Impact of Urbanization on Flooding and Risk Based on Hydrologic–Hydraulic Modeling and Analytic Hierarchy Process: A Case of Kathmandu Valley of Nepal
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Analysis of Urbanization and Projection for Future Maps
2.3. Impact Analysis of Urbanization on Flooding
2.4. Flood Risk Assessment Integrating Hydrologic–Hydraulic Model and AHP
3. Results
3.1. Urbanization and Projection for Future
3.2. Urbanization Impact on Flooding
3.3. Flood Risk Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhai, G.; Fukuzono, T.; Ikeda, S. Modeling flood damage: Case of Tokai Flood 2000. J. Am. Water Resour. Assoc. 2005, 41, 77–92. [Google Scholar] [CrossRef]
- Ranger, N.; Hallegatte, S.; Bhattacharya, S.; Bachu, M.; Priya, S.; Dhore, K.; Rafique, F.; Mathur, P.; Naville, N.; Henriet, F.; et al. An assessment of the potential impact of climate change on flood risk in Mumbai. Clim. Change 2011, 104, 139–167. [Google Scholar] [CrossRef]
- Pham, B.T.; Luu, C.; Phong, T.V.; Nguyen, H.D.; Le, H.V.; Tran, T.Q.; Ta, H.T.; Prakash, I. Flood risk assessment using hybrid artificial intelligence models integrated with multi-criteria decision analysis in Quang Nam Province, Vietnam. J. Hydrol. 2021, 592, 125815. [Google Scholar] [CrossRef]
- Martínez-Retureta, R.; Aguayo, M.; Stehr, A.; Sauvage, S.; Echeverría, C.; Sánchez-Pérez, J.-M. Effect of land use/cover change on the hydrological response of a southern center basin of Chile. Water 2020, 12, 302. [Google Scholar] [CrossRef]
- Besha, K.Z.; Demissie, T.A.; Feyessa, F.F. Effects of land use/land cover change on hydrological responses of a watershed in the Central Rift Valley of Ethiopia. Hydrol. Res. 2024, 55, 83. [Google Scholar] [CrossRef]
- Shrestha, B.B. Approach for analysis of land-cover changes and their impact on flooding regime. Quaternary 2019, 2, 27. [Google Scholar] [CrossRef]
- Yuliyanto, F.; Prasasti, I.; Pasaribu, J.M.; Fitriana, H.L.; Zylshal Haryani, N.S.; Sofan, P. The dynamics of land use/land cover change modeling and their implication for the flood damage assessment in the Tondano watershed, North Sulawesi, Indonesia. Model. Earth Syst. Environ. 2016, 2, 47. [Google Scholar] [CrossRef]
- Zope, P.E.; Eldho, T.I.; Jothiprakash, V. Impacts of land use-land cover change and urbanization on flooding: A case study of Oshiwara River basin in Mumbai, India. Catena 2016, 145, 142–154. [Google Scholar] [CrossRef]
- Kimoro, T.A.; Tachikawa, Y.; Takara, K. Distributed hydrologic simulations to analyze the impacts of land use changes on flood characteristics in the Yasu River basin in Japan. J. Nat. Disaster Sci. 2005, 27, 85–94. [Google Scholar]
- Banjara, M.; Bhusal, A.; Ghimire, A.B.; Karla, A. Impact of land use and land cover change on hydrological processes in urban watersheds: Analysis and forecasting for flood risk management. Geosciences 2024, 14, 40. [Google Scholar] [CrossRef]
- Wudineh, F.A. Land-use and land-cover change and its impact on flood hazard occurrence in Wabi Shebele River basin of Ethiopia. Hydrol. Res. 2023, 54, 756. [Google Scholar] [CrossRef]
