Prioritization of Hydrological Restoration Areas Using AHP and GIS in Dulcepamba River Basin in Bolivar–Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location
2.1.1. Average Flow and Hydrological Variability
2.1.2. Different Land Uses in the Dulcepamba Basin
2.1.3. Poverty in the Dulcepamba Basin
2.2. Basic Data
2.3. Criteria and Spatial Variables for HR in the Research Region
SPI | Stream Power Index; |
TWI | Topographic Wetness Index; |
TRI | Terrain Ruggedness Index; |
STI | Sediment Transport Index; |
SD | Stream Density Index; |
CN | Curve Number Index; |
RD | Distance from River; |
NDVI | Normalized Difference Vegetation Index; |
RF | Rainfall Index. |
- SPI—Stream Power Index
- b.
- TWI—Topographic Wetness Index
- c.
- TRI—Topographic Roughness Index
- d.
- STI—Sediment Transport Index
- e.
- SD—Stream Density Index
- f.
- CN—Curve Number Index
- g.
- RD—River Distance Index
- h.
- NDVI—Normalized Difference Vegetation Index
- i.
- RF—Rainfall Index
2.4. Assessment and Categorization of Variables
2.5. Weighting of Factors Influencing the HR of the Dulcepamba Watershed
3. Results
3.1. Spatialization of Evaluated Parameters
3.2. Evaluation of Elements Using the AHP Method
3.3. Prioritization of Areas of HR
4. Discussion
5. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hämmerling, M.; Kocięcka, J.; Zaborowski, S. AHP as a Useful Tool in the Assessment of the Technical Condition of Hydrotechnical Constructions. Sustainability 2021, 13, 1304. [Google Scholar] [CrossRef]
- Cecílio, R.A.; Oliveira-Ravani, L.T.; Zanetti, S.S.; Mendes, H.A. Method for classifying sites to Atlantic Rainforest restoration aiming to increase basin’s streamflows. IForest 2021, 14, 86. [Google Scholar] [CrossRef]
- Leuschner, A.C.; Van Gasselt, S.; Merz, C. GIS-Gestützte Analysen zur Erfassung Anthropogener Einflüsse auf den Landschaftswasserhaushalt; Wichmann Verlag: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-87907-633-8. [Google Scholar]
- El Haj, F.A.; Ouadif, L.; Akhssas, A. Identification of soil erosion-susceptible areas using Analytical Hierarchy Process (AHP) and GIS. J. Southwest Jiaotong Univ. 2023, 58. [Google Scholar] [CrossRef]
- Sulaiman, M.S.; Goh, Q.Y.; Sang, Y.F.; Sivakumar, B.; Ali, A.; Rasit, N.; Abood, M.M. Development of river morphologic stability index (RMSI) to assess mountain river systems. J. Hydrol. Reg. Stud. 2021, 37, 100918. [Google Scholar] [CrossRef]
- Kumar, A.; Pramanik, M.; Chaudhary, S.; Negi, M.S. Land evaluation for sustainable development of Himalayan agriculture using RS-GIS in conjunction with analytic hierarchy process and frequency ratio. J. Saudi Soc. Agric. Sci. 2021, 20, 1–17. [Google Scholar] [CrossRef]
- Kordrostami, F.; Attarod, P.; Abbaspour, K.C.; Ludwig, R.; Etemad, V.; Alilou, H.; Bozorg-Haddad, O. Identification of optimum afforestation areas considering sustainable management of natural resources, using geo-environmental criteria. Ecol. Eng. 2021, 168, 106259. [Google Scholar] [CrossRef]
- Prefectura Bolívar. Plan de Desarrollo y Ordenamiento Territorial de la Provincia Bolívar 2015–2020. Available online: https://bolivar.gob.ec/ (accessed on 9 May 2024).
