate HDR boxplots of B236 and Son Rapinya rain gauge stations.
Hydrology 12 00152 g0a19
Figure A20. Bivariate HDR boxplots of B278 and El Pil·lari rain gauge stations.
Figure A20. Bivariate HDR boxplots of B278 and El Pil·lari rain gauge stations.
Hydrology 12 00152 g0a20
Figure A21. Bivariate HDR boxplots of B278 and La Bonanova rain gauge stations.
Figure A21. Bivariate HDR boxplots of B278 and La Bonanova rain gauge stations.
Hydrology 12 00152 g0a21
Figure A22. Bivariate HDR boxplots of B278 and Pont d’Inca rain gauge stations.
Figure A22. Bivariate HDR boxplots of B278 and Pont d’Inca rain gauge stations.
Hydrology 12 00152 g0a22
Figure A23. Bivariate HDR boxplots of B278 and Pòrtol rain gauge stations.
Figure A23. Bivariate HDR boxplots of B278 and Pòrtol rain gauge stations.
Hydrology 12 00152 g0a23
Figure A24. Bivariate HDR boxplots of B278 and Puntiró rain gauge stations.
Figure A24. Bivariate HDR boxplots of B278 and Puntiró rain gauge stations.
Hydrology 12 00152 g0a24
Figure A25. Bivariate HDR boxplots of B278 and Secar de la Real rain gauge stations.
Figure A25. Bivariate HDR boxplots of B278 and Secar de la Real rain gauge stations.
Hydrology 12 00152 g0a25
Figure A26. Bivariate HDR boxplots of B278 and Son Ferriol rain gauge stations.
Figure A26. Bivariate HDR boxplots of B278 and Son Ferriol rain gauge stations.
Hydrology 12 00152 g0a26
Figure A27. Bivariate HDR boxplots of B278 and Son Rapinya rain gauge stations.
Figure A27. Bivariate HDR boxplots of B278 and Son Rapinya rain gauge stations.
Hydrology 12 00152 g0a27
Figure A28. Bivariate HDR boxplots of El Pil·lari and La Bonanova rain gauge stations.
Figure A28. Bivariate HDR boxplots of El Pil·lari and La Bonanova rain gauge stations.
Hydrology 12 00152 g0a28
Figure A29. Bivariate HDR boxplots of El Pil·lari and Pont d’Inca rain gauge stations.
Figure A29. Bivariate HDR boxplots of El Pil·lari and Pont d’Inca rain gauge stations.
Hydrology 12 00152 g0a29
Figure A30. Bivariate HDR boxplots of El Pil·lari and Pòrtol rain gauge stations.
Figure A30. Bivariate HDR boxplots of El Pil·lari and Pòrtol rain gauge stations.
Hydrology 12 00152 g0a30
Figure A31. Bivariate HDR boxplots of El Pil·lari and Puntiró rain gauge stations.
Figure A31. Bivariate HDR boxplots of El Pil·lari and Puntiró rain gauge stations.
Hydrology 12 00152 g0a31
Figure A32. Bivariate HDR boxplots of El Pil·lari and Secar de la Real rain gauge stations.
Figure A32. Bivariate HDR boxplots of El Pil·lari and Secar de la Real rain gauge stations.
Hydrology 12 00152 g0a32
Figure A33. Bivariate HDR boxplots of El Pil·lari and Son Ferriol rain gauge stations.
Figure A33. Bivariate HDR boxplots of El Pil·lari and Son Ferriol rain gauge stations.
Hydrology 12 00152 g0a33
Figure A34. Bivariate HDR boxplots of El Pil·lari and Son Rapinya rain gauge stations.
Figure A34. Bivariate HDR boxplots of El Pil·lari and Son Rapinya rain gauge stations.
Hydrology 12 00152 g0a34
Figure A35. Bivariate HDR boxplots of La Bonanova and Pont d’Inca rain gauge stations.
Figure A35. Bivariate HDR boxplots of La Bonanova and Pont d’Inca rain gauge stations.
Hydrology 12 00152 g0a35
Figure A36. Bivariate HDR boxplots of La Bonanova and Pòrtol rain gauge stations.
Figure A36. Bivariate HDR boxplots of La Bonanova and Pòrtol rain gauge stations.
Hydrology 12 00152 g0a36
Figure A37. Bivariate HDR boxplots of La Bonanova and Puntiró rain gauge stations.
Figure A37. Bivariate HDR boxplots of La Bonanova and Puntiró rain gauge stations.
Hydrology 12 00152 g0a37
Figure A38. Bivariate HDR boxplots of La Bonanova and Secar de la Real rain gauge stations.
Figure A38. Bivariate HDR boxplots of La Bonanova and Secar de la Real rain gauge stations.
Hydrology 12 00152 g0a38
Figure A39. Bivariate HDR boxplots of La Bonanova and Son Ferriol rain gauge stations.
Figure A39. Bivariate HDR boxplots of La Bonanova and Son Ferriol rain gauge stations.
Hydrology 12 00152 g0a39
Figure A40. Bivariate HDR boxplots of La Bonanova and Son Rapinya rain gauge stations.
Figure A40. Bivariate HDR boxplots of La Bonanova and Son Rapinya rain gauge stations.
Hydrology 12 00152 g0a40
Figure A41. Bivariate HDR boxplots of Pont d’Inca and Pòrtol rain gauge stations.
Figure A41. Bivariate HDR boxplots of Pont d’Inca and Pòrtol rain gauge stations.
Hydrology 12 00152 g0a41
Figure A42. Bivariate HDR boxplots of Pont d’Inca and Puntiró rain gauge stations.
Figure A42. Bivariate HDR boxplots of Pont d’Inca and Puntiró rain gauge stations.
Hydrology 12 00152 g0a42
Figure A43. Bivariate HDR boxplots of Pont d’Inca and Secar de la Real rain gauge stations.
Figure A43. Bivariate HDR boxplots of Pont d’Inca and Secar de la Real rain gauge stations.
Hydrology 12 00152 g0a43
Figure A44. Bivariate HDR boxplots of Pont d’Inca and Son Ferriol rain gauge stations.
Figure A44. Bivariate HDR boxplots of Pont d’Inca and Son Ferriol rain gauge stations.
Hydrology 12 00152 g0a44
Figure A45. Bivariate HDR boxplots of Pont d’Inca and Son Rapinya rain gauge stations.
Figure A45. Bivariate HDR boxplots of Pont d’Inca and Son Rapinya rain gauge stations.
Hydrology 12 00152 g0a45
Figure A46. Bivariate HDR boxplots of Pòrtol and Puntiró rain gauge stations.
Figure A46. Bivariate HDR boxplots of Pòrtol and Puntiró rain gauge stations.
Hydrology 12 00152 g0a46
Figure A47. Bivariate HDR boxplots of Pòrtol and Secar de la Real rain gauge stations.
Figure A47. Bivariate HDR boxplots of Pòrtol and Secar de la Real rain gauge stations.
Hydrology 12 00152 g0a47
Figure A48. Bivariate HDR boxplots of Pòrtol and Son Ferriol rain gauge stations.
Figure A48. Bivariate HDR boxplots of Pòrtol and Son Ferriol rain gauge stations.
Hydrology 12 00152 g0a48
Figure A49. Bivariate HDR boxplots of Pòrtol and Son Rapinya rain gauge stations.
Figure A49. Bivariate HDR boxplots of Pòrtol and Son Rapinya rain gauge stations.
Hydrology 12 00152 g0a49
Figure A50. Bivariate HDR boxplots of Puntiró and Secar de la Real rain gauge stations.
Figure A50. Bivariate HDR boxplots of Puntiró and Secar de la Real rain gauge stations.
Hydrology 12 00152 g0a50
Figure A51. Bivariate HDR boxplots of Puntiró and Son Ferriol rain gauge stations.
Figure A51. Bivariate HDR boxplots of Puntiró and Son Ferriol rain gauge stations.
Hydrology 12 00152 g0a51
Figure A52. Bivariate HDR boxplots of Puntiró and Son Rapinya rain gauge stations.
Figure A52. Bivariate HDR boxplots of Puntiró and Son Rapinya rain gauge stations.
Hydrology 12 00152 g0a52
Figure A53. Bivariate HDR boxplots of Secar de la Real and Son Ferriol rain gauge stations.
Figure A53. Bivariate HDR boxplots of Secar de la Real and Son Ferriol rain gauge stations.
Hydrology 12 00152 g0a53
Figure A54. Bivariate HDR boxplots of Secar de la Real and Son Rapinya rain gauge stations.
Figure A54. Bivariate HDR boxplots of Secar de la Real and Son Rapinya rain gauge stations.
Hydrology 12 00152 g0a54
Figure A55. Bivariate HDR boxplots of Son Ferriol and Son Rapinya rain gauge stations.
Figure A55. Bivariate HDR boxplots of Son Ferriol and Son Rapinya rain gauge stations.
Hydrology 12 00152 g0a55