- Löschner, L.; Herrnegger, M.; Apperl, B.; Senoner, T.; Seher, W.; Nachtnebel, H.P. Flood risk, climate change and settlement development: A micro-scale assessment of Austrian municipalities. Reg. Environ. Change 2017, 17, 311–322. [Google Scholar] [CrossRef]
- Tabasi, N.; Fereshtehpour, M.; Roghani, B. A review of flood risk assessment frameworks and the development of hierarchical structures for risk components. Discov. Water 2025, 5, 10. [Google Scholar] [CrossRef]
- Yu, J.; Zou, L.; Xia, J.; Chen, X.; Wang, F.; Zuo, L. A multi-dimensional framework for improving flood risk assessment: Application in the Han River basin, China. J. Hydrol. Reg. Stud. 2023, 47, 101434. [Google Scholar] [CrossRef]
- Wang, W.-J.; Kim, D.; Han, H.; Kim, K.T.; Kim Kim, H.S. Flood risk assessment using an indicator based approach combined with flood risk maps and grid data. J. Hydrol. 2023, 627, 130396. [Google Scholar] [CrossRef]
- Tu, Y.; Tang, Z.; Lev, B. Regional flood risk grading assessment considering indicator interactions among hazard, exposure, and vulnerability: A novel FlowSort with DBSCAN. J. Hydrol. 2024, 639, 131587. [Google Scholar] [CrossRef]
- Joo, H.; Choi, W.; Jeon, C. Selection of representative indicators for flood risk assessment using marginal entropy and mutual information. J. Flood Risk Manag. 2024, 17, e12976. [Google Scholar] [CrossRef]
- Kabenla, R.; Ampofo, S.; Owusu, G.; Atulley, J.A.; Ampadu, B. Application of analytical hierarchy process (AHP) and multi-criteria evaluation (MCE) for a case study and scenario assessment of flood risk in the White Volta basin of the Upper Eart Region, Ghana. Discov. Water 2024, 4, 90. [Google Scholar] [CrossRef]
- Seejata, K.; Yodying, A.; Wongthadam, T.; Mahavik, N.; Tantanee, S. Assessment of flood hazard areas using Analytical Hierarchy Process over the Lower Yom Bain, Sukhothai, Province. Procedia Eng. 2018, 212, 340–347. [Google Scholar] [CrossRef]
- Aichi, A.; Ikirri, M.; Haddou, M.A.; Quesada-Roman, A.; Sahoo, S.; Singha, C.; Sajinkumar, K.S.; Abioui, M. Integrated GIS and analytic hierarchy process for flood risk assessment in the Dades Wadi watershed (Central High Atlas, Morocco). Results Earth Sci. 2024, 2, 100019. [Google Scholar] [CrossRef]
- Mokhtari, E.; Mezali, F.; Abdelkebir, B.; Engel, B. Flood risk assessment using analytical hierarchy process: A case study from the Cheliff-Ghrib watershed, Algeria. Water Clim. Change 2023, 14, 694. [Google Scholar] [CrossRef]
- Gacu, J.G.; Monjardin, C.E.E.; Senoro, D.B.; Tan, F.J. Flood risk assessment using GIS-based analytical hierarchy process in the municipality of Odiongan, Romblon, Philippines. Appl. Sci. 2022, 12, 9456. [Google Scholar] [CrossRef]
- Ullah, N.; Tariq, A.; Qasim, S.; Panezai, S.; Uddin, M.G.; Wadud, M.A.-A.; Ullah, S. Geospatial analysis and AHP for flood risk mapping in Quetta, Pakistan: A tool for disaster management and mitigation. Appl. Water Sci. 2024, 14, 236. [Google Scholar] [CrossRef]
- Zhran, M.; Ghanem, K.; Tariq, A.; Alshehri, F.; Jin, S.; Das, J.; Pande, C.B.; Pramanik, M.; Hasher, F.F.B.; Mousa, A. Exploring a GIS-based analytic hierarchy process for spatial flood risk assessment in Egypt: A case study of the Damietta branch. Environ. Sci. Eur. 2024, 36, 184. [Google Scholar] [CrossRef]