- Ahmed, I.; Das (Pan), N.; Debnath, J.; Bhowmik, M.; Bhattacharjee, S. Flood hazard zonation using GIS-based multi-parametric Analytical Hierarchy Process. Geosyst. Geoenviron. 2024, 3, 100250. [Google Scholar] [CrossRef]
- Burayu, D.G.; Karuppannan, S.; Shuniye, G. Identifying flood vulnerable and risk areas using the integration of analytical hierarchy process (AHP), GIS, and remote sensing: A case study of southern Oromia region. Urban Climb. 2023, 51, 101640. [Google Scholar] [CrossRef]
- Ally, A.M.; Yan, J.; Bennett, G.; Lyimo, N.N.; Mayunga, S.D. Assessment of groundwater potential zones using remote sensing and GIS-based fuzzy analytical hierarchy process (F-AHP) in Mpwapwa District, Dodoma, Tanzania. Geosyst. Geoenviron. 2024, 3, 100232. [Google Scholar] [CrossRef]
- Malczewski, J. GIS-Based Multicriteria Decision Analysis: A Survey of the Literature. Int. J. Geogr. Inf. Sci. 2006, 20, 703–726. [Google Scholar] [CrossRef]
- Ennaji, W.; Barakat, A.; Karaoui, I.; El Baghdadi, M.; Arioua, A. Remote sensing approach to assess salt-affected soils in the north-east part of Tadla plain, Morocco. Geol. Ecol. Landsc. 2018, 2, 22–28. [Google Scholar] [CrossRef]
- Mallick, S.K.; Rudra, S. Analysis of Groundwater Potentiality Zones of Siliguri Urban Agglomeration Using GIS-Based Fuzzy-AHP Approach. In Groundwater and Society: Applications of Geospatial Technology; Shit, P.K., Bhunia, G.S., Adhikary, P.P., Dash, C.J., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 141–160. ISBN 978-3-030-64136-8. [Google Scholar]
- Worqlul, A.W.; Haddad, M.; Alemayehu, S.; Govind, A. Developing a satellite-based combined land degradation index for monitoring environmental change: A case study in Tana-Beles watershed, Upper Blue Nile, Ethiopia. Remote Sens. Appl. 2023, 32, 101050. [Google Scholar] [CrossRef]
- Senanayake, S.; Pradhan, B.; Huete, A.; Brennan, J. Proposing an ecologically viable and economically sound farming system using a matrix-based geo-informatics approach. Sci. Total Environ. 2021, 794, 148788. [Google Scholar] [CrossRef] [PubMed]
- Olsson, L.; Barbosa, H.; Bhadwal, S.; Cowie, A.; Delusca, K.; Flores-Renteria, D.; Hermans, K.; Jobbagy, E.; Kurz, W.; Li, D.; et al. Land Degradation: IPCC Special Report on Climate Change, Desertification. In IPCC Special Report on Climate Change, Desertification, Land Degradation; Intergovernamental Panel on Climate Change (IPCC): Geneva, Switzerland, 2019; p. 1. [Google Scholar]
- UNCCD. Convención Internacional de Lucha Contra la Desertificación en Los Países Afectados por Sequía Grave o Desertificación en Particular en África|Observatorio del Principio 10. Available online: https://observatoriop10.cepal.org/es/tratado/convencion-internacional-lucha-la-desertificacion-paises-afectados-sequia-grave-o (accessed on 18 December 2023).
- Pimentel, D.; Kounang, N. Ecology of Soil Erosion in Ecosystems. Ecosystems 1998, 1, 416–426. [Google Scholar] [CrossRef]
- MAG. Ministerio de Agricultura y Ganadería del Ecuador, (MAG). Available online: https://www.agricultura.gob.ec/ (accessed on 18 December 2023).
- Montgomery, D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef] [PubMed]
- García-Ruiz, J.M.; Beguería, S.; Nadal-Romero, E.; González-Hidalgo, J.C.; Lana-Renault, N.; Sanjuán, Y. A meta-analysis of soil erosion rates across the world. Geomorphology 2015, 239, 160–173. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Rachel, C. Dulcepamba Environmental Analysis. Bachelor’s Thesis, Latin American Environment and Society, Pitzer College, Clermont, CA, USA, 2016. [Google Scholar]
- IGM. Instituto Geográfico Militar, Cartografía de Libre Acceso. Available online: https://www.geoportaligm.gob.ec/portal/index.php/descargas/cartografia-de-libre-acceso/ (accessed on 4 February 2024).
- Newmiller, J.; Walker, W.; Fleenor, W.E.; Pinter, N. Case Study: Reconstructing the 2015 Dulcepamba River Flood Disaster. Environ. Eng. Geosci. 2020, 26, 393–404. [Google Scholar] [CrossRef]
- Copernicus. Copernicus Data Space Ecosystem|Europe’s Eyes on Earth. Available online: https://dataspace.copernicus.eu/ (accessed on 18 June 2023).