Appendix B. Detection of Occurrence of Rainfall Performance

Table A1. Detection of occurrence of rainfall performance.
Table A1. Detection of occurrence of rainfall performance.
CombinationsPODFARCSIBS
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real0.940.180.791.15
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B2280.950.180.791.16
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B2360.940.180.781.15
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B2780.950.190.781.16
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B2280.920.170.781.12
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B2360.920.180.771.13
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B2780.930.190.761.15
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - B228 - B2360.930.190.771.14
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - B228 - B2780.930.180.771.14
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - B236 - B2780.920.210.741.16
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B2280.940.150.811.10
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B2360.940.170.791.13
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B2780.950.170.791.15
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Puntiró - B228 - B2360.950.170.801.14
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Puntiró - B228 - B2780.950.170.801.14
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Puntiró - B236 - B2780.940.190.771.17
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Secar de la Real - B228 - B2360.930.150.801.10
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Secar de la Real - B228 - B2780.930.170.791.12
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Secar de la Real - B236 - B2780.930.190.771.14
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - B228 - B236 - B2780.930.190.771.14
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B2280.950.170.801.14
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B2360.950.190.771.17
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B2780.950.200.771.18
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Puntiró - B228 - B2360.940.170.791.14
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Puntiró - B228 - B2780.950.170.791.14
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Puntiró - B236 - B2780.930.210.741.18
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Secar de la Real - B228 - B2360.930.170.781.12
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Secar de la Real - B228 - B2780.930.190.771.14
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Secar de la Real - B236 - B2780.920.210.741.17
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - B228 - B236 - B2780.920.200.751.15
El Pil·lari - La Bonanova - Pòrtol - Puntiró - Secar de la Real - B228 - B2360.950.150.811.13
El Pil·lari - La Bonanova - Pòrtol - Puntiró - Secar de la Real - B228 - B2780.950.160.801.13
El Pil·lari - La Bonanova - Pòrtol - Puntiró - Secar de la Real - B236 - B2780.930.190.761.15
El Pil·lari - La Bonanova - Pòrtol - Puntiró - B228 - B236 - B2780.940.180.781.15
El Pil·lari - La Bonanova - Pòrtol - Secar de la Real - B228 - B236 - B2780.940.170.791.14
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2280.930.160.791.11
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2360.930.180.771.13
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2780.930.190.771.14
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - B228 - B2360.930.190.761.15
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - B228 - B2780.930.180.771.13
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - B236 - B2780.920.200.741.16
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B2360.940.160.801.11
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B2780.940.170.791.13
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Secar de la Real - B236 - B2780.930.190.761.15
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - B228 - B236 - B2780.930.190.771.15
El Pil·lari - La Bonanova - Son Rapinya - Puntiró - Secar de la Real - B228 - B2360.930.150.801.10
El Pil·lari - La Bonanova - Son Rapinya - Puntiró - Secar de la Real - B228 - B2780.930.160.791.11
El Pil·lari - La Bonanova - Son Rapinya - Puntiró - Secar de la Real - B236 - B2780.920.190.761.13
El Pil·lari - La Bonanova - Son Rapinya - Puntiró - B228 - B236 - B2780.930.180.771.13
El Pil·lari - La Bonanova - Son Rapinya - Secar de la Real - B228 - B236 - B2780.930.160.791.12
El Pil·lari - La Bonanova - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2360.930.170.781.13
El Pil·lari - La Bonanova - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2780.930.180.771.12
El Pil·lari - La Bonanova - Pont d’Inca - Puntiró - Secar de la Real - B236 - B2780.920.210.741.16
El Pil·lari - La Bonanova - Pont d’Inca - Puntiró - B228 - B236 - B2780.930.200.761.16
El Pil·lari - La Bonanova - Pont d’Inca - Secar de la Real - B228 - B236 - B2780.940.170.781.13
El Pil·lari - La Bonanova - Puntiró - Secar de la Real - B228 - B236 - B2780.940.170.791.12
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2280.940.170.791.13
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2360.950.180.781.16
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2780.950.190.781.18
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B228 - B2360.930.180.771.14
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B228 - B2780.940.180.781.15
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B236 - B2780.940.200.761.17
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B2360.920.180.761.12
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B2780.920.190.761.14
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B236 - B2780.930.210.751.17
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - B228 - B236 - B2780.910.200.741.14
El Pil·lari - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B228 - B2360.930.160.791.11
El Pil·lari - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B228 - B2780.950.170.791.13
El Pil·lari - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B236 - B2780.940.190.771.15
El Pil·lari - Pòrtol - Son Rapinya - Puntiró - B228 - B236 - B2780.930.190.771.15
El Pil·lari - Pòrtol - Son Rapinya - Secar de la Real - B228 - B236 - B2780.930.190.761.14
El Pil·lari - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2360.940.190.771.16
El Pil·lari - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2780.950.190.781.16
El Pil·lari - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B236 - B2780.930.200.761.16
El Pil·lari - Pòrtol - Pont d’Inca - Puntiró - B228 - B236 - B2780.920.200.751.16
El Pil·lari - Pòrtol - Pont d’Inca - Secar de la Real - B228 - B236 - B2780.920.210.741.16
El Pil·lari - Pòrtol - Puntiró - Secar de la Real - B228 - B236 - B2780.940.180.771.14
El Pil·lari - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2360.920.180.761.13
El Pil·lari - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2780.920.180.771.12
El Pil·lari - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B236 - B2780.930.200.751.16
El Pil·lari - Son Rapinya - Pont d’Inca - Puntiró - B228 - B236 - B2780.910.200.741.14
El Pil·lari - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B236 - B2780.920.190.761.14
El Pil·lari - Son Rapinya - Puntiró - Secar de la Real - B228 - B236 - B2780.920.180.761.12
El Pil·lari - Pont d’Inca - Puntiró - Secar de la Real - B228 - B236 - B2780.920.200.751.15
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2280.950.140.831.11
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2360.950.150.811.12
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2780.950.170.801.14
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B228 - B2360.960.150.811.13
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B228 - B2780.950.150.811.13
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B236 - B2780.940.170.791.14
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B2360.950.150.811.11
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B2780.930.160.791.10
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B236 - B2780.940.170.791.14
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - B228 - B236 - B2780.950.170.791.14
La Bonanova - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B228 - B2360.950.120.841.08
La Bonanova - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B228 - B2780.950.130.831.09
La Bonanova - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B236 - B2780.950.150.811.11
La Bonanova - Pòrtol - Son Rapinya - Puntiró - B228 - B236 - B2780.950.150.821.11
La Bonanova - Pòrtol - Son Rapinya - Secar de la Real - B228 - B236 - B2780.940.150.811.11
La Bonanova - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2360.960.140.831.11
La Bonanova - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2780.950.150.811.12
La Bonanova - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B236 - B2780.950.180.791.15
La Bonanova - Pòrtol - Pont d’Inca - Puntiró - B228 - B236 - B2780.950.160.801.14
La Bonanova - Pòrtol - Pont d’Inca - Secar de la Real - B228 - B236 - B2780.950.170.801.14
La Bonanova - Pòrtol - Puntiró - Secar de la Real - B228 - B236 - B2780.960.140.831.11
La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2360.940.140.811.09
La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2780.930.150.801.10
La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B236 - B2780.940.170.791.13
La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - B228 - B236 - B2780.940.170.781.13
La Bonanova - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B236 - B2780.950.150.811.11
La Bonanova - Son Rapinya - Puntiró - Secar de la Real - B228 - B236 - B2780.930.150.811.09
La Bonanova - Pont d’Inca - Puntiró - Secar de la Real - B228 - B236 - B2780.940.160.791.12
Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2360.940.150.811.11
Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2780.940.160.801.12
Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B236 - B2780.950.180.791.15
Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B228 - B236 - B2780.940.170.791.13
Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B236 - B2780.930.180.781.13
Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B228 - B236 - B2780.940.150.811.11
Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B228 - B236 - B2780.940.170.791.14
Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B228 - B236 - B2780.930.170.781.12