- Ghosh, A.; Kar, S.K. Application of analytical hierarchy process (AHP) for flood risk assessment: A case study in Malda district of West Bengal, India. Nat. Hazards 2018, 94, 349–368. [Google Scholar] [CrossRef]
- Malla, S.; Ohgushi, K. Flood vulnerability map of the Bagmati River basin, Nepal: A comparative approach of the analytical hierarchy process and frequency ratio model. Smart Constr. Sustain. Cities 2024, 2, 16. [Google Scholar] [CrossRef]
- Saikh, N.I.; Mondal, P. GIS-based machine learning algorithm for flood susceptibility analysis in the Pagla river basin, Eastern India. Nat. Hazards Res. 2023, 3, 420–436. [Google Scholar] [CrossRef]
- Singha, C.; Rana, V.K.; Pham, Q.B.; Nguyen, D.C.; Lupikasza, E. Integrating machine learning and geospatial data analysis for comprehensive flood hazard assessment. Environ. Sci. Pollut. Res. 2024, 31, 48497–48522. [Google Scholar] [CrossRef]
- Zhang, J. A flood hazard prediction and risk assessment model based on machine learning approach. Highlights Sci. Eng. Technol. 2025, 136, 112–120. [Google Scholar] [CrossRef]
- Saber, M.; Boulmaiz, T.; Guermoui, M.; Abdrabo, K.I.; Kantoush, S.A.; Sumi, T.; Boutaghane, H.; Tomoharu, H.; Binh, D.V.; Nguyen, B.Q.; et al. Enhancing flood risk assessment through integration of ensemble learning approaches and physical-based hydrological modeling. Geomat. Nat. Hazards Risk 2023, 14, 2203798. [Google Scholar] [CrossRef]
- Sun, X.; Jin, K.; Tao, H.; Duan, Z.; Gao, C. Flood risk assessment based on hydrodynamic model-a case of the China-Pakistan Economic Corridor. Water 2023, 15, 4295. [Google Scholar] [CrossRef]
- Duy, N.H.; Pham, L.T.; Linh, N.X.; Trung, T.V.; Dang, D.K.; Hai, T.Q.; Bui, Q.-T. Flood risk assessment using machine learning, hydrodynamic modelling, and the analytic hierarchy process. J. Hydroinform. 2024, 26, 1852. [Google Scholar] [CrossRef]
- Chaudhary, U.; Shah, M.A.R.; Shakya, B.M.; Aryal, A. Flood susceptibility and risk mapping of Kathmandu valley watershed, Nepal. Sustainability 2024, 16, 7101. [Google Scholar] [CrossRef]
- Chaulagain, D.; Rimal, P.R.; Ngando, S.N.; Nsafon, B.E.K.; Suh, D.; Huh, J.-S. Flood susceptibility mapping of Kathmandu metropolitan city using GIS-based multi-criteria decision analysis. Ecol. Indic. 2023, 154, 110653. [Google Scholar] [CrossRef]
- Mesta, C.; Cremen, G.; Galasso, C. Urban growth modelling and social vulnerability assessment for a hazardous Kathmandu Valley. Sci. Rep. 2022, 12, 6152. [Google Scholar] [CrossRef]
- Lamichhane, S.; Shakya, N.M. Alteration of groundwater recharge areas due to land use/cover change in Kathmandu Valley, Nepal. J. Hydrol. Reg. Stud. 2019, 26, 100635. [Google Scholar] [CrossRef]
- Acharya, S.; Hori, T.; Karki, S. Assessing the spatio-temporal impact of landuse landcover change on water yield dynamics of rapidly urbanizing Kathmandu valley watershed of Nepal. J. Hydrol. Reg. Stud. 2023, 50, 101562. [Google Scholar] [CrossRef]
- Shrestha, S.; Poudyal, K.N.; Bhattarai, N.; Dangi, M.B.; Boland, J.J. An assessment of the impact of land use and land cover change on the degradation of ecosystem service values in Kathmandu valley using remote sensing and GIS. Sustainability 2022, 14, 15739. [Google Scholar] [CrossRef]