- Bachri, S.; Sumarmi, S.; Irawan, L.; Utaya, S.; Nurdiansyah, F.; Nurjanah, A.; Tyas, L.; Adillah, A.; Purnama, D. Landslide Susceptibility Mapping (LSM) in Kelud Volcano Using Spatial Multi-Criteria Evaluation. IOP Conf. Ser. Earth Environ. Sci. 2019, 273, 012014. [Google Scholar] [CrossRef]
- Mattivi, P.; Franci, F.; Lambertini, A.; Bitelli, G. TWI computation: A comparison of different open source GISs. Open Geospat. Data Softw. Stand. 2019, 4, 6. [Google Scholar] [CrossRef]
- Riley, S.; Degloria, S.; Elliot, S.D. A Terrain Ruggedness Index that Quantifies Topographic Heterogeneity. Int. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Esri Focal Statistics (Spatial Analyst)—ArcGIS Pro|Documentation. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/focal-statistics.htm (accessed on 10 July 2023).
- Bannari, A.; Ghadeer, A.; El-Battay, A.; Hameed, N.A.; Rouai, M. Detection of Areas Associated with Flash Floods and Erosion Caused by Rainfall Storm Using Topographic Attributes, Hydrologic Indices, and GIS; Pirasteh, S., Li, J., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 155–174. [Google Scholar]
- Aparicio, F. Fundamentos de Hidrología de Superficie; Limusa: Ciudad de México, Mexico, 1999; ISBN 968-18-3014-8. [Google Scholar]
- Sinshaw, B.G.; Belete, A.M.; Tefera, A.K.; Dessie, A.B.; Bizuneh, B.B.; Alem, H.T.; Atanaw, S.B.; Eshete, D.G.; Wubetu, T.G.; Atinkut, H.B.; et al. Prioritization of potential soil erosion susceptibility region using fuzzy logic and analytical hierarchy process, upper Blue Nile Basin, Ethiopia. Water Energy Nexus 2021, 4, 10–24. [Google Scholar] [CrossRef]
- Jenks, G.F.; Caspall, F.C. Error on Choroplethic Maps: Definition, Measurement, Reduction. Ann. Assoc. Am. Geogr. 1971, 61, 217–244. [Google Scholar] [CrossRef]
- Wind, Y.; Saaty, T. Marketing applicatons of the analytic hierarchy process. Manag. Sci. 1980, 26, 641–658. [Google Scholar] [CrossRef]
- Kayastha, P.; Dhital, M.R.; De Smedt, F. Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: A case study from the Tinau watershed, west Nepal. Comput. Geosci. 2013, 52, 398–408. [Google Scholar] [CrossRef]
- Saaty, T. Relative Measurement and Its Generalization in Decision Making Why Pirwise Comparisons are Central in Mathematics for the Measurement of Intangible Factors the Analytic Hierarchy/Network Process. Stat. Oper. Res. 2008, 102, 251–318. [Google Scholar]
- Saaty, T.L.; Vargas, L.G. Decision Making with the Analytic Network Process, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-1-4614-7279-7. [Google Scholar]
- Saaty, T.L.; Vargas, L.G. The possibility of group choice: Pairwise comparisons and merging functions. Soc. Choice Welf. 2012, 38, 481–496. [Google Scholar] [CrossRef]
- Saaty, T.L.; Vargas, L.G. Decision Making with the Analytic Network Process; Springer: Berlin/Heidelberg, Germany, 2013; Volume 195. [Google Scholar] [CrossRef]
- Budescu, D.V.; Swick, R.; Amnon, R. A comparison of the eigenvalue method and the geometric mean procedure for ratio scaling. Appl. Psychol. Meas. 1986, 10, 69–78. [Google Scholar] [CrossRef]
- Sánchez, E. Evaluación multicriterio de la vulnerabilidad biofísica ante inundaciones de la cuenca del río Atacames-Esmeraldas-Ecuador. In Sensores Remotos, GIS y Software R, Aplicado a Hidrogeología y Cambio Climático; Centro de Publicaciones PUCE: Quito, Ecuador, 2021; pp. 33–56. ISBN 978-9978-77-625-4. [Google Scholar]