Appendix C. Accuracy of Rainfall Performance

Table A2. Accuracy of rainfall performance for various combinations.
Table A2. Accuracy of rainfall performance for various combinations.
Combinations<1   mm [ 1 , 5 ) mm [ 5 , 20 ) mm [ 20 , 40 ) mm >40 mm
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real0.810.440.560.280.50
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B2280.830.490.600.390.62
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B2360.770.410.540.410.62
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B2780.820.450.580.360.62
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B2280.820.470.590.380.50
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B2360.780.400.530.310.50
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B2780.790.420.550.350.55
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - B228 - B2360.800.440.570.500.67
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - B228 - B2780.830.500.620.530.67
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - B236 - B2780.770.410.560.480.67
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B2280.830.470.580.290.45
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B2360.770.410.530.300.45
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B2780.800.440.550.270.50
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Puntiró - B228 - B2360.790.440.560.420.62
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Puntiró - B228 - B2780.820.480.590.420.62
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Puntiró - B236 - B2780.750.410.550.400.62
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Secar de la Real - B228 - B2360.790.440.580.380.50
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Secar de la Real - B228 - B2780.800.450.580.420.55
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Secar de la Real - B236 - B2780.760.410.530.380.55
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - B228 - B236 - B2780.780.430.570.520.67
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B2280.820.460.590.310.45
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B2360.760.370.550.330.50
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B2780.790.380.530.280.50
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Puntiró - B228 - B2360.780.430.570.470.56
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Puntiró - B228 - B2780.830.460.600.380.56
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Puntiró - B236 - B2780.750.370.530.480.62
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Secar de la Real - B228 - B2360.780.410.560.400.50
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Secar de la Real - B228 - B2780.790.410.560.360.50
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Secar de la Real - B236 - B2780.750.350.510.350.55
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - B228 - B236 - B2780.780.410.560.480.60
El Pil·lari - La Bonanova - Pòrtol - Puntiró - Secar de la Real - B228 - B2360.770.410.550.380.45
El Pil·lari - La Bonanova - Pòrtol - Puntiró - Secar de la Real - B228 - B2780.800.440.560.290.45
El Pil·lari - La Bonanova - Pòrtol - Puntiró - Secar de la Real - B236 - B2780.740.380.520.340.50
El Pil·lari - La Bonanova - Pòrtol - Puntiró - B228 - B236 - B2780.770.410.550.410.56
El Pil·lari - La Bonanova - Pòrtol - Secar de la Real - B228 - B236 - B2780.770.410.560.380.50
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2280.840.500.590.340.50
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2360.770.410.520.270.50
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2780.800.460.560.330.55
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - B228 - B2360.790.450.560.470.67
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - B228 - B2780.830.510.610.500.67
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - B236 - B2780.760.430.540.460.67
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B2360.810.490.590.390.58
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B2780.840.500.610.420.64
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Secar de la Real - B236 - B2780.780.440.540.390.64
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - B228 - B236 - B2780.810.470.580.550.78
El Pil·lari - La Bonanova - Son Rapinya - Puntiró - Secar de la Real - B228 - B2360.790.450.570.340.50
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - B228 - B2780.830.510.610.500.67
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - B236 - B2780.760.430.540.460.67
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B2360.810.490.590.390.58
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B2780.840.500.610.420.64
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Secar de la Real - B236 - B2780.780.440.540.390.64
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - B228 - B236 - B2780.810.470.580.550.78
El Pil·lari - La Bonanova - Son Rapinya - Puntiró - Secar de la Real - B228 - B2360.790.450.570.340.50
El Pil·lari - La Bonanova - Son Rapinya - Puntiró - Secar de la Real - B228 - B2780.810.490.600.390.55
El Pil·lari - La Bonanova - Son Rapinya - Puntiró - Secar de la Real - B236 - B2780.760.410.520.330.55
El Pil·lari - La Bonanova - Son Rapinya - Puntiró - B228 - B236 - B2780.770.450.570.480.67
El Pil·lari - La Bonanova - Son Rapinya - Secar de la Real - B228 - B236 - B2780.800.480.580.450.64
El Pil·lari - La Bonanova - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2360.780.430.560.360.50
El Pil·lari - La Bonanova - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2780.790.440.560.340.50
El Pil·lari - La Bonanova - Pont d’Inca - Puntiró - Secar de la Real - B236 - B2780.740.370.500.310.55
El Pil·lari - La Bonanova - Pont d’Inca - Puntiró - B228 - B236 - B2780.770.410.550.460.60
El Pil·lari - La Bonanova - Pont d’Inca - Secar de la Real - B228 - B236 - B2780.780.430.550.420.64
El Pil·lari - La Bonanova - Puntiró - Secar de la Real - B228 - B236 - B2780.770.420.550.350.50
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2280.810.430.570.290.56
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2360.760.380.540.360.44
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2780.810.430.570.290.44
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B228 - B2360.780.400.550.500.71
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B228 - B2780.820.440.580.400.71
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B236 - B2780.770.400.560.520.33
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B2360.780.400.550.360.55