- Bharti, P.; Biswas, A. Predicting urban growth of Kathmandu Valley using artificial intelligence. J. Geovisualization Spat. Anal. 2024, 8, 40. [Google Scholar] [CrossRef]
- Aryal, A.; Bhatta, K.P.; Adhikari, S.; Baral, H. Scrutinizing urbanization in Kathmandu using google earth engine together with proximity-based scenario modelling. Land 2023, 12, 25. [Google Scholar] [CrossRef]
- Devkota, P.; Dhakal, S.; Shrestha, S.; Shrestha, U.B. Land use land cover changes in the major cities of Nepal from 1990 to 2020. Environ. Sustain. Indic. 2023, 17, 100227. [Google Scholar] [CrossRef]
- Wang, S.W.; Gebru, B.M.; Lamchin, M.; Kayastha, R.B.; Lee, W.-K. Prediction in the Kathmandu district of Nepal using remote sensing and GIS. Sustainability 2020, 12, 3925. [Google Scholar] [CrossRef]
- Reis, S. Analyzing land use/land cover changes using remote sensing and GIS in Rize, North-East Turkey. Sensors 2008, 8, 6188–6202. [Google Scholar] [CrossRef]
- Banjade, S.S.; Rai, N.; Subedi, B. Comparison of Supervised Classification Algorithms Using a Hyperspectral Image for Land Use/Land Cover Classification. Environ. Sci. Proc. 2024, 29, 59. [Google Scholar] [CrossRef]
- Abbas, Z.; Yang, G.; Zhong, Y.; Zhao, Y. Spatiotemporal change analysis and future scenario of LULC using the CA-ANN approach: A case study of the Greater Bay Area, China. Land 2021, 10, 584. [Google Scholar] [CrossRef]
- Baig, M.F.; Mustafa, M.R.U.; Baig, I.; Takaijudin, H.B.; Zeshan, M.T. Assessment of land use land cover changes and future predictions using CA-ANN simulation for Selangor, Malaysia. Water 2022, 14, 402. [Google Scholar] [CrossRef]
- Dawid, W.; Bielecka, E. GIS-based land cover analysis and prediction based on open-source software and data. Quaest. Geogr. 2022, 41, 75–86. [Google Scholar] [CrossRef]
- Muhammad, R.; Zhang, W.; Abbas, Z.; Guo, F.; Gwiazdzinski, L. Spatiotemporal change analysis and prediction of future land use and land cover changes using QGIS MOLUSCE plugin and remote sensing big data: A case study of Linyi, China. Land 2022, 11, 419. [Google Scholar] [CrossRef]
- Pandi, D.; Kothandaraman, S.; Kumarasamy, M.V.; Kuppusamy, M. Assessment of land use and land cover dynamics using geospatial techniques. Pol. J. Environ. Stud. 2022, 31, 2779–2786. [Google Scholar] [CrossRef]
- Kamaraj, M.; Rangarajan, S. Predicting the future land use and land cover changes for Bhavani basin, Tamil Nadu, India, using QGIS MOLUSCE plugin. Environ. Sci. Pollut. Res. 2022, 29, 86337–86348. [Google Scholar] [CrossRef]
- Sayama, T.; Ozawa, G.; Kawakami, T.; Nabesaka, S.; Fukami, K. Rainfall-runoff-inundation analysis of the 2010 Pakistan flood 2010 in the Kabul River basin. Hydrol. Sci. J. 2012, 57, 298–312. [Google Scholar] [CrossRef]
- Ologhadien, I. Study of unbiased plotting position formulae for the Generalized Extreme Value (GEV) distribution. Eur. J. Eng. Technol. Res. 2021, 6, 94–99. [Google Scholar] [CrossRef]
- Shrestha, B.B.; Perera, E.D.P.; Kudo, S.; Miyamoto, M.; Yamazaki, Y.; Kuribayashi, D.; Sawano, H.; Sayama, T.; Magome, J.; Hasegawa, A.; et al. Assessing flood disaster impacts in agriculture under climate change in the river basins of Southeast Asia. Nat. Hazards 2019, 97, 157–192. [Google Scholar] [CrossRef]