- Arabameri, A.; Pradhan, B.; Pourghasemi, H.R.; Rezaei, K. Identification of erosion-prone areas using different multi-criteria decision-making techniques and gis. Geomat. Nat. Hazards Risk 2018, 9, 1129–1155. [Google Scholar] [CrossRef]
- Lawal, D.U.; Matori, A.N.; Yusof, K.W.; Hashim, A.M.; Aminu, M.; Sabri, S.; Balogun, A.L.; Chandio, I.A.; Mokhtar, M.R.M. group-based decision support for flood hazard forecasting: A geospatial technology-based group analytic hierarchy process approach. Res. J. Appl. Sci. Eng. Technol. 2014, 7, 4838–4850. [Google Scholar] [CrossRef]
- Sarkar, S.K.; Rudra, R.R.; Nur, M.S.; Das, P.C. Partial least-squares regression for soil salinity mapping in Bangladesh. Ecol. Indic. 2023, 154, 110825. [Google Scholar] [CrossRef]
- Liu, Y.; Li, T.; Zhao, W.; Wang, S.; Fu, B. Landscape functional zoning at a county level based on ecosystem services bundle: Methods comparison and management indication. J. Environ. Manag. 2019, 249, 109315. [Google Scholar] [CrossRef]
- Bai, Z.; Han, L.; Jiang, X.; Liu, M.; Li, L.; Liu, H.; Lu, J. Spatiotemporal evolution of desertification based on integrated remote sensing indices in Duolun County, Inner Mongolia. Ecol. Inform. 2022, 70, 101750. [Google Scholar] [CrossRef]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Moore, I.D.; Turner, A.K.; Wilson, J.P.; Jenson, S.K.; Band, L.E. GIS and Land-Surface-Surface Process Modeling. In Environmental Modeling with GIS; Oxford University: Oxford, UK, 1993. [Google Scholar]
- Alilou, H.; Rahmati, O.; Singh, V.; Choubin, B.; Pradham, B.; Keesstra, S.; Ghiasi, S.; Sageghi, S. Evaluation of watershed health using Fuzzy-ANP approach considering geo-environmental and topo-hydrological criteria. J. Environ. Manag. 2019, 232, 22–36. [Google Scholar] [CrossRef]
- Florinsky, I.V.; Eilers, R.G.; Manning, G.R.; Fuller, L.G. Prediction of soil properties by digital terrain modelling. Environ. Model. Softw. 2002, 17, 295–311. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Schmidt, F.; Persson, A. Comparison of DEM data capture and topographic wetness indices. Precis. Agric. 2003, 4, 179–192. [Google Scholar] [CrossRef]
- Thakkar, A.K.; Dhiman, S.D. Morphometric analysis and prioritization of miniwatersheds in Mohr watershed, Gujarat using remote sensing and GIS techniques. J. Indian Soc. Remote Sens. 2007, 35, 313–321. [Google Scholar] [CrossRef]
- Aher, P.D.; Adinarayana, J.; Gorantiwar, S.D. Quantification of morphometric characterization and prioritization for management planning in semi-arid tropics of India: A remote sensing and GIS approach. J. Hydrol. 2014, 511, 850–860. [Google Scholar] [CrossRef]
- Fukuyama, T.; Onda, Y.; Takenata, C.; Walling, D. Investigating erosion rates within a Japanese cypress plantation using Cs-137 and Pb-210ex measurements. J. Geophys. Res. 2008, 113, F2. [Google Scholar] [CrossRef]
- Mirzai, M.; Sajadi, A.; Nazari, A. Modeling and simulation of watershed erosion: Case study of Latian dam watershed. Int. J. Phys. Sci. 2014, 9, 224–232. [Google Scholar] [CrossRef]
- Vermeulen, S.J.; Aggarwal, P.K.; Ainslie, A.; Angelone, C.; Campbell, B.M.; Challinor, A.J.; Hansen, J.W.; Ingram, J.S.I.; Jarvis, A.; Kristjanson, P.; et al. Options for support to agriculture and food security under climate change. Environ. Sci. Policy 2012, 15, 136–144. [Google Scholar] [CrossRef]
- Wollenberg, E.; Vermeulen, S.J.; Girvetz, E.; Loboguerrero, A.M.; Ramirez-Villegas, J. Reducing risks to food security from climate change. Glob. Food Secur. 2016, 11, 34–43. [Google Scholar] [CrossRef]