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B2780.790.410.570.390.60
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B236 - B2780.770.380.540.380.60
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - B228 - B236 - B2780.770.400.560.570.75
El Pil·lari - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B228 - B2360.770.400.540.330.50
El Pil·lari - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B228 - B2780.810.430.550.280.56
El Pil·lari - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B236 - B2780.750.380.530.340.38
El Pil·lari - Pòrtol - Son Rapinya - Puntiró - B228 - B236 - B2780.750.390.540.450.71
El Pil·lari - Pòrtol - Son Rapinya - Secar de la Real - B228 - B236 - B2780.760.390.540.390.60
El Pil·lari - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2360.750.370.550.380.56
El Pil·lari - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2780.790.390.550.310.56
El Pil·lari - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B236 - B2780.750.360.520.360.44
El Pil·lari - Pòrtol - Pont d’Inca - Puntiró - B228 - B236 - B2780.750.360.550.500.71
El Pil·lari - Pòrtol - Pont d’Inca - Secar de la Real - B228 - B236 - B2780.740.350.530.380.60
El Pil·lari - Pòrtol - Puntiró - Secar de la Real - B228 - B236 - B2780.730.360.530.380.56
El Pil·lari - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2360.770.400.530.290.55
El Pil·lari - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2780.810.450.550.350.60
El Pil·lari - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B236 - B2780.760.390.520.350.60
El Pil·lari - Son Rapinya - Pont d’Inca - Puntiró - B228 - B236 - B2780.760.400.550.520.75
El Pil·lari - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B236 - B2780.780.430.550.410.70
El Pil·lari - Son Rapinya - Puntiró - Secar de la Real - B228 - B236 - B2780.760.400.530.360.60
El Pil·lari - Pont d’Inca - Puntiró - Secar de la Real - B228 - B236 - B2780.740.360.530.360.60
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2280.850.490.590.350.56
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2360.810.430.570.330.56
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2780.820.440.560.310.56
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B228 - B2360.820.460.590.480.71
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B228 - B2780.840.490.610.420.71
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B236 - B2780.800.450.580.410.71
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B2360.840.480.600.380.55
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B2780.830.480.590.430.60
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B236 - B2780.810.440.570.390.60
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - B228 - B236 - B2780.830.470.600.520.75
El Pil·lari - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2360.770.400.530.290.55
El Pil·lari - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2780.810.450.550.350.60
El Pil·lari - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B236 - B2780.760.390.520.350.60
El Pil·lari - Son Rapinya - Pont d’Inca - Puntiró - B228 - B236 - B2780.760.400.550.520.75
El Pil·lari - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B236 - B2780.780.430.550.410.70
El Pil·lari - Son Rapinya - Puntiró - Secar de la Real - B228 - B236 - B2780.760.400.530.360.60
El Pil·lari - Pont d’Inca - Puntiró - Secar de la Real - B228 - B236 - B2780.740.360.530.360.60
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2280.850.490.590.350.56
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2360.810.430.570.330.56
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2780.820.440.560.310.56
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B228 - B2360.820.460.590.480.71
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B228 - B2780.840.490.610.420.71
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B236 - B2780.800.450.580.410.71
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B2360.840.480.600.380.55
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B2780.830.480.590.430.60
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B236 - B2780.810.440.570.390.60
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - B228 - B236 - B2780.830.470.600.520.75
La Bonanova - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B228 - B2360.830.460.590.340.50
La Bonanova - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B228 - B2780.840.470.580.330.56
La Bonanova - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B236 - B2780.790.420.560.310.44
La Bonanova - Pòrtol - Son Rapinya - Puntiró - B228 - B236 - B2780.810.470.600.440.71
La Bonanova - Pòrtol - Son Rapinya - Secar de la Real - B228 - B236 - B2780.810.460.590.440.60
La Bonanova - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2360.830.440.580.380.50
La Bonanova - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2780.820.430.560.320.50
La Bonanova - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B236 - B2780.780.380.540.340.56
La Bonanova - Pòrtol - Pont d’Inca - Puntiró - B228 - B236 - B2780.810.430.580.480.62
La Bonanova - Pòrtol - Pont d’Inca - Secar de la Real - B228 - B236 - B2780.810.420.570.390.55
La Bonanova - Pòrtol - Puntiró - Secar de la Real - B228 - B236 - B2780.790.430.570.340.50
La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2360.820.480.600.350.55
La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2780.840.490.600.390.60
La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B236 - B2780.790.430.550.340.60
La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - B228 - B236 - B2780.810.450.590.500.75
La Bonanova - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B236 - B2780.840.510.620.440.70
La Bonanova - Son Rapinya - Puntiró - Secar de la Real - B228 - B236 - B2780.800.460.610.410.60
La Bonanova - Pont d’Inca - Puntiró - Secar de la Real - B228 - B236 - B2780.800.430.570.350.55
Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2360.810.430.580.370.62
Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2780.830.430.560.320.62
Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B236 - B2780.800.410.560.390.57
Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B228 - B236 - B2780.800.430.580.500.83
Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B236 - B2780.810.420.570.400.67
Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B228 - B236 - B2780.780.400.560.340.62
Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B228 - B236 - B2780.770.370.550.380.62
Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B228 - B236 - B2780.780.410.570.370.67