- Goepel, K.D. Implementing the Analytic Hierarchy Process as a standard method for Multi-Criteria Decision Making in corporate enterprises—A new AHP excel template with multiple inputs. In Proceedings of the International Symposium on the Analytic Hierarchy Process, Kuala Lumpur, Malaysia, 23–26 June 2013. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef]
- Feng, B.; Zhang, Y.; Bourke, R. Urbanization impacts on flood risks based on urban growth data and coupled flood models. Nat. Hazards 2021, 106, 613–627. [Google Scholar] [CrossRef]
- Talbi, S.; Gherzouli, L.; Fezzai, S. Mapping land use change to analyze urbanization and its impact on urban floods in Tebessa City, Algeria. Int. Rev. Spat. Plan. Sustain. Dev. 2025, 13, 30–55. [Google Scholar] [CrossRef]














| Land Cover Class | Training Sample Size | Validation Sample Size | ||||
|---|---|---|---|---|---|---|
| 2014 | 2019 | 2024 | 2014 | 2019 | 2024 | |
| Bodies of Water | 36 | 42 | 33 | 12 | 14 | 15 |
| Forest | 107 | 107 | 115 | 21 | 21 | 21 |
| Vegetation | 91 | 91 | 124 | 14 | 14 | 32 |
| Bare Land | 77 | 83 | 78 | 24 | 26 | 26 |
| Cropland | 309 | 309 | 340 | 60 | 60 | 64 |
| Built-up Areas | 180 | 180 | 195 | 49 | 49 | 57 |
| Descriptions | Parameters or Indicators |
|---|---|
| Hazard | Flood depth and inundation extent |
| Exposure | Population density |
| Buildings | |
| Land use and land cover | |
| Vulnerability | Distance from the river |
| Distance from the road |
| Scale | Description |
|---|---|
| 1 | Equal Importance |
| 3 | Moderate Importance |
| 5 | Strong Importance |
| 7 | Very Strong Importance |
| 9 | Extreme Importance |
| Matrix | Flood Depth | Population Density | Buildings | LULC | Distance from River | Distance from Road |
|---|---|---|---|---|---|---|
| Flood depth | 1 | 1 | 1 | 6 | 1 | 5 |
| Population density | 1 | 1 | 1 | 3 | 1 | 3 |
| Buildings | 1 | 1 | 1 | 3 | 1 | 3 |
| LULC | 1/6 | 1/3 | 1/3 | 1 | 1/5 | 1 |
| Distance from river | 1 | 1 | 1 | 5 | 1 | 4 |
| Distance from road | 1/5 | 1/3 | 1/3 | 1 | 1/4 | 1 |
| Indicators/Parameters | Class | Rating | Relative Weights (%) |
|---|---|---|---|
| Flood depth (m) | 0–0.5 | 1 | 24.9 |
| 0.5–1.0 | 2 | ||
| 1.0–1.5 | 3 | ||
| 1.5–2.0 | 4 | ||
| 2.0 | 5 | ||
| Population density (at 3 arcseconds grid size) | ≤50 | 1 | 20.3 |
| 51–100 | 2 | ||
| 101–500 | 3 | ||
| 501–1000 | 4 | ||
| >1000 | 5 | ||
| Buildings (at 3 arcseconds grid size) | ≤5 | 1 | 20.3 |
| 6–10 | 2 | ||
| 11–15 | 3 | ||
| 16–20 | 4 | ||
| >20 | 5 | ||
| Land Use/Land Cover | Forest, vegetation | 1 | 5.6 |
| Bare land | 2 | ||
| Cropland | 3 | ||
| Built up area | 4 | ||
| Water body | 5 | ||
| Distance from River (m) | ≤100 | 5 | 23.0 |
| 100–200 | 4 | ||
| 200–500 | 3 | ||
| 500–1000 | 2 | ||
| >1000 | 1 | ||
| Distance from Road (m) | ≤500 | 5 | 5.9 |
| 500–1000 | 4 | ||
| 1000–1500 | 3 | ||
| 1500–2000 | 2 | ||
| >2000 | 1 |
| LULC Type | Area (km2) | Change in Area (km2) | ||||
|---|---|---|---|---|---|---|
| 2014 | 2019 | 2024 | 2014–2019 | 2019–2024 | 2014–2024 | |
| Bodies of Water | 0.53 | 0.77 | 0.52 | 0.24 | −0.26 | −0.02 |
| Forest | 261.58 | 252.36 | 275.39 | −9.22 | 23.03 | 13.81 |
| Vegetation | 6.40 | 9.75 | 10.43 | 3.35 | 0.68 | 4.03 |
| Bare Land | 0.36 | 6.04 | 3.86 | 5.67 | −2.17 | 3.50 |