- Elsheikh, R.; Mohamed Shariff, A.R.B.; Amiri, F.; Ahmad, N.B.; Balasundram, S.K.; Soom, M.A.M. Agriculture Land Suitability Evaluator (ALSE): A decision and planning support tool for tropical and subtropical crops. Comput. Electron. Agric. 2013, 93, 98–110. [Google Scholar] [CrossRef]
- Montgomery, B.; Dragićević, S.; Dujmović, J.; Schmidt, M. A GIS-based Logic Scoring of Preference method for evaluation of land capability and suitability for agriculture. Comput. Electron. Agric. 2016, 124, 340–353. [Google Scholar] [CrossRef]
- Cherlet, M.; Hill, J.; Von Maltitz, G.; Sommer, S.; Reynolds, J.; Hutchinson, C.; Cherlet, M. World Atlas of Desertification: Rethinking Land Degradation and Sustainable Land Management; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-75349-7. [Google Scholar]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, H.K.; Salmon, J.M. Mapping the world’s degraded lands. Appl. Geogr. 2015, 57, 12–21. [Google Scholar] [CrossRef]
- Bai, Z.G.; Dent, D.L.; Olsson, L.; Tengberg, A.; Tucker, C.; Yengoh, G. A longer, closer, look at land degradation. Agric. Dev. 2015, 24, 3–9. [Google Scholar]
- Schut, A.G.T.; Ivits, E.; Conijn, J.G.; Brink, B.T.; Fensholt, R. Trends in Global Vegetation Activity and Climatic Drivers Indicate a Decoupled Response to Climate Change. PLoS ONE 2015, 10, e0138013. [Google Scholar] [CrossRef]
- Middleton, N.; Thomas, D. World Atlas of Desertification, 2nd ed.; Edward Arnold: Sevenoaks, UK, 1997; ISBN 978-0-340-69166-3. [Google Scholar]
- Jain, S.K.; Goel, M.K. Assessing the vulnerability to soil erosion of the Ukai Dam catchments using remote sensing and GIS. Hydrol. Sci. J. 2002, 47, 31–40. [Google Scholar] [CrossRef]
- Mysiak, J.; Giupponi, C.; Rosato, P. Towards the development of a decision support system for water resource management. Environ. Model. Softw. 2005, 20, 203–214. [Google Scholar] [CrossRef]
- Rahman, M.R.; Shi, Z.H.; Chongfa, C. Assessing regional environmental quality by integrated use of remote sensing, GIS, and spatial multi-criteria evaluation for prioritization of environmental restoration. Environ. Monit. Assess. 2014, 186, 6993–7009. [Google Scholar] [CrossRef]
- Shao, Z.; Huq, M.E.; Cai, B.; Altan, O.; Li, Y. Integrated remote sensing and GIS approach using Fuzzy-AHP to delineate and identify groundwater potential zones in semi-arid Shanxi Province, China. Environ. Model. Softw. 2020, 134, 104868. [Google Scholar] [CrossRef]
- Ghosh, A.; Maiti, R. Development of new Ecological Susceptibility Index (ESI) for monitoring ecological risk of river corridor using F-AHP and AHP and its application on the Mayurakshi river of Eastern India. Ecol. Inform. 2021, 63, 101318. [Google Scholar] [CrossRef]
- Conrad, R. Proyecto Dulcepamba. Available online: https://www.proyectodulcepamba.org (accessed on 11 May 2024).
- Jiang, C.; Yang, Z.; Liu, C.; Dong, X.; Wang, X.; Zhuang, C.; Zhao, L. Win-win-win pathway for ecological restoration by balancing hydrological, ecological, and agricultural dimensions: Contrasting lessons from highly eroded agroforestry. Sci. Total Environ. 2021, 774, 145140. [Google Scholar] [CrossRef]
- Knighton, L.N.; Petersen, S.L.; Collins, G.H.; Allphin, L.; Hansen, N.C.; Johnston, H.B.; Rader, R.B. Hydrologic restoration of anthropoentically altered springs in the Sheldon National Wildlife Refuge in the Great Basin, USA. J. Arid. Environ. 2023, 211, 104944. [Google Scholar] [CrossRef]