Appendix D. Accuracy of Rainfall Performance II

Table A3. Accuracy of rainfall performance for various combinations.
Table A3. Accuracy of rainfall performance for various combinations.
CombinationsRMSENSEPBIAS
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real3.230.790.50
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B2282.830.84−5.21
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B2363.190.78−0.31
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B2783.110.790.01
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B2282.860.86−2.90
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B2363.170.811.01
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B2783.210.81−1.30
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - B228 - B2362.780.86−4.37
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - B228 - B2782.690.87−5.19
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - B236 - B2783.030.81−0.02
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B2283.030.83−2.31
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B2363.370.771.71
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B2783.430.76−1.11
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Puntiró - B228 - B2362.970.82−5.20
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Puntiró - B228 - B2782.880.83−6.09
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Puntiró - B236 - B2783.240.76−0.11
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Secar de la Real - B228 - B2362.980.85−1.44
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Secar de la Real - B228 - B2783.070.83−4.64
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - Secar de la Real - B236 - B2783.370.78−0.45
El Pil·lari - La Bonanova - Pòrtol - Son Rapinya - B228 - B236 - B2782.830.85−5.06
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B2282.760.86−2.55
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B2363.060.820.56
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B2783.230.79−1.42
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Puntiró - B228 - B2362.740.86−2.20
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Puntiró - B228 - B2782.710.86−4.64
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Puntiró - B236 - B2783.110.790.10
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Secar de la Real - B228 - B2362.710.88−1.77
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Secar de la Real - B228 - B2782.910.86−4.53
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - Secar de la Real - B236 - B2783.180.82−1.02
El Pil·lari - La Bonanova - Pòrtol - Pont d’Inca - B228 - B236 - B2782.670.87−4.04
El Pil·lari - La Bonanova - Pòrtol - Puntiró - Secar de la Real - B228 - B2362.910.85−1.05
El Pil·lari - La Bonanova - Pòrtol - Puntiró - Secar de la Real - B228 - B2783.130.82−4.04
El Pil·lari - La Bonanova - Pòrtol - Puntiró - Secar de la Real - B236 - B2783.420.77−0.37
El Pil·lari - La Bonanova - Pòrtol - Puntiró - B228 - B236 - B2782.820.84−4.41
El Pil·lari - La Bonanova - Pòrtol - Secar de la Real - B228 - B236 - B2783.070.84−3.29
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2283.090.83−5.79
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2363.380.77−1.39
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2783.390.77−3.84
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - B228 - B2363.000.83−7.02
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - B228 - B2782.910.83−7.79
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - B236 - B2783.230.77−1.97
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B2362.860.86−1.79
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B2782.920.85−4.99
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - Secar de la Real - B236 - B2783.250.80−0.70
El Pil·lari - La Bonanova - Son Rapinya - Pont d’Inca - B228 - B236 - B2782.730.86−4.69
El Pil·lari - La Bonanova - Son Rapinya - Puntiró - Secar de la Real - B228 - B2363.190.81−4.18
El Pil·lari - La Bonanova - Son Rapinya - Puntiró - Secar de la Real - B228 - B2783.260.80−7.81
El Pil·lari - La Bonanova - Son Rapinya - Puntiró - Secar de la Real - B236 - B2783.550.74−2.96
El Pil·lari - La Bonanova - Son Rapinya - Puntiró - B228 - B236 - B2783.020.82−7.76
El Pil·lari - La Bonanova - Son Rapinya - Secar de la Real - B228 - B236 - B2783.070.84−3.72
El Pil·lari - La Bonanova - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2362.960.85−4.36
El Pil·lari - La Bonanova - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2783.130.82−7.34
El Pil·lari - La Bonanova - Pont d’Inca - Puntiró - Secar de la Real - B236 - B2783.390.78−3.28
El Pil·lari - La Bonanova - Pont d’Inca - Puntiró - B228 - B236 - B2782.900.84−6.46
El Pil·lari - La Bonanova - Pont d’Inca - Secar de la Real - B228 - B236 - B2782.920.86−3.46
El Pil·lari - La Bonanova - Puntiró - Secar de la Real - B228 - B236 - B2783.290.80−5.91
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2283.060.81−0.30
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2362.960.80−1.89
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2782.980.79−4.18
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B228 - B2362.940.80−0.92
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B228 - B2782.860.81−0.51
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B236 - B2782.660.82−2.50
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B2363.010.830.25
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B2783.030.82−2.01
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B236 - B2782.940.81−3.36
El Pil·lari - Pòrtol - Son Rapinya - Pont d’Inca - B228 - B236 - B2782.790.84−0.55
El Pil·lari - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B228 - B2363.210.780.90
El Pil·lari - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B228 - B2783.260.77−1.85
El Pil·lari - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B236 - B2783.160.76−3.77
El Pil·lari - Pòrtol - Son Rapinya - Puntiró - B228 - B236 - B2782.990.79−0.45
El Pil·lari - Pòrtol - Son Rapinya - Secar de la Real - B228 - B236 - B2783.210.80−1.18
El Pil·lari - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2362.930.830.25
El Pil·lari - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2783.090.80−1.86
El Pil·lari - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B236 - B2783.010.79−1.79
El Pil·lari - Pòrtol - Pont d’Inca - Puntiró - B228 - B236 - B2782.920.81−0.69
El Pil·lari - Pòrtol - Pont d’Inca - Secar de la Real - B228 - B236 - B2783.050.82−1.42
El Pil·lari - Pòrtol - Puntiró - Secar de la Real - B228 - B236 - B2783.300.77−0.79
El Pil·lari - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2363.220.79−2.21
El Pil·lari - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2783.220.78−4.63
El Pil·lari - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B236 - B2783.130.77−5.99
El Pil·lari - Son Rapinya - Pont d’Inca - Puntiró - B228 - B236 - B2783.010.79−2.54
El Pil·lari - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B236 - B2783.080.82−1.47
El Pil·lari - Son Rapinya - Puntiró - Secar de la Real - B228 - B236 - B2783.390.76−3.74
El Pil·lari - Pont d’Inca - Puntiró - Secar de la Real - B228 - B236 - B2783.260.78−3.74
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2282.840.85−1.29
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2363.180.802.00
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B2783.230.79−0.26
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B228 - B2362.770.85−3.51
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B228 - B2782.710.85−4.24
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B236 - B2783.060.790.89
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B2362.770.87−0.75
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B2782.830.86−2.59
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B236 - B2783.140.810.39
La Bonanova - Pòrtol - Son Rapinya - Pont d’Inca - B228 - B236 - B2782.620.87−3.49
La Bonanova - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B228 - B2362.950.84−0.28
La Bonanova - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B228 - B2783.050.82−3.26
La Bonanova - Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B236 - B2783.360.770.59
La Bonanova - Pòrtol - Son Rapinya - Puntiró - B228 - B236 - B2782.810.84−4.14
La Bonanova - Pòrtol - Son Rapinya - Secar de la Real - B228 - B236 - B2782.970.84−2.61
La Bonanova - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2362.680.87−0.57
La Bonanova - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2782.880.85−2.69
La Bonanova - Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B236 - B2783.170.800.06
La Bonanova - Pòrtol - Pont d’Inca - Puntiró - B228 - B236 - B2782.660.86−2.96
La Bonanova - Pòrtol - Pont d’Inca - Secar de la Real - B228 - B236 - B2782.810.87−2.31
La Bonanova - Pòrtol - Puntiró - Secar de la Real - B228 - B236 - B2783.040.83−1.99
La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2363.030.83−3.71
La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2783.110.82−6.48
La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B236 - B2783.360.77−2.27
La Bonanova - Son Rapinya - Pont d’Inca - Puntiró - B228 - B236 - B2782.870.84−6.20
La Bonanova - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B236 - B2782.860.86-2.49
La Bonanova - Son Rapinya - Puntiró - Secar de la Real - B228 - B236 - B2783.190.81−5.51
La Bonanova - Pont d’Inca - Puntiró - Secar de la Real - B228 - B236 - B2783.070.83−5.20
Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2363.020.811.19
Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B228 - B2783.080.80−1.02
Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B236 - B2782.950.79−2.72
Pòrtol - Son Rapinya - Pont d’Inca - Puntiró - B228 - B236 - B2782.830.810.33
Pòrtol - Son Rapinya - Pont d’Inca - Secar de la Real - B228 - B236 - B2782.990.82−0.35
Pòrtol - Son Rapinya - Puntiró - Secar de la Real - B228 - B236 - B2783.210.78−0.20
Pòrtol - Pont d’Inca - Puntiró - Secar de la Real - B228 - B236 - B2783.060.81−0.41
Son Rapinya - Pont d’Inca - Puntiró - Secar de la Real - B228 - B236 - B2783.210.78−3.08

Appendix E. GPA Inverse CDF on Site

Figure A56. GPA inverse CDF on the different rainfall station sites.
Figure A56. GPA inverse CDF on the different rainfall station sites.
Hydrology 12 00152 g0a56aHydrology 12 00152 g0a56b