| Cropland | 323.12 | 288.98 | 235.70 | −34.15 | −53.28 | −87.43 |
| Built-up Areas | 79.83 | 113.94 | 145.94 | 34.11 | 32.00 | 66.11 |
| LULC Type | Area (km2) | Change in Area from Year 2024 (km2) | ||
|---|---|---|---|---|
| 2039 | 2049 | 2024–2039 | 2024–2049 | |
| Bodies of Water | 0.74 | 1.11 | 0.23 | 0.59 |
| Forest | 313.69 | 321.63 | 38.30 | 46.24 |
| Vegetation | 16.99 | 21.01 | 6.56 | 10.57 |
| Bare Land | 6.00 | 7.04 | 2.13 | 3.17 |
| Cropland | 116.16 | 89.45 | −119.53 | −146.25 |
| Built-up Areas | 218.25 | 231.60 | 72.31 | 85.67 |
| LULC Year | 2024 Flood (128-Year Flood) | 200-Year Flood | ||||||
|---|---|---|---|---|---|---|---|---|
| Inundation Area | Peak Inundation Volume | Inundation Area | Peak Inundation Volume | |||||
| km2 | % Increase with Base Case | Mil. m3 | % Increase with Base Case | km2 | % Increase with Base Case | Mil. m3 | % Increase with Base Case | |
| Using 2024 LULC (base case) | 22.57 | - | 10.539 | - | 25.92 | - | 12.71 | - |
| Using 2039 LULC | 24.69 | 9.38 | 12.03 | 14.14 | 28.11 | 8.46 | 14.26 | 12.18 |
| Using 2049 LULC | 25.18 | 11.56 | 12.382 | 17.48 | 28.68 | 10.66 | 14.62 | 15.04 |
| Indicators/Parameters | Case-1: Wights (%) | Case-2: Wights (%) | Case-3: Wights (%) | Case-4: Wights (%) | Case-5: Wights (%) |
|---|---|---|---|---|---|
| Flood depth (m) | 23 | 27 | 22 | 21 | 24 |
| Population density | 21 | 18 | 26 | 18 | 18 |
| Buildings | 21 | 18 | 18 | 26 | 18 |
| Land Use/Land Cover | 6 | 9 | 7 | 7 | 9 |
| Distance from River (m) | 21 | 19 | 20 | 21 | 21 |
| Distance from Road (m) | 8 | 9 | 7 | 7 | 10 |
| Risk Level | Case-1 Area (km2) | Case-2 Area (km2) | Case-3 Area (km2) | Case-4 Area (km2) | Case-5 Area (km2) |
|---|---|---|---|---|---|
| Low | 313.25 | 295.89 | 342.12 | 336.71 | 286.25 |
| Medium | 250.12 | 268.72 | 219.74 | 220.02 | 254.69 |
| High | 106.01 | 104.61 | 105.89 | 110.46 | 125.87 |
| Very High | 2.42 | 2.57 | 4.05 | 4.61 | 4.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrestha, B.B.; Rasmy, M.; Tamakawa, K.; Joshi, S.; Kuribayashi, D. Impact of Urbanization on Flooding and Risk Based on Hydrologic–Hydraulic Modeling and Analytic Hierarchy Process: A Case of Kathmandu Valley of Nepal. Hydrology 2025, 12, 283. https://doi.org/10.3390/hydrology12110283
Shrestha BB, Rasmy M, Tamakawa K, Joshi S, Kuribayashi D. Impact of Urbanization on Flooding and Risk Based on Hydrologic–Hydraulic Modeling and Analytic Hierarchy Process: A Case of Kathmandu Valley of Nepal. Hydrology. 2025; 12(11):283. https://doi.org/10.3390/hydrology12110283
Chicago/Turabian StyleShrestha, Badri Bhakta, Mohamed Rasmy, Katsunori Tamakawa, Sauhardra Joshi, and Daisuke Kuribayashi. 2025. "Impact of Urbanization on Flooding and Risk Based on Hydrologic–Hydraulic Modeling and Analytic Hierarchy Process: A Case of Kathmandu Valley of Nepal" Hydrology 12, no. 11: 283. https://doi.org/10.3390/hydrology12110283
APA StyleShrestha, B. B., Rasmy, M., Tamakawa, K., Joshi, S., & Kuribayashi, D. (2025). Impact of Urbanization on Flooding and Risk Based on Hydrologic–Hydraulic Modeling and Analytic Hierarchy Process: A Case of Kathmandu Valley of Nepal. Hydrology, 12(11), 283. https://doi.org/10.3390/hydrology12110283