- Albarracín, M.; Ramón, G.; González, J.; Iñiguez-Armijos, C.; Zakaluk, T.; Martos-Rosillo, S. The Ecohydrological Approach in Water Sowing and Harvesting Systems: The Case of the Paltas Catacocha Ecohydrology Demonstration Site, Ecuador. Ecohydrol. Hydrobiol. 2021, 21, 454–466. [Google Scholar] [CrossRef]
- Zalewski, M.; Kiedrzyńska, E.; Wagner, I.; Izydorczyk, K.; Boczek, J.M.; Jurczak, T.; Krauze, K.; Frankiewicz, P.; Godlewska, M.; Wojtal-Frankiewicz, A.; et al. Ecohydrology and adaptation to global change. Ecohydrol. Hydrobiol. 2021, 21, 393–410. [Google Scholar] [CrossRef]
- Yang, Z.; Dai, X.; Lu, H.; Liu, C.; Nie, R.; Zhang, M.; Ma, L.; Li, N.; Liu, T.; He, Y.; et al. Evaluation and prediction of water conservation of the Yellow river basin in Sichuan Province, China, based on Google Earth Engine and CA-Markov. Heliyon 2023, 9, e17903. [Google Scholar] [CrossRef] [PubMed]
Method | Soil Formation without Erosion | Soil Loss in Agricultural Fields | Soil Loss in Ploughed Fields | Reference |
---|---|---|---|---|
Tn/ha/Year | Tn/ha/Year | Tn/ha/Year | ||
1673 measurements, 201 items | 0.05 | 18 | 0.8 | [21] |
Megastudy, 4000 sites | 21 | [22] |
Monthly Flow Averages at Amalí (cms) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. |
7.51 | 10.6 | 12.13 | 12.85 | 8.69 | 4.91 | 3.21 | 2.71 | 2.82 | 3.08 | 3.42 | 4.42 |
Observed Flow | Hydrologic Model (cms) | |||||
---|---|---|---|---|---|---|
Month | Year | Sicoto | San José del Tambo | San Pablo de Amalí | ||
Peak (cms) | Peak (cms) | Continuous (cms) | Time (day) | |||
Apr. | 1970 | 7.4 | 31.7 | |||
Mar. | 1983 | 26.9 | 84.5 * | 40.0 | 10.0 | |
Mar. | 1989 | 12.5 | ||||
Jan. | 1993 | 3.0 | ||||
Feb. | 2008 | 25.8 | 86.1 * | 50.0 | 15.0 | |
Mar. | 2015 | 19.2 | 60 ** |
Vegetation Cover | % |
---|---|
Planted grasses | 49.3 |
Short-cycle crops | 26.1 |
Natural forest | 8.0 |
Shrub vegetation | 7.1 |
Sugar cane | 4.5 |
Coffee–cocoa | 3.7 |
Intervened natural forest | 1.1 |
Undifferentiated crops | 0.2 |
Corn | 0.1 |
TOTAL | 100.0 |
Poverty Due to Unmet Basic Needs (UBNs) (%) | ||||
---|---|---|---|---|
Canton | Women in households with inadequate services | Men in households with inadequate services | Women in households with economic dependence | Men in households with economic dependence |
San Miguel | 69.6 | 70.1 | 8.1 | 7.8 |
Chillanes | 80.9 | 80.7 | 9.6 | 10.3 |
Index | Values | Principles for Assigning Weightings |
---|---|---|
SPI | Negative | Potential deposition areas |
Positive | Potential erosive areas | |
TWI | Low | Accumulates water |
High | Does not accumulate water | |
TRI | Low | Level ground surface |
Medium | Intermediate rough surface | |
High | Extremely rough surface | |
STI | Low | Less sediment transport |
High | Greater sediment transport | |
SD | Low | Soils very resistant to erosion |
High | Soils easily eroded | |
NC | Low | Permeable soils |
High | Impermeable soils | |
RD | Short | Erosion and mass movement × runoff |
Long | Erosion and low mass movement × runoff | |
NDVI | 0.62–0.94 | Healthy vegetation |
<0.51 | Stressed vegetation | |
RF | 290–478 | High rainfall |
114–224 | Low rainfall |
Canon | Weight | From | To | Area (395 km2: 100%) | Category |
---|---|---|---|---|---|
SPI | 1 | −13.8 | −10.1 | 2.5 | High sediment accumulation |
2 | −10.1 | −3.9 | 10.1 | Smooth accumulation of sediment | |
3 | −3.9 | 0.5 | 25.4 | Medium sediment accumulation | |
4 | 0.5 | 3.0 | 51.1 | Medium erosion | |
5 | 3.0 | 14.4 | 10.9 | Heavy erosion and soil degradation | |
TWI | 1 | 13.8 | 25.3 | 1.1 | Flooding |
2 | 8.2 | 13.8 | 12.1 | Heavy accumulation of water | |
3 | 5.5 | 8.2 | 44.9 | Medium water accumulation | |
4 | 4.2 | 5.5 | 35.6 | Low water accumulation | |
5 | 1.4 | 4.2 | 6.4 | Very low water accumulation | |
TRI | 1 | 0.0 | 1.1 | 12.9 | Level ground surface |
2 | 1.1 | 2.7 | 31.1 | Slightly rough surface | |
3 | 2.7 | 4.1 | 33.0 | Moderately rough surface | |
4 | 4.1 | 6.1 | 18.4 | Very hilly surface | |
5 | 6.1 | 18.3 | 4.6 | Extremely rugged surface | |
STI | 1 | 0.0 | 119.7 | 98.7 | No sediment transport |
2 | 119.7 | 127.4 | 0.1 | Little sediment transport | |
3 | 127.4 | 247.1 | 0.5 | Very little sediment transport | |
4 | 247.1 | 2106.8 | 0.6 | Some sediment transport | |
5 | 2106.8 | 31,004.4 | 0.1 | Increased sediment transport | |
SD | 1 | 0.2 | 1.9 | 15.6 | Highly permeable and erosion-resistant soils |
2 | 1.9 | 2.8 | 28.6 | Moderately permeable soils | |
3 | 2.8 | 3.7 | 30.5 | Poorly permeable soils | |
4 | 3.7 | 4.8 | 20.0 | Moderately impermeable soils | |
5 | 4.8 | 8.1 | 5.3 | Impermeable soils, sparse vegetation cover | |
CN | 1 | 36.0 | 59.1 | 6.1 | Soils with very low runoff |
2 | 59.1 | 71.4 | 26.2 | Low-runoff soils | |
3 | 71.4 | 78.0 | 31.2 | Soils with medium runoff | |
4 | 78.0 | 81.4 | 15.5 | Soils with intermediate runoff | |
5 | 81.4 | 88.0 | 21.1 | High-runoff soils | |
RD | 1 | 100.0 | 4000.0 | 74.4 | Very low erosion and mass movement due to runoff |
2 | 60.0 | 100.0 | 11.8 | Erosion and low mass movement due to runoff | |
3 | 30.0 | 60.0 | 6.8 | Less erosion and mass movement due to runoff | |
4 | 15.0 | 30.0 | 3.2 | Moderate erosion and mass movement due to runoff | |
5 | 0.0 | 15.0 | 3.8 | Potential erosion and mass movement due to runoff | |
NDVI | 1 | 0.7 | 0.9 | 28.6 | Healthy vegetation |
2 | 0.6 | 0.7 | 29.6 | Moderately healthy vegetation | |
3 | 0.5 | 0.6 | 23.9 | Low-stress vegetation | |
4 | 0.4 | 0.5 | 13.7 | Moderately stressed vegetation | |
5 | −0.1 | 0.4 | 4.1 | Highly stressed vegetation | |
RF | 1 | 380.0 | 478.0 | 6.7 | High rainfall (mm) |
2 | 291.0 | 380.0 | 13.5 | Average high rainfall (mm) | |
3 | 224.0 | 291.0 | 19.9 | Average rainfall (mm) | |
4 | 169.0 | 224.0 | 31.7 | Low average rainfall (mm) | |
5 | 114.0 | 169.0 | 28.2 | Low rainfall (mm) |
Degree of Importance | Definition | Interpretation |
---|---|---|
1 | Equal importance | Two activities contribute equally to the objective |
3 | Moderate importance | Experience and judgment slightly favor one activity over the other |
5 | Strong importance | Experience and judgment strongly favor one activity over the other |
7 | Very strong or demonstrated | One activity is much more favored than the other; its dominance has been demonstrated in practice |
9 | Extreme | Evidence strongly favors one activity over the other; it is absolute and completely clear |
Scales 2, 4, 6, and 8 | Intermediate values | A compromise between adjacent values is needed |
Reciprocal | aij = 1/aji | Hypothesis of the method |
SPI | TWI | TRI | STI | SD | CN | RD | NDVI | RF | |
---|---|---|---|---|---|---|---|---|---|
SPI | 1.00 | 0.25 | 2.00 | 1.00 | 1.00 | 0.33 | 0.33 | 0.33 | 1.00 |
TWI | 4.00 | 1.00 | 3.00 | 4.00 | 3.00 | 1.00 | 3.00 | 1.00 | 1.00 |
TRI | 0.50 | 0.33 | 1.00 | 0.33 | 0.33 | 0.25 | 0.50 | 0.25 | 0.33 |
STI | 1.00 | 0.25 | 3.00 | 1.00 | 1.00 | 0.25 | 1.00 | 0.50 | 1.00 |
SD | 1.00 | 0.33 | 3.00 | 1.00 | 1.00 | 0.50 | 1.00 | 0.33 | 1.00 |
CN | 3.00 | 1.00 | 4.00 | 4.00 | 2.00 | 1.00 | 4.00 | 1.00 | 1.00 |
RD | 3.00 | 0.33 | 2.00 | 1.00 | 1.00 | 0.25 | 1.00 | 1.00 | 1.00 |
NDVI | 3.00 | 1.00 | 4.00 | 2.00 | 3.00 | 1.00 | 1.00 | 1.00 | 1.00 |
RF | 1.00 | 1.00 | 3.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Total | 17.50 | 5.50 | 25.00 | 15.33 | 13.33 | 5.58 | 12.83 | 6.42 | 8.33 |
SPI | TWI | TRI | STI | SD | CN | RD | NDVI | RF | RESULT | % | |
---|---|---|---|---|---|---|---|---|---|---|---|
SPI | 0.06 | 0.05 | 0.08 | 0.07 | 0.08 | 0.06 | 0.03 | 0.05 | 0.12 | 0.06 | 6.45 |
TWI | 0.23 | 0.18 | 0.12 | 0.26 | 0.23 | 0.18 | 0.23 | 0.16 | 0.12 | 0.19 | 18.94 |
TRI | 0.03 | 0.06 | 0.04 | 0.02 | 0.03 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 3.76 |
STI | 0.06 | 0.05 | 0.12 | 0.07 | 0.08 | 0.04 | 0.08 | 0.08 | 0.12 | 0.08 | 7.59 |
SD | 0.06 | 0.06 | 0.12 | 0.07 | 0.08 | 0.09 | 0.08 | 0.05 | 0.12 | 0.08 | 7.97 |
CN | 0.17 | 0.18 | 0.16 | 0.26 | 0.15 | 0.18 | 0.31 | 0.16 | 0.12 | 0.19 | 18.79 |
RD | 0.17 | 0.06 | 0.08 | 0.07 | 0.08 | 0.04 | 0.08 | 0.16 | 0.12 | 0.09 | 9.45 |
NDVI | 0.17 | 0.18 | 0.16 | 0.13 | 0.23 | 0.18 | 0.08 | 0.16 | 0.12 | 0.16 | 15.57 |
RF | 0.06 | 0.18 | 0.12 | 0.07 | 0.08 | 0.18 | 0.08 | 0.16 | 0.12 | 0.11 | 11.47 |
1.00 | 100.00 |
0.06 | |||
---|---|---|---|
0.60 | 9.36 | 0.04 | |
1.85 | 9.74 | ||
0.36 | 9.47 | ||
0.71 | 9.41 | ||
0.75 | 9.42 | ||
1.83 | 9.76 | ||
0.90 | 9.51 | ||
1.48 | 9.49 | ||
1.08 | 9.38 | ||
= | 9.50 | ||
n= | 9.00 |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RI | 0.00 | 0.00 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 | 1.51 | 1.53 | 1.56 | 1.59 | 1.67 |
Weight | From | To | Category |
---|---|---|---|
1 | 122.93 | 236.24 | Low HR |
2 | 236.24 | 265.93 | Low–medium HR |
3 | 265.93 | 292.28 | Average HR |
4 | 292.28 | 322.17 | High HR |
5 | 322.17 | 461.64 | Very high HR |
HR | Area (km2) | % |
---|---|---|
Low | 42.29 | 10.70 |
Low–Medium | 99.90 | 25.28 |
Medium | 121.21 | 30.67 |
High | 93.13 | 23.56 |
Very High | 38.70 | 9.79 |
Total | 395.23 | 100.00 |
Method | Years | Agricultural Land | Degraded Soil | Reference | ||
---|---|---|---|---|---|---|
% | Mkm2 ǂ | % Free Ice | ||||
-- | 1850 | 2011 | 38 | [64,65] | ||
NDVI, biophysical models, and a database of abandoned agricultural land | 2015 | 10–60 | 8–45 | [66] | ||
NDVI | 1983 | 2011 | 24 | [67] | ||
NDVI, biomass, global vegetation model | 1982 | 2010 | 17–36 | [68] | ||
NDVI | 1981 | 2006 | 29 | [69] | ||
-- | 2015 | 2020 | 4.31 × 10−3 | 40 | Bolivar Province [8] | |
NDVI, AHP | 2024 | 1.3 × 10−4 | 33 | Current study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez, E.F.; Alvarez, C.I. Prioritization of Hydrological Restoration Areas Using AHP and GIS in Dulcepamba River Basin in Bolivar–Ecuador. Hydrology 2024, 11, 81. https://doi.org/10.3390/hydrology11060081
Sanchez EF, Alvarez CI. Prioritization of Hydrological Restoration Areas Using AHP and GIS in Dulcepamba River Basin in Bolivar–Ecuador. Hydrology. 2024; 11(6):81. https://doi.org/10.3390/hydrology11060081
Chicago/Turabian StyleSanchez, Eddy Fernando, and Cesar Ivan Alvarez. 2024. "Prioritization of Hydrological Restoration Areas Using AHP and GIS in Dulcepamba River Basin in Bolivar–Ecuador" Hydrology 11, no. 6: 81. https://doi.org/10.3390/hydrology11060081
APA StyleSanchez, E. F., & Alvarez, C. I. (2024). Prioritization of Hydrological Restoration Areas Using AHP and GIS in Dulcepamba River Basin in Bolivar–Ecuador. Hydrology, 11(6), 81. https://doi.org/10.3390/hydrology11060081