References

  1. Ramos, M. Divisive and hierarchical clustering techniques to analyse variability of rainfall distribution patterns in a Mediterranean region. Atmos. Res. 2001, 57, 123–138. [Google Scholar] [CrossRef]
  2. IPCC. Climate Change 2023: Synthesis Report (Full Volume) Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; p. 184. [Google Scholar] [CrossRef]
  3. Diez-Sierra, J.; del Jesus, M. A rainfall analysis and forecasting tool. Environ. Model. Softw. 2017, 97, 243–258. [Google Scholar] [CrossRef]
  4. Cassalho, F.; Beskov, S.; de Mello, C.R.; de Moura, M.M. Regional flood frequency analysis using L-moments for geographically defined regions: An assessment in Brazil. J. Flood Risk Manag. 2019, 12, e12453. [Google Scholar] [CrossRef]
  5. Senent-Aparicio, J.; Soto, J.; Pérez-Sánchez, J.; Garrido, J. A novel fuzzy clustering approach to regionalise watersheds with an automatic determination of optimal number of clusters. J. Hydrol. Hydromech. 2017, 65, 359–365. [Google Scholar] [CrossRef]
  6. Aragón, L.; Lavado-Casimiro, W.; Montesinos, C.; Zubieta, R.; Laqui, W. Estimación de lluvias extremas mediante un enfoque de análisis regional y datos satelitales en Cusco, Perú. Tecnol. Cienc. Agua 2024, 15, 1–64. [Google Scholar] [CrossRef]
  7. Smithers, J.; Schulze, R. A methodology for the estimation of short duration design storms in South Africa using a regional approach based on L-moments. J. Hydrol. 2001, 241, 42–52. [Google Scholar] [CrossRef]
  8. Topçu, E.; Seçkin, N. Drought Analysis of the Seyhan Basin by Using Standardized Precipitation Index SPI and L-moments. J. Agric. Sci. 2016, 22, 196–215. [Google Scholar] [CrossRef]
  9. Rahman, A.S.; Rahman, A.; Zaman, M.A.; Haddad, K.; Ahsan, A.; Imteaz, M. A study on selection of probability distributions for at-site flood frequency analysis in Australia. Nat. Hazards 2013, 69, 1803–1813. [Google Scholar] [CrossRef]
  10. Serrano-Notivoli, R.; de Luis, M.; Beguería, S. An R package for daily precipitation climate series reconstruction. Environ. Model. Softw. 2017, 89, 190–195. [Google Scholar] [CrossRef]
  11. Hosking, J.R.M.; Wallis, J.R. Regional Frequency Analysis: An Approach Based on L-Moments; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
  12. Malekinezhad, H.; Zare-Garizi, A. Regional frequency analysis of daily rainfall extremes using L-moments approach. Atmósfera 2014, 27, 411–427. [Google Scholar] [CrossRef]
  13. Kjeldsen, T.R.; Smithers, J.C.; Schulze, R.E. Regional flood frequency analysis in the KwaZulu-Natal province, South Africa using the index-flood method. J. Hydrol. 2002, 255, 194–211. [Google Scholar] [CrossRef]
  14. Vivekanandan, N. Flood frequency analysis using method of moments and L-moments of probability distributions. Cogent Eng. 2015, 2, 1018704. [Google Scholar] [CrossRef]
  15. Blanco-Gómez, P.; Ortiz-Vallespi, J.; Estrany-Planas, P.; Orihuela-Martínez, J. Rainfall Frequency Analysis (RainFA) Package [Software]. 2023. Available online: https://github.com/vielca/RainFA (accessed on 7 May 2025).
  16. Blanco-Gómez, P.; Estrany-Planas, P.; Jiménez-García, J.L. Cumulative Rainfall Radar Recalibration with Rain Gauge Data Using the Colour Pattern Regression Algorithm QGIS Plugin. Remote Sens. 2024, 16, 3496. [Google Scholar] [CrossRef]
  17. Estrany-Planas, P.; Blanco-Gómez, P.; Vilarrasa, V. Aplicación del análisis regional de frecuencias a las series diarias de precipitación usando la metodología de los L-moments en la ciudad de Palma para la caracterización de la lluvia de diseño. In Proceedings of the VII Jornadas de Ingeniería del Agua. La resiliencia de las Infraestructuras Hidráulicas ante el Cambio Climático, 18–19 October, Cartagena, Spain; Universidad Politécnica de Cartagena: Cartagena, Spain, 2023; pp. 359–372. [Google Scholar] [CrossRef]
  18. Council of European Communities. Council Directive 91/271/EEC of 21 May 1991 Concerning Urban Waste-Water Treatment. 1991. Available online: http://data.europa.eu/eli/dir/1991/271/oj (accessed on 7 May 2025).
  19. European Parliament and Council of the European Union. Directive (EU) 2024/3019 of the European Parliament and of the Council Concerning Urban Wastewater Treatment (Recast). 2024. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52022PC0541 (accessed on 7 May 2025).
  20. Ministerio de la Presidencia, Relaciones con las Cortes y Memoria Democrática. Real Decreto 665/2023, de 18 de julio, por el que se Modifica el Reglamento del Dominio Público Hidráulico, Aprobado por Real Decreto 849/1986, de 11 de Abril; el Reglamento de la Administración Pública del Agua, Aprobado por Real Decreto 927/1988, de 29 de julio; y el Real Decreto 9/2005, de 14 de enero, por el que se Establece la Relación de Actividades Potencialmente Contaminantes del suelo y los Criterios y estáNdares para la Declaración de suelos Contaminados. 2023. Available online: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2023-18806 (accessed on 7 May 2025).
  21. Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
  22. Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975; pp. 245–259. [Google Scholar]
  23. The Pandas Development Team. Pandas-dev/Pandas: Pandas 2023. Available online: https://zenodo.org/records/7979740 (accessed on 7 May 2025).
  24. Wright, D.B.; Mantilla, R.; Peters-Lidard, C.D. A remote sensing-based tool for assessing rainfall-driven hazards. Environ. Model. Softw. 2017, 90, 34–54. [Google Scholar] [CrossRef]
  25. Hael, M.A.; Yongsheng, Y.; Saleh, B.I. Visualization of rainfall data using functional data analysis. SN Appl. Sci. 2020, 2, 461. [Google Scholar] [CrossRef]
  26. Hyndman, R.T.; Shang, H.L. Rainbow plots, bagplots, and boxplots for functional data. J. Comput. Graph. Stat. 2010, 19, 29–45. [Google Scholar] [CrossRef]
  27. Tukey, J.W. Exploratory Data Analysis; Addison Wesley: Reading, PA, USA, 1977. [Google Scholar]
  28. Wickham, H.; Stryjewski, L. 40 Years of Boxplots. 2011. Available online: http://vita.had.co.nz/papers/boxplots.pdf (accessed on 7 May 2025).
  29. Hyndman, R.T. Computing and Graphing Highest Density Regions. Am. Stat. 1996, 52, 120–126. [Google Scholar] [CrossRef]
  30. Searcy, J.K.; Hardison, C.H. Double-Mass Curves. Geol. Surv. Water Supply Pap. 1960, 1541-B, 31–65. [Google Scholar]
  31. Partal, T.; Kahya, E. Trend analysis in Turkish precipitation data. Hydrol. Process. 2006, 20, 2011–2026. [Google Scholar] [CrossRef]
  32. Salmi, T.; Määttä, A.; Anttila, P.; Ruoho-Airola, T.; Amnell, T. Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sen’s Slope Estimates—The Excel Template Application MAKESENS; User Manual; Air Quality, Finish Meteorological Institute: Helsinki, Finland, 2002. [Google Scholar]
  33. Citakoglu, H.; Minarecioglu, N. Trend analysis and change point determination for hydro-meteorological and groundwater data of Kizilirmak basin. ATheoretical Appl. Climatol. 2021, 145, 1275–1292. [Google Scholar] [CrossRef]
  34. Blanco-Gómez, P.; Jimeno-Sáez, P.; Senent-Aparicio, J.; Pérez-Sánchez, J. Impact of Climate Change on Water Balance Components and Droughts in the Guajoyo River Basin (El Salvador). Water 2019, 11, 2360. [Google Scholar] [CrossRef]
  35. Hussain, M.; Mahmud, I. pyMannKendall: A python package for non parametric Mann Kendall family of trend tests. J. Open Source Softw. 2019, 4, 1556. [Google Scholar] [CrossRef]
  36. Das, S. Extreme rainfall estimation at ungauged sites: Comparison between region-of-influence approach of regional analysis and spatial interpolation technique. Int. J. Climatol. 2019, 39, 407–423. [Google Scholar] [CrossRef]
  37. Agencia Estatal de Meteorología (AEMET). Valores Climatológicos. 2024. Available online: https://www.aemet.es/es/serviciosclimaticos/datosclimatologicos/valoresclimatologicos (accessed on 7 May 2025).
  38. Borcard, D.; Gillet, F.; Legendre, P. Numerical Ecology with R; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
  39. Ward, J.H. Hierarchical grouping to optimize an objective function. J. Am. Statist. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
  40. Rousseeuw, P.J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
  41. Arbelaitz, O.; Gurrutxaga, I.; Muguerza, J.; Pérez, J.M.; Perona, I. An extensive comparative study of cluster validity indices. Pattern Recognit. 2013, 46, 243–256. [Google Scholar] [CrossRef]
  42. Ramachandra Rao, A.; Srinivas, V. Regionalization of watersheds by hybrid-cluster analysis. J. Hydrol. 2006, 318, 37–56. [Google Scholar] [CrossRef]
  43. Aktürk, G.; Çıtakoğlu, H.; Demir, V.; Beden, N. Meteorological Drought Analysis and Regional Frequency Analysis in the Kızılırmak Basin: Creating a Framework for Sustainable Water Resources Management. Water 2024, 16, 2124. [Google Scholar] [CrossRef]
  44. Millington, N.; Das, S.; Simonovic, S. The Comparison of GEV, Log-Pearson Type 3 and Gumbel Distributions in the Upper Thames River Watershed Under Global Climate Models. 2011. Available online: https://ir.lib.uwo.ca/wrrr/40 (accessed on 2 June 2025).
  45. Liu, Z.N.; Yu, X.Y.; Jia, L.F.; Wang, Y.S.; Song, Y.C.; Meng, H.D. The influence of distance weight on the inverse distance weighted method for ore-grade estimation. Sci. Rep. 2021, 11, 2689. [Google Scholar] [CrossRef]
  46. Achilleos, G. The Inverse Distance Weighted interpolation method and error propagation mechanism—creating a DEM from an analogue topographical map. J. Spat. Sci. 2011, 56, 283–304. [Google Scholar] [CrossRef]
  47. Sahu, R.; Verma, M.; Ahmad, I. Regional Frequency Analysis Using L-Moment Methodology—A Review; Recent Trends in Civil Engineering; Springer: Singapore, 2021; Volume 77, pp. 811–832. [Google Scholar] [CrossRef]
  48. Badyalina, B.; Mokhtar, N.A.; Mat Jan, N.A.; Hassim, N.H.; Yusop, H. Flood Frequency Analysis using L-Moment For Segamat River. Matematika 2021, 37, 47–62. [Google Scholar] [CrossRef]
  49. Zambrano-Bigiarini, M.; Nauditt, A.; Birkel, C.; Verbist, K.; Ribbe, L. Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile. Hydrol. Earth Syst. Sci. 2017, 21, 1295–1320. [Google Scholar] [CrossRef]
  50. Jimeno-Sáez, P.; Blanco-Gómez, P.; Pérez-Sánchez, J.; Cecilia, J.M.; Senent-Aparicio, J. Impact Assessment of Gridded Precipitation Products on Streamflow Simulations over a Poorly Gauged Basin in El Salvador. Water 2021, 13, 2497. [Google Scholar] [CrossRef]
  51. Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
  52. Gelabert, M.; Rodríguez-Perea, A. Unidades morfológicas del llano de Palma (Mallorca). In Geomorfología en España; Sociedad Espanola de Geomorfologia: Logrono, Spain, 1994; pp. 403–411. [Google Scholar]
  53. Torrens Calleja, J.M.; Rosselló Geli, J.; Grimalt Gelabert, M. Recopilación de Información Vinculada a Temporales de Viento, Precipitaciones Torrenciales e Inundaciones en la Ciudad de Palma de Mallorca Entre los Años 2000 y 2015. In Proceedings of the X Congreso Internacional AEC: Clima, Sociedad, Riesgos y Ordenación del Territorio, Alicante, Spain, 5–8 October 2016; pp. 417–425. [Google Scholar]
  54. Torrens Calleja, J.M. Percepción de las precipitaciones en el Municipio de Palma de Mallorca (Illes Balears) entre 1980–2010. In Análisis Espacial y Representación Geográfica: Innovación y Aplicación; Realidades del Medio fíSico; Universidad de Zaragoza, Departamento de Geografía y Ordenación del Territorio: Zaragoza, Spain, 2015; pp. 1891–1900. [Google Scholar]
  55. Govern de les Illes Balears. Servei de Mapa de la Pluviometria de Règim Extrem de les Illes Balears. Pluviometria de Règim Extrem (Període de Retorn: 10 Anys). 2024. Available online: https://ideib.caib.es/geoserveis/rest/services/public/GOIB_Meteo_IB/MapServer/5 (accessed on 7 May 2025).
  56. Gelabert, M. Repartiment de les Precipitacions Màximes a Mallorca; Treballs de Geografía; Universitat de les Illes Balears: Palma, Spain, 1989; Volume 41, pp. 7–18. [Google Scholar]
  57. Balearsmeteo. Balears Meteo, Network of Amateur Weather Stations in the Balearic Islands. 2024. Available online: http://balearsmeteo.com/ (accessed on 7 May 2025).
  58. Sevruk, B. Adjustment of tipping-bucket precipitation gauge measurements. Atmos. Res. 1996, 42, 237–246. [Google Scholar] [CrossRef]
  59. Wagner, P.D.; Fiener, P.; Wilken, F.; Kumar, S.; Schneider, K. Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions. J. Hydrol. 2012, 464–465, 388–400. [Google Scholar] [CrossRef]
  60. Das, S.; Millington, N.; Simonovic, S. Distribution choice for the assessment of design rainfall for the city of London (Ontario, Canada) under climate change. Can. J. Civ. Eng. 2013, 40, 121–129. [Google Scholar] [CrossRef]
  61. Beersma, J.J.; Buishand, T.A. Drought in the Netherlands – Regional frequency analysis versus time series simulation. J. Hydrol. 2007, 347, 332–346. [Google Scholar] [CrossRef]
  62. Lopes Martins, L.; Souza, J.; Sobierajski, G.; Blain, G. Is it possible to apply the regional frequency analysis to daily extreme air temperature data? Bragantia 2022, 81, e4322. [Google Scholar] [CrossRef]
Figure 1. Flowchart of the adopted methodology.
Figure 1. Flowchart of the adopted methodology.
Hydrology 12 00152 g001
Figure 4. Location map: (a) Location of the city of Palma on the island of Mallorca (Spain); (b) Hydro-meteorological stations (from AEMET, dashed in blue; and from Balearsmeteo), sewer overflows, surrounding mountains and 10-year return period daily rainfall (mm). Source: IDEIB maps.
Figure 4. Location map: (a) Location of the city of Palma on the island of Mallorca (Spain); (b) Hydro-meteorological stations (from AEMET, dashed in blue; and from Balearsmeteo), sewer overflows, surrounding mountains and 10-year return period daily rainfall (mm). Source: IDEIB maps.
Hydrology 12 00152 g004
Figure 5. Boxplots with minimum precipitation thresholds of (a) daily rainfall > 0.2 mm; and (b) daily rainfall > 2 mm.
Figure 5. Boxplots with minimum precipitation thresholds of (a) daily rainfall > 0.2 mm; and (b) daily rainfall > 2 mm.
Hydrology 12 00152 g005
Figure 6. Double-mass curves of the different rain gauges.
Figure 6. Double-mass curves of the different rain gauges.
Hydrology 12 00152 g006
Figure 7. Mantel Score and Silhouette Width graphs.
Figure 7. Mantel Score and Silhouette Width graphs.
Hydrology 12 00152 g007
Figure 8. Dendrogram of rain gauges according to Ward’s method.
Figure 8. Dendrogram of rain gauges according to Ward’s method.
Hydrology 12 00152 g008
Figure 9. Comparison between simulated and observed rainfall.
Figure 9. Comparison between simulated and observed rainfall.
Hydrology 12 00152 g009
Figure 10. GPA inverse CDF.
Figure 10. GPA inverse CDF.
Hydrology 12 00152 g010
Figure 11. Distribution of rainfall and annual discharges using Monte Carlo simulations.
Figure 11. Distribution of rainfall and annual discharges using Monte Carlo simulations.
Hydrology 12 00152 g011
Figure 12. The annual discharge volume determined by the system’s attenuation and treatment capacity.
Figure 12. The annual discharge volume determined by the system’s attenuation and treatment capacity.
Hydrology 12 00152 g012
Table 1. Precipitation occurrence performance metrics.
Table 1. Precipitation occurrence performance metrics.
StatisticEquationOptimal Value
POD N 11 N 11 + N 01  1
FAR N 10 N 11 + N 10  0
CSI N 11 N 11 + N 01 + N 10  1
BS N 11 + N 10 N 11 + N 01  1
Table 2. Precipitation accuracy performance metrics.
Table 2. Precipitation accuracy performance metrics.
StatisticEquationValue Range
RMSE i = 1 n ( O i S i ) 2 n [ 0 , + )
NSE 1 i = 1 n ( O i S i ) 2 i = 1 n ( O i O ¯ ) 2 ( , 1 ]
PBIAS i = 1 n ( O i S i ) · 100 i = 1 n O i ( , + )
Table 3. Classification of rainfall events based on its daily rainfall intensity. Modified for daily values from the World Meteorological Organization (WMO).
Table 3. Classification of rainfall events based on its daily rainfall intensity. Modified for daily values from the World Meteorological Organization (WMO).
Type of EventDaily Rainfall Intensity (mm/day)
No rain<1
Light rain[1, 5)
Moderate rain[5, 20)
Heavy rain[20, 40)
Violent rain≥40
Table 4. Availability of information per rain gauge station.
Table 4. Availability of information per rain gauge station.
Station NameSeries Start Date-TimeSeries End Date-Time
El Pil·lari31/12/2015 18:5018/05/2022 23:00
La Bonanova12/02/2015 11:3018/05/2022 10:30
Pòrtol08/10/2016 10:2011/05/2022 00:00
Son Rapinya21/11/2018 14:5011/05/2022 00:00
Pont d’Inca23/01/2009 20:0019/05/2022 12:00
Puntiró14/01/2017 16:4026/06/2022 22:30
Secar de la Real05/02/2021 21:1023/06/2022 19:50
Son Ferriol03/05/2021 23:4022/06/2022 15:10
Portopí (B228)01/01/2015 00:1001/07/2022 00:00
UIB (B236)01/01/2015 00:1001/07/2022 00:00
Aeropuerto (B278)01/01/2015 00:1001/07/2022 00:00
Table 5. Results of trends in daily rainfall using the Mann–Kendall Test.
Table 5. Results of trends in daily rainfall using the Mann–Kendall Test.
StationsVar(S)ZTrend
B228−9622.72 ×   10 6 −0.58No
B236−39424.01 ×   10 6 −1.97Decreasing
B278−14131.66 ×   10 6 −1.09No
El Pil·lari−22131.38 ×   10 6 −1.88No
La Bonanova−31612.56 ×   10 6 −1.98Decreasing
Pont d’Inca77371.07 ×   10 7 2.36Increasing
Pòrtol−22971.64 ×   10 6 −0.90No
Puntiró−11561.02 ×   10 6 −2.27Decreasing
Secar de la Real913.56 ×   10 4 0.48No
Son Rapinya−8352.47 ×   10 5 −1.68No
Table 6. Results of the Discordancy Test.
Table 6. Results of the Discordancy Test.
No.NameDiCritical ValueClassification
2La Bonanova1.081.92Non-discordant
4Son Rapinya0.601.92Non-discordant
5Pont d’Inca0.861.92Non-discordant
7Secar de la Real1.551.92Non-discordant
9B2280.761.92Non-discordant
10B2361.201.92Non-discordant
11B2780.951.92Non-discordant
Table 7. Heterogeneity results.
Table 7. Heterogeneity results.
No.NameAllWard GroupW. Group*
1El Pil·larix--
2La Bonanovaxxx
3Pòrtolx--
4Son Rapinyaxxx
5Pont d’Incaxxx
6Puntiróx--
7Secar de la Realxxx
9B228xxx
10B236xxx
11B278x-x
Heterogeneity for different minimum daily precipitation
Pd ≥ 0.2 mm9.743.613.69
Pd ≥ 0.4 mm2.720.790.56
Pd ≥ 1 mm−0.040.970.59
Pd ≥ 2 mm−0.660.370.14
Table 8. Precipitation occurrence performance results.
Table 8. Precipitation occurrence performance results.
StatisticValuePerformance Rank
POD0.9525°
FAR0.1513°
CSI0.8112°
BS1.1119°
Table 9. Precipitation accuracy performance results.
Table 9. Precipitation accuracy performance results.
StatisticValuePerformance Rank
RMSE2.86 mm25°
NSE0.8614°
PBIAS−2.49%58°
Table 10. Critical Success Index (CSI) results and ranking for different types of daily rainfall events.
Table 10. Critical Success Index (CSI) results and ranking for different types of daily rainfall events.
Type of EventDaily Rainfall Intensity (mm/day)CSI ValueRank
No rain<1 mm0.84
Light rain[1, 5) mm0.51
Moderate rain[5, 20) mm0.62
Heavy rain[20, 40) mm0.4426°
Violent rain≥40 mm0.715°
Table 11. Goodness-of-fit results.
Table 11. Goodness-of-fit results.
PDF Z Dist < 1.64
GLO1.54
GEV2.97
GPA1.06
PE33.62
Table 12. Parameters of the different PDFs evaluated.
Table 12. Parameters of the different PDFs evaluated.
PDFParameters
GLOk (shape): −1.103, α (scale): 4.708, ξ (location): 3.944
GEVk (shape): −0.462, α (scale): 3.821, ξ (location): 2.894
GPAk (shape): −0.392, α (scale): 4.326, ξ (location): 0.4
PE3 γ (shape): 0.321, σ (scale): 11.91, μ (location): 0.120
Table 13. Goodness-of-fit results at local scale.
Table 13. Goodness-of-fit results at local scale.
Name Z Dist
GEVGLOGPAPE3
La Bonanova0.950.610.461.38
Son Rapinya0.690.240.011.22
Pont d’Inca1.320.840.571.69
Secar de la Real0.390.040.061.21
B2280.920.520.381.68
B2361.591.220.640.85
B2781.010.570.421.44
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Estrany-Planas, P.; Blanco-Gómez, P.; Ortiz-Vallespí, J.I.; Orihuela-Martínez, J.; Vilarrasa, V. Regional Frequency Analysis Using L-Moments for Determining Daily Rainfall Probability Distribution Function and Estimating the Annual Wastewater Discharges. Hydrology 2025, 12, 152. https://doi.org/10.3390/hydrology12060152

AMA Style

Estrany-Planas P, Blanco-Gómez P, Ortiz-Vallespí JI, Orihuela-Martínez J, Vilarrasa V. Regional Frequency Analysis Using L-Moments for Determining Daily Rainfall Probability Distribution Function and Estimating the Annual Wastewater Discharges. Hydrology. 2025; 12(6):152. https://doi.org/10.3390/hydrology12060152

Chicago/Turabian Style

Estrany-Planas, Pau, Pablo Blanco-Gómez, Juan I. Ortiz-Vallespí, Javier Orihuela-Martínez, and Víctor Vilarrasa. 2025. "Regional Frequency Analysis Using L-Moments for Determining Daily Rainfall Probability Distribution Function and Estimating the Annual Wastewater Discharges" Hydrology 12, no. 6: 152. https://doi.org/10.3390/hydrology12060152

APA Style

Estrany-Planas, P., Blanco-Gómez, P., Ortiz-Vallespí, J. I., Orihuela-Martínez, J., & Vilarrasa, V. (2025). Regional Frequency Analysis Using L-Moments for Determining Daily Rainfall Probability Distribution Function and Estimating the Annual Wastewater Discharges. Hydrology, 12(6), 152. https://doi.org/10.3390/hydrology12060152

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop