Calibrating Agro-Hydrological Model under Grazing Activities and Its Challenges and Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Agricultural Policy Environmental Extender (APEX) Model
2.3. Modeling Framework
2.3.1. Preliminary Model Setup
2.3.2. Parameter Selection
2.3.3. Calibration Protocol
2.3.4. Model Evaluation
3. Results
3.1. Calibration and Validation Results
3.1.1. Calibrated Parameters
3.1.2. Performance Evaluation
3.2. Grazing Impacts
3.2.1. Water Balance Components
3.2.2. Changes in Major Response Variables
3.2.3. Examples of Grazing Response in Temporal Dynamics
4. Discussions
5. Challenges and Limitations
5.1. Challenges
5.2. Future Direction
6. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gilley, J.E.; Patton, B.; Nyren, P.; Simanton, J. Grazing and Haying Effects on Runoff and Erosion from a Former Conservation Reserve Program Site. Appl. Eng. Agric. 1996, 12, 681–684. [Google Scholar] [CrossRef]
- Thornes, J.B. Modelling Soil Erosion by Grazing: Recent Developments and New Approaches. Geogr. Res. 2007, 45, 13–26. [Google Scholar] [CrossRef]
- Gautam, S.; Mbonimpa, E.; Kumar, S.; Bonta, J. Simulating Runoff from Small Grazed Pasture Watersheds Located at North Appalachian Experimental Watershed in Ohio. Rangel. Ecol. Manag. 2018, 71, 363–369. [Google Scholar] [CrossRef]
- Spiegal, S.; Bestelmeyer, B.T.; Archer, D.W.; Augustine, D.J.; Boughton, E.H.; Boughton, R.K.; Cavigelli, M.A.; Clark, P.E.; Derner, J.D.; Duncan, E.W. Evaluating Strategies for Sustainable Intensification of US Agriculture through the Long-Term Agroecosystem Research Network. Environ. Res. Lett. 2018, 13, 034031. [Google Scholar] [CrossRef]
- Ma, L.; Derner, J.D.; Harmel, R.D.; Tatarko, J.; Moore, A.D.; Rotz, C.A.; Augustine, D.J.; Boone, R.B.; Coughenour, M.B.; Beukes, P.C. Application of Grazing Land Models in Ecosystem Management: Current Status and next Frontiers. Adv. Agron. 2019, 158, 173–215. [Google Scholar]
- Nösberger, J.; Blum, H.; Fuhrer, J. Crop Ecosystem Responses to Climatic Change: Productive Grasslands. Clim. Chang. Glob. Crop Product. 2000, 271–291. [Google Scholar]
- Zilverberg, C.J.; Angerer, J.; Williams, J.; Metz, L.J.; Harmoney, K. Sensitivity of Diet Choices and Environmental Outcomes to a Selective Grazing Algorithm. Ecol. Modell. 2018, 390, 10–22. [Google Scholar] [CrossRef]
- Belsky, A.J.; Matzke, A.; Uselman, S. Survey of Livestock Influences on Stream and Riparian Ecosystems in the Western United States. J. Soil Water Conserv. 1999, 54, 419–431. [Google Scholar]
- Kairis, O.; Karavitis, C.; Salvati, L.; Kounalaki, A.; Kosmas, K. Exploring the Impact of Overgrazing on Soil Erosion and Land Degradation in a Dry Mediterranean Agro-Forest Landscape (Crete, Greece). Arid. Land. Res. Manag. 2015, 29, 360–374. [Google Scholar] [CrossRef]
- Singh, R.; Subramanian, K.; Refsgaard, J. Hydrological Modelling of a Small Watershed Using MIKE SHE for Irrigation Planning. Agric. Water Manag. 1999, 41, 149–166. [Google Scholar] [CrossRef]
- Devi, G.K.; Ganasri, B.P.; Dwarakish, G.S. A Review on Hydrological Models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Curk, M.; Glavan, M. Perspectives of Hydrologic Modeling in Agricultural Research. In Hydrology; IntechOpen: London, UK, 2021; ISBN 1-83962-330-6. [Google Scholar] [CrossRef]
- Bariamis, G.; Baltas, E. Hydrological Modeling in Agricultural Intensive Watershed: The Case of Upper East Fork White River, USA. Hydrology 2021, 8, 137. [Google Scholar] [CrossRef]
- Chen, C.; Herr, J.; Ziemelis, L. Watershed Analysis Risk Management Framework: A Decision Support System for Watershed Approach and Total Maximum Daily Load Calculation. Topical Report; Electric Power Research Inst.: Palo Alto, CA, USA, 1998. [Google Scholar]
- Kool, J.; Van Genuchten, M.T. HYDRUS: One-Dimensional Variably Saturated Flow and Transport Model, Including Hysteresis and Root Water Uptake; US Salinity Laboratory: Riverside, CA, USA, 1991. [Google Scholar]
- Šimunek, J.; Van Genuchten, M.T.; Šejna, M. HYDRUS: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1263–1274. [Google Scholar]
- Refsgaard, J.; Storm, B. MIKE SHE. In Computer Models of Watershed Hydrology; Singh, V.P., Ed.; Water Resources: Highlands Ranch, CO, USA, 1995; pp. 809–846. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development 1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Williams, J.R. The EPIC Model. In Computer Models of Watershed Hydrology; Water Resources Publications: Highlands Ranch, CO, USA, 1995; pp. 909–1000. [Google Scholar]
- Williams, J.R.; Izaurralde, R. The APEX Model. In Watershed Models; CRC Press: Boca Raton, FL, USA, 2010; pp. 461–506. ISBN 0-429-12244-6. [Google Scholar]
- Rojas, K.; Hebson, C.; DeCoursey, D. Modeling Agricultural Management Subject to Subsurface Water Quality Constraints; CABI: Wallingford, UK, 1988. [Google Scholar]
- Flerchinger, G.; Aiken, R.; Rojas, K.; Ahuja, L. Development of the Root Zone Water Quality Model (RZWQM) for over-Winter Conditions. Trans. ASAE 2000, 43, 59. [Google Scholar] [CrossRef]
- Lahlou, M.; Shoemaker, L.; Choudhury, S.; Elmer, R.; Hu, A. Better Assessment Science Integrating Point and Nonpoint Sources (BASINS), Version 2.0. Users Manual; Tetra Tech, Inc.: Fairfax, VA, USA; EarthInfo, Inc.: Boulder, CO, USA, 1998. [Google Scholar]
- Mishra, S.K.; Rupper, S.; Kapnick, S.; Casey, K.; Chan, H.G.; Ciraci, E.; Haritashya, U.; Hayse, J.; Kargel, J.S.; Kayastha, R.B. Grand Challenges of Hydrologic Modeling for Food-Energy-Water Nexus Security in High Mountain Asia. Front. Water 2021, 3, 728156. [Google Scholar] [CrossRef]
- Maskey, M.L.; Puente, C.E.; Sivakumar, B.; Cortis, A. Deterministic Simulation of Mildly Intermittent Hydrologic Records. J. Hydrol. Eng. 2017, 22, 04017026. [Google Scholar] [CrossRef]
- Mohtar, R.; Buckmaster, D.; Fales, S. A Grazing Simulation Model: GRASIM A: Model Development. Trans. ASAE 1997, 40, 1483–1493. [Google Scholar] [CrossRef]
- Stuth, J.; Angerer, J.; Kaitho, R.; Zander, K.; Jama, A.; Heath, C.; Bucher, J.; Hamilton, W.; Conner, R.; Inbody, D. The Livestock Early Warning System (LEWS): Blending Technology and the Human Dimension to Support Grazing Decisions. Arid. Lands Newsl. 2003, 53. Available online: https://cals.arizona.edu/OALS/ALN/aln53/stuth.html (accessed on 23 February 2024).
- Johnson, I.; Lodge, G.; White, R. The Sustainable Grazing Systems Pasture Model: Description, Philosophy and Application to the SGS National Experiment. Aust. J. Exp. Agric. 2003, 43, 711–728. [Google Scholar] [CrossRef]
- Andales, A.A.; Derner, J.D.; Bartling, P.N.; Ahuja, L.R.; Dunn, G.H.; Hart, R.H.; Hanson, J.D. Evaluation of GPFARM for Simulation of Forage Production and Cow–Calf Weights. Rangel. Ecol. Manag. 2005, 58, 247–255. [Google Scholar] [CrossRef]
- Andales, A.A.; Derner, J.D.; Ahuja, L.R.; Hart, R.H. Strategic and Tactical Prediction of Forage Production in Northern Mixed-Grass Prairie. Rangel. Ecol. Manag. 2006, 59, 576–584. [Google Scholar] [CrossRef]
- Cheng, G.; Harmel, R.; Ma, L.; Derner, J.; Augustine, D.; Bartling, P.; Fang, Q.; Williams, J.; Zilverberg, C.; Boone, R. Evaluation of APEX Modifications to Simulate Forage Production for Grazing Management Decision-Support in the Western US Great Plains. Agric. Syst. 2021, 191, 103139. [Google Scholar] [CrossRef]
- Poděbradská, M.; Wylie, B.K.; Bathke, D.J.; Bayissa, Y.A.; Dahal, D.; Derner, J.D.; Fay, P.A.; Hayes, M.J.; Schacht, W.H.; Volesky, J.D. Monitoring Climate Impacts on Annual Forage Production across US Semi-Arid Grasslands. Remote Sens. 2021, 14, 4. [Google Scholar] [CrossRef]
- Doran-Browne, N.A.; Bray, S.G.; Johnson, I.R.; O’Reagain, P.J.; Eckard, R.J. Northern Australian Pasture and Beef Systems. 2. Validation and Use of the Sustainable Grazing Systems (SGS) Whole-Farm Biophysical Model. Anim. Prod. Sci. 2014, 54, 1995–2002. [Google Scholar] [CrossRef]
- Cheng, G.; Harmel, R.; Ma, L.; Derner, J.; Augustine, D.; Bartling, P.; Fang, Q.; Williams, J.; Zilverberg, C.; Boone, R. Evaluation of the APEX Cattle Weight Gain Component for Grazing Decision-Support in the Western Great Plains. Rangel. Ecol. Manag. 2022, 82, 1–11. [Google Scholar] [CrossRef]
- Fang, Q.; Harmel, R.; Ma, L.; Bartling, P.; Derner, J.; Jeong, J.; Williams, J.; Boone, R. Evaluating the APEX Model for Alternative Cow-Calf Grazing Management Strategies in Central Texas. Agric. Syst. 2022, 195, 103287. [Google Scholar] [CrossRef]
- Zilverberg, C.J.; Williams, J.; Jones, C.; Harmoney, K.; Angerer, J.; Metz, L.J.; Fox, W. Process-Based Simulation of Prairie Growth. Ecol. Model. 2017, 351, 24–35. [Google Scholar] [CrossRef]
- Kumar, S.; Anderson, S.H.; Bricknell, L.G.; Udawatta, R.P.; Gantzer, C.J. Soil Hydraulic Properties Influenced by Agroforestry and Grass Buffers for Grazed Pasture Systems. J. Soil. Water Conserv. 2008, 63, 224–232. [Google Scholar] [CrossRef]
- Kumar, S.; Udawatta, R.P.; Anderson, S.H.; Mudgal, A. APEX Model Simulation of Runoff and Sediment Losses for Grazed Pasture Watersheds with Agroforestry Buffers. Agrofor. Syst. 2011, 83, 51–62. [Google Scholar] [CrossRef]
- Mudgal, A.; Baffaut, C.; Anderson, S.H.; Sadler, E.J.; Thompson, A. APEX Model Assessment of Variable Landscapes on Runoff and Dissolved Herbicides. Trans. ASABE 2010, 53, 1047–1058. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Garrett, H.E.; Kallenbach, R.L. Agroforestry and Grass Buffer Effects on Water Quality in Grazed Pastures. Agrofor. Syst. 2010, 79, 81–87. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Hwang, S.; Choi, S.-K.; Cho, J.; Song, I.; Jeong, H.; Song, J.-H.; Jang, T.; Yoo, S.-H. Prediction of the Effects of Management Practices on Discharge and Mineral Nitrogen Yield from Paddy Fields under Future Climate Using Apex-Paddy Model. Agric. Water Manag. 2020, 241, 106345. [Google Scholar] [CrossRef]
- Wilson, L. Evaluation of APEX for Simulating the Effects of Tillage Practices in Tropical Soils; Mississippi State University: Starkville, MI, USA, 2019; ISBN 1-392-17292-6. [Google Scholar]
- Bosch, D.; Doro, L.; Jeong, J.; Wang, X.; Williams, J.; Pisani, O.; Endale, D.; Strickland, T. Conservation Tillage Effects in the Atlantic Coastal Plain: An APEX Examination. J. Soil. Water Conserv. 2020, 75, 400–415. [Google Scholar] [CrossRef]
- Tadesse, H.K.; Moriasi, D.N.; Gowda, P.H.; Wagle, P.; Starks, P.J.; Steiner, J.L.; Talebizadeh, M.; Neel, J.P.; Nelson, A.M. Comparison of Evapotranspiration and Biomass Simulation in Winter Wheat under Conventional and Conservation Tillage Systems Using APEX Model. Ecohydrol. Hydrobiol. 2021, 21, 55–66. [Google Scholar] [CrossRef]
- Wang, X.; Hoffman, D.; Wolfe, J.; Williams, J.; Fox, W. Modeling the Effectiveness of Conservation Practices at Shoal Creek Watershed, Texas, Using APEX. Trans. ASABE 2009, 52, 1181–1192. [Google Scholar] [CrossRef]
- Francesconi, W.; Smith, D.R.; Flanagan, D.C.; Huang, C.-H.; Wang, X. Modeling Conservation Practices in APEX: From the Field to the Watershed. J. Gt. Lakes Res. 2015, 41, 760–769. [Google Scholar] [CrossRef]
- Williams, J.R.; Arnold, J.G.; Srinivasan, R.; Ramanarayanan, T.S. APEX: A New Tool for Predicting the Effects of Climate and CO2 Changes on Erosion and Water Quality. In Modelling Soil Erosion by Water; Springer: Berlin/Heidelberg, Germany, 1998; pp. 441–449. [Google Scholar]
- Choi, S.-K.; Kim, M.-K.; Jeong, J.; Choi, D.; Hur, S.-O. Estimation of Crop Yield and Evapotranspiration in Paddy Rice with Climate Change Using APEX-Paddy Model. J. Korean Soc. Agric. Eng. 2017, 59, 27–42. [Google Scholar]
- Wang, X.; Gassman, P.; Williams, J.; Potter, S.; Kemanian, A. Modeling the Impacts of Soil Management Practices on Runoff, Sediment Yield, Maize Productivity, and Soil Organic Carbon Using APEX. Soil. Tillage Res. 2008, 101, 78–88. [Google Scholar] [CrossRef]
- Bhandari, A.B.; Nelson, N.O.; Sweeney, D.W.; Baffaut, C.; Lory, J.A.; Senaviratne, A.; Pierzynski, G.M.; Janssen, K.A.; Barnes, P.L. Calibration of the APEX Model to Simulate Management Practice Effects on Runoff, Sediment, and Phosphorus Loss. J. Environ. Qual. 2017, 46, 1332–1340. [Google Scholar] [CrossRef]
- Ramirez-Avila, J.J.; Radcliffe, D.E.; Osmond, D.; Bolster, C.; Sharpley, A.; Ortega-Achury, S.L.; Forsberg, A.; Oldham, J.L. Evaluation of the APEX Model to Simulate Runoff Quality from Agricultural Fields in the Southern Region of the United States. J. Environ. Qual. 2017, 46, 1357–1364. [Google Scholar] [CrossRef]
- Nelson, A.M.; Moriasi, D.N.; Talebizadeh, M.; Steiner, J.; Gowda, P.; Starks, P.; Tadesse, H. Use of Soft Data for Multicriteria Calibration and Validation of Agricultural Policy Environmental eXtender: Impact on Model Simulations. J. Soil. Water Conserv. 2018, 73, 623–636. [Google Scholar] [CrossRef]
- Tadesse, A.; Jeong, J.; Green, C.H. Modeling Landscape Wind Erosion Processes on Rangelands Using the APEX Model. Ecol. Model. 2022, 467, 109925. [Google Scholar]
- Nelson, A.M.; Moriasi, D.N.; Fortuna, A.; Steiner, J.L.; Starks, P.J.; Northup, B.; Garbrecht, J. Data from: Runoff Water Quantity and Quality Data from Native Tallgrass Prairie and Crop-Livestock Systems in Oklahoma between 1977 and 1999. In Ag Data Commons; USDA: Washington, DC, USA, 2020. [Google Scholar] [CrossRef]
- Nelson, A.M.; Moriasi, D.N.; Fortuna, A.; Steiner, J.L.; Starks, P.J.; Northup, B.; Garbrecht, J. Runoff Water Quantity and Quality Data from Native Tallgrass Prairie and Crop–Livestock Systems in Oklahoma between 1977 and 1999. J. Environ. Qual. 2019, 49, 1062–1072. [Google Scholar] [CrossRef]
- Allen, P.B.; Welch, N.H.; Rhoades, E.D.; Edens, C.D.; Miller, G.E. The Modified Chickasha Sediment Sampler; Unites States Department of Agriculture, Agricultural Research Service/Oklahoma Agricultural Experiment Station: El Reno, OK, USA, 1976; p. 17. [Google Scholar]
- Williams, R.; Ahuja, L.; Naney, J.; Ross, J.; Barnes, B. Spatial Trends and Variability of Soil Properties and Crop Yield in a Small Watershed. Trans. ASAE 1987, 30, 1653–1660. [Google Scholar] [CrossRef]
- Vogel, J.; Brown, G.; Daniels, J.; Phillips, W.; Garbrecht, J. Watershed Management Practices (1976–1999) for the Water Resources and Erosion Watersheds at the USDA-ARS Grazinglands Research Laboratory, El Reno, OK; USDA Agricultural Research Service Grazinglands Research Laboratory: El Reno, OK, USA, 2000. [Google Scholar]
- Vogel, J.; Garbrecht, J.; Brown, G. Variability of Selected Soil Properties in Winter Wheat and Native Grass Watersheds. Appl. Eng. Agric. 2001, 17, 611. [Google Scholar] [CrossRef]
- Edwards, J.; Carver, B.; Horn, G.; Payton, M. Impact of Dual-purpose Management on Wheat Grain Yield. Crop Sci. 2011, 51, 2181–2185. [Google Scholar] [CrossRef]
- Osorio, J. APEXeditor: A Spreadsheet-Based Tool for Editing APEX Model Input and Output Files. J. Softw. Eng. Appl. 2019, 12, 432. [Google Scholar]
- Meki, M.; Kiniry, J.; Angerer, J.; Norfleet, M.L.; Osorio, J.; Steglich, E. Plant Parameterization and APEXgraze Model Calibration and Validation for US Land Resource Region H Grazing Lands; Figshare: London, UK, 2022. [Google Scholar]
- Osorio, J.; Zilverberg, C.; Steglich, E.; Williams, J.R. Agricultural Policy/Environmental eXtender Model User’s Manual: Version APEXgraze Rel.1811; Blackland Research and Extension Center: Temple, TX, USA, 2018. [Google Scholar]
- Steglich, E. WinAPEX: An APEX Window’s Interface Users Guide; Blackland Research and Extension Center: Temple, TX, USA, 2014. [Google Scholar]
- Tuppad, P.; Winchell, M.; Wang, X.; Srinivasan, R.; Williams, J. ArcAPEX: ArcGIS Interface for Agricultural Policy Environmental eXtender (APEX) Hydrology/Water Quality Model. Int. Agric. Eng. J. 2009, 18, 59. [Google Scholar]
- Saleh, A.; Gallego, O.; Osei, E.; Lal, H.; Gross, C.; McKinney, S.; Cover, H. Nutrient Tracking Tool—A User-Friendly Tool for Calculating Nutrient Reductions for Water Quality Trading. J. Soil. Water Conserv. 2011, 66, 400–410. [Google Scholar] [CrossRef]
- Ali, S.; Osei, E.; Gallego, O. Evaluating Nutrient Tracking Tool (NTT) and Simulated Conservation Practices; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2012; p. 1. [Google Scholar]
- Ali, S.; Gallego, O.; Osei, E. Evaluating Nutrient Tracking Tool and Simulated Conservation Practices. J. Soil Water Conserv. 2015, 70, 115A–120A. [Google Scholar]
- Nelson, A.M.; Moriasi, D.N.; Talebizadeh, M.; Tadesse, H.K.; Steiner, J.L.; Gowda, P.H.; Starks, P.J. Comparing the Effects of Inputs for NTT and ArcAPEX Interfaces on Model Outputs and Simulation Performance. J. Water Resour. Prot. 2019, 11, 554–580. [Google Scholar] [CrossRef]
- Ali, S. Nutrient Tracking Tool (NTT); Tarleton State University: Stephenville, TX, USA, 2019; p. 47. [Google Scholar]
- Wang, X.; Kemanian, A.R.; Williams, J.R. Special Features of the EPIC and APEX Modeling Package and Procedures for Parameterization, Calibration, Validation, and Applications. Methods Introd. Syst. Models Agric. Res. 2011, 2, 177–208. [Google Scholar]
- Dabney, S.; Yoder, D.; Vieira, D. The Application of the Revised Universal Soil Loss Equation, Version 2, to Evaluate the Impacts of Alternative Climate Change Scenarios on Runoff and Sediment Yield. J. Soil. Water Conserv. 2012, 67, 343–353. [Google Scholar] [CrossRef]
- Benavidez, R.; Jackson, B.; Maxwell, D.; Norton, K. A Review of the (Revised) Universal Soil Loss Equation ((R) USLE): With a View to Increasing Its Global Applicability and Improving Soil Loss Estimates. Hydrol. Earth Syst. Sci. 2018, 22, 6059–6086. [Google Scholar] [CrossRef]
- Foster, G.R.; Toy, T.E.; Renard, K.G. Comparison of the USLE, RUSLE1. 06c, and RUSLE2 for Application to Highly Disturbed Lands; US Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2003; Volume 27, pp. 154–160. [Google Scholar]
- McCool, D.; Foster, G.; Yoder, D.; Weesies, G.; McGregor, K.; Bingner, R. The Revised Universal Soil Loss Equation, Version 2; ISCO: Brisbane, Australia, 2004. [Google Scholar]
- Steglich, E.; Osorio, J.; Doro, L.; Jeong, J.; Williams, J.R. Agricultural Policy/Environmental eXtender Model User’s Manual: Version 1501; Natural Resources Conservation Service: Washington, DC, USA; Blackland Research and Extension Center: Temple, TX, USA, 2019; p. 244. [Google Scholar]
- Wang, X.; Yen, H.; Liu, Q.; Liu, J. An Auto-Calibration Tool for the Agricultural Policy Environmental eXtender (APEX) Model. Trans. ASABE 2014, 57, 1087–1098. [Google Scholar]
- Talebizadeh, M.; Moriasi, D.; Steiner, J.L.; Gowda, P.; Tadesse, H.K.; Nelson, A.M.; Starks, P. APEXSENSUN: An Open-Source Package in R for Sensitivity Analysis and Model Performance Evaluation of APEX. J. Am. Water Resour. Assoc. 2018, 54, 1270–1284. [Google Scholar] [CrossRef]
- Steglich, E.; Williams, J. Agricultural Policy/Environmental eXtender Model. User’s Manual: Version 0806; Blackland Research and Extension Center: Temple, TX, USA, 2013. [Google Scholar]
- Hald, A. A History of Probability and Statistics and Their Applications before 1750; John Wiley & Sons: Hoboken, NJ, USA, 2005; ISBN 978-0-471-72517-6. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. Journal of hydrology 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Kahane, L.H. Regression Basics; Sage publications: Thousand Oaks, CA, USA, 2007; ISBN 1-4833-1710-2. [Google Scholar]
- Lewis-Beck, C.; Lewis-Beck, M. Applied Regression: An Introduction; Sage Publications: Thousand Oaks, CA, USA, 2015; Volume 22, ISBN 1-4833-8146-3. [Google Scholar]
- Wiant Jr, H.V.; Harner, E.J. Percent Bias and Standard Error in Logarithmic Regression. Forest Science 1979, 25, 167–168. [Google Scholar]
- Monks, A.M. Comparing Soil Datasets with the APEX Model: Calibration and Validation for Hydrology and Crop Yield in Whatcom County, Washington; Western Washington University: Bellingham, WA, USA, 2016. [Google Scholar]
- Beven, K. Prophecy, Reality and Uncertainty in Distributed Hydrological Modelling. Adv. Water Resour. 1993, 16, 41–51. [Google Scholar] [CrossRef]
- Beven, K.J. Rainfall-Runoff Modelling: The Primer; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 1-119-95101-1. [Google Scholar]
- Bremer, D.J.; Auen, L.M.; Ham, J.M.; Owensby, C.E. Evapotranspiration in a Prairie Ecosystem: Effects of Grazing by Cattle. Agron. J. 2001, 93, 338–348. [Google Scholar] [CrossRef]
- Lambers, H. Chapin~ III, FS, and Pons, TL: Plant Physiological Ecology; Spinger: New York, NY, USA, 1998. [Google Scholar]
- Wagle, P.; Gowda, P.H.; Northup, B.K.; Neel, J.P.; Starks, P.J.; Turner, K.E.; Moriasi, D.N.; Xiao, X.; Steiner, J.L. Carbon Dioxide and Water Vapor Fluxes of Multi-Purpose Winter Wheat Production Systems in the US Southern Great Plains. Agric. For. Meteorol. 2021, 310, 108631. [Google Scholar] [CrossRef]
- Daniel, J.; Potter, K.; Altom, W.; Aljoe, H.; Stevens, R. Long–Term Grazing Density Impacts on Soil Compaction. Trans. ASAE 2002, 45, 1911. [Google Scholar] [CrossRef]
- Northup, B.; Daniel, J.; Phillips, W. Influences of Agricultural Practice and Summer Grazing on Soil Compaction in Wheat Paddocks. Trans. ASABE 2010, 53, 405–411. [Google Scholar] [CrossRef]
- Wagle, P.; Skaggs, T.H.; Gowda, P.H.; Northup, B.K.; Neel, J.P. Flux Variance Similarity-Based Partitioning of Evapotranspiration over a Rainfed Alfalfa Field Using High Frequency Eddy Covariance Data. Agric. For. Meteorol. 2020, 285, 107907. [Google Scholar] [CrossRef]
- McDowell, R.; Srinivasan, M. Identifying Critical Source Areas for Water Quality: 2. Validating the Approach for Phosphorus and Sediment Losses in Grazed Headwater Catchments. J. Hydrol. 2009, 379, 68–80. [Google Scholar] [CrossRef]
- Adimassu, Z.; Tamene, L.; Degefie, D.T. The Influence of Grazing and Cultivation on Runoff, Soil Erosion, and Soil Nutrient Export in the Central Highlands of Ethiopia. Ecol. Process. 2020, 9, 23. [Google Scholar] [CrossRef]
- Yu, H.; Li, Y.; Oshunsanya, S.O.; Are, K.S.; Geng, Y.; Saggar, S.; Liu, W. Re-Introduction of Light Grazing Reduces Soil Erosion and Soil Respiration in a Converted Grassland on the Loess Plateau, China. Agric. Ecosyst. Environ. 2019, 280, 43–52. [Google Scholar] [CrossRef]
- Schwarte, K.A.; Russell, J.R.; Kovar, J.L.; Morrical, D.G.; Ensley, S.M.; Yoon, K.; Cornick, N.A.; Cho, Y.I. Grazing Management Effects on Sediment, Phosphorus, and Pathogen Loading of Streams in Cool-season Grass Pastures. J. Environ. Qual. 2011, 40, 1303–1313. [Google Scholar] [CrossRef]
- Schulze, D.; Jensen, K.; Nolte, S. Livestock Grazing Reduces Sediment Deposition and Accretion Rates on a Highly Anthropogenically Altered Marsh Island in the Wadden Sea. Estuar. Coast. Shelf Sci. 2021, 251, 107191. [Google Scholar] [CrossRef]
- Vermeire, L.T.; Strong, D.J.; Waterman, R.C. Grazing History Effects on Rangeland Biomass, Cover and Diversity Responses to Fire and Grazing Utilization. Rangel. Ecol. Manag. 2018, 71, 770–775. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Bajgain, R.; Starks, P.; Steiner, J.; Doughty, R.B.; Chang, Q. Estimating Leaf Area Index and Aboveground Biomass of Grazing Pastures Using Sentinel-1, Sentinel-2 and Landsat Images. ISPRS J. Photogramm. Remote Sens. 2019, 154, 189–201. [Google Scholar] [CrossRef]
- Hao, Y.; He, Z. Effects of Grazing Patterns on Grassland Biomass and Soil Environments in China: A Meta-Analysis. PLoS ONE 2019, 14, e0215223. [Google Scholar] [CrossRef]
- Jarque Bascuñana, L. Alpine Grasslands, Grazing and Climate Change; Universitat Autònoma de Barcelona: Barcelona, Spain, 2021. [Google Scholar]
- Pucheta, E.; Bonamici, I.; Cabido, M.; Díaz, S. Below-ground Biomass and Productivity of a Grazed Site and a Neighbouring Ungrazed Exclosure in a Grassland in Central Argentina. Austral Ecol. 2004, 29, 201–208. [Google Scholar] [CrossRef]
- Garcia-Pausas, J.; Casals, P.; Romanyà, J.; Vallecillo, S.; Sebastià, M.-T. Seasonal Patterns of Belowground Biomass and Productivity in Mountain Grasslands in the Pyrenees. Plant Soil. 2011, 340, 315–326. [Google Scholar] [CrossRef]
- Jarque-Bascuñana, L.; Calleja, J.A.; Ibañez, M.; Bartolomé, J.; Albanell, E.; Espunyes, J.; Gálvez-Cerón, A.; López-Martín, J.M.; Villamuelas, M.; Gassó, D. Grazing Influences Biomass Production and Protein Content of Alpine Meadows. Sci. Total Environ. 2022, 818, 151771. [Google Scholar] [CrossRef] [PubMed]
- Redmon, L.A.; Horn, G.W.; Krenzer Jr, E.G.; Bernardo, D.J. A Review of Livestock Grazing and Wheat Grain Yield: Boom or Bust? Agron. J. 1995, 87, 137–147. [Google Scholar] [CrossRef]
- Harrison, M.T.; Evans, J.R.; Dove, H.; Moore, A.D. Recovery Dynamics of Rainfed Winter Wheat after Livestock Grazing 1. Growth Rates, Grain Yields, Soil Water Use and Water-Use Efficiency. Crop Pasture Sci. 2011, 62, 947–959. [Google Scholar] [CrossRef]
- USDA-NRCS Soil Survey of Canadian County, Oklahoma, Supplement Manuscript. 1999. Available online: https://archive.org/details/CanadianOK2007 (accessed on 23 February 2024).
- Phillips, W.; Northup, B.; Mayeux, H.; Daniel, J. Performance and Economic Returns of Stocker Cattle on Tallgrass Prairie under Different Grazing Management Strategies. Prof. Anim. Sci. 2003, 19, 416–423. [Google Scholar] [CrossRef]
- Bajgain, R.; Xiao, X.; Basara, J.; Wagle, P.; Zhou, Y.; Mahan, H.; Gowda, P.; McCarthy, H.R.; Northup, B.; Neel, J. Carbon Dioxide and Water Vapor Fluxes in Winter Wheat and Tallgrass Prairie in Central Oklahoma. Sci. Total Environ. 2018, 644, 1511–1524. [Google Scholar] [CrossRef] [PubMed]
- Starks, P.J.; Steiner, J.L.; Neel, J.P.; Turner, K.E.; Northup, B.K.; Gowda, P.H.; Brown, M.A. Assessment of the Standardized Precipitation and Evaporation Index (SPEI) as a Potential Management Tool for Grasslands. Agronomy 2019, 9, 235. [Google Scholar] [CrossRef]
- Fischer, M.L.; Torn, M.S.; Billesbach, D.P.; Doyle, G.; Northup, B.; Biraud, S.C. Carbon, Water, and Heat Flux Responses to Experimental Burning and Drought in a Tallgrass Prairie. Agric. For. Meteorol. 2012, 166, 169–174. [Google Scholar] [CrossRef]
- Archer, S.; Smeins, F.E. Ecosystem-Level Processes. In Grazing Management: An Ecological Perspective; Heitschmidt, R.K., Stuth, J.W., Eds.; Timber Press Inc.: Portland, OR, USA, 1991; pp. 109–139. [Google Scholar]
- Beven, K.; Binley, A. The Future of Distributed Models: Model Calibration and Uncertainty Prediction. Hydrol. Process. 1992, 6, 279–298. [Google Scholar] [CrossRef]
- Beven, K.; Freer, J. Equifinality, Data Assimilation, and Uncertainty Estimation in Mechanistic Modelling of Complex Environmental Systems Using the GLUE Methodology. J. Hydrol. 2001, 249, 11–29. [Google Scholar] [CrossRef]
- Beven, K. How Far Can We Go in Distributed Hydrological Modelling? Hydrol. Earth Syst. Sci. 2001, 5, 1–12. [Google Scholar] [CrossRef]
- Buytaert, W.; Beven, K. Models as Multiple Working Hypotheses: Hydrological Simulation of Tropical Alpine Wetlands. Hydrol. Process. 2011, 25, 1784–1799. [Google Scholar] [CrossRef]
- Fieser, B.; Horn, G.; Edwards, J.; Krenzer Jr, E. Timing of Grazing Termination in Dual-Purpose Winter Wheat Enterprises. Prof. Anim. Sci. 2006, 22, 210–216. [Google Scholar] [CrossRef]
- Vreman, R.A.; Geenen, J.W.; Knies, S.; Mantel-Teeuwisse, A.K.; Leufkens, H.G.M.; Goettsch, W.G. The Application and Implications of Novel Deterministic Sensitivity Analysis Methods. Pharmacoeconomics 2021, 39, 1–17. [Google Scholar] [CrossRef]
Activities | WRE1 | WRE8 |
---|---|---|
Planting schedules | Once at the very beginning * | 22 times (once a year) |
Crops | Native prairie | Wheat and oats |
Total plant population | 3000 plants/m2 | 7289 plants/m2 of wheat and 714 plants/m2 of oats (1983) |
Number of fertilizer species | 4 | 8 |
Total fertilizer applied | 706 kg/ha | 4811 kg/ha |
Number of times fertilizers applied | 2 | 29 |
Number of pesticide species | 3 | 14 |
Total pesticides applied | 3 kg/ha | 41 kg/ha |
Number of times pesticides applied | 2 | 12 |
Number of classes of cattle that grazed | 3 | 5 |
Total number of grazed animals | 153 | 100 |
Total number of days grazed | 620 | 480 |
PARAM (n) | Parameter’s Definition | Lower | Upper | Initial |
---|---|---|---|---|
PARAM [2] | Root growth–soil strength | 1 | 2 | 2 |
PARAM [4] | Water storage N leaching | 0 | 1 | 0.9 |
PARAM [7] | N fixation | 0 | 1 | 0.9 |
PARAM [8] | Soluble phosphorus runoff coefficient | 10 | 20 | 20 |
PARAM [14] | Nitrate leaching ratio | 0.1 | 1 | 0.6 |
PARAM [15] | Runoff CN residue adjustment parameter | 0 | 0.3 | 0.05 |
PARAM [17] | Soil evaporation–plant cover factor | 0 | 0.5 | 0.2 |
PARAM [20] | Runoff curve number initial abstraction | 0.05 | 0.4 | 0.2 |
PARAM [23] | Hargreaves PET equation coefficient | 0.0023 | 0.0032 | 0.0032 |
PARAM [34] | Hargreaves PET equation exponent | 0.5 | 0.6 | 0.48 |
PARAM [42] | SCS curve number index coefficient | 0.3 | 2.5 | 0.8 |
PARAM [50] | Rainfall interception coefficient | 0.05 | 0.3 | 0.1 |
PARAM [69] | Coefficient adjusting microbial activity in the topsoil layer | 0.1 | 1 | 1 |
PARAM [70] | Microbial decay rate coefficient | 0.5 | 1.5 | 1 |
PARAM [72] | Volatilization/nitrification partitioning coefficient | 0.05 | 0.5 | 0.5 |
PARAM [18] | Sediment routing exponent | 1 | 2 | 1.5 |
PARAM [19] | Sediment routing coefficient | 0.0001 | 0.05 | 0 |
PARAM [45] | Sediment routing travel time coefficient | 0.5 | 10 | 5 |
PARAM [65] | RUSLE2 transport capacity parameter | 0.001 | 0.1 | 0.001 |
PARAM [66] | RUSLE2 threshold transport capacity coefficient | 1 | 10 | 1 |
PARAM (n) | WRE1: Native Prairie | WRE8: Winter Wheat and Oat | ||
---|---|---|---|---|
Without Grazing | With Grazing | Without Grazing | With Grazing | |
PARAM [2] | 1.299 | 1.604 | 1.425 | 1.425 |
PARAM [4] | 0.327 | 0.220 | 0.724 | 0.724 |
PARAM [7] | 0.411 | 0.045 | 0.520 | 0.52 |
PARAM [8] | 17.890 | 10.320 | 18.350 | 18.350 |
PARAM [14] | 0.335 | 0.783 | 0.699 | 0.699 |
PARAM [15] | 0.085 | 0.076 | 0.069 | 0.069 |
PARAM [17] | 0.130 | 0.187 | 0.002 | 0.002 |
PARAM [18] | 1.325 | 1.463 | 1.303 | 1.303 |
PARAM [19] | 0.049 | 0.036 | 0.036 | 0.036 |
PARAM [20] | 0.400 | 0.390 | 0.391 | 0.391 |
PARAM [23] | 0.0028 | 0.0028 | 0.0029 | 0.0029 |
PARAM [34] | 0.536 | 0.571 | 0.598 | 0.598 |
PARAM [42] | 2.447 | 2.212 | 0.828 | 0.828 |
PARAM [45] | 0.833 | 1.982 | 4.509 | 4.509 |
PARAM [50] | 0.403 | 0.207 | 0.326 | 0.326 |
PARAM [65] | 0.022 | 0.039 | 0.086 | 0.086 |
PARAM [66] | 9.532 | 4.285 | 2.152 | 2.152 |
PARAM [69] | 0.298 | 0.936 | 0.887 | 0.887 |
PARAM [70] | 0.595 | 1.201 | 0.871 | 0.871 |
PARAM [72] | 0.400 | 0.123 | 0.329 | 0.329 |
Watershed | Metrics | OF | NSE | COD | PBIAS, % | ||||
---|---|---|---|---|---|---|---|---|---|
Without | With | Without | With | Without | With | Without | With | ||
WRE1 (Grassland) | OF | 0.66 (4.13) | 0.60 (26.52) | 0.60 (0.16) | 0.66 (0.25) | 0.61 (0.20) | 0.66 (0.26) | 0.00 (3.63) | −0.03 (26.17) |
NSE | 2.07 (9.71) | 8.80 (1.23) | 0.63 (0.25) | 0.69 (0.23) | 0.64 (0.26) | 0.70 (0.27) | −1.67 (9.32) | −8.46 (0.29) | |
COD | 6.36 (2.40) | 8.80 (1.23) | 0.62 (0.20) | 0.69 (0.23) | 0.65 (0.24) | 0.70 (0.27) | −6.01 (−1.79) | −8.46 (0.29) | |
PBIAS | 0.66 (4.13) | 0.64 (4.14) | 0.60 (0.16) | 0.60 (0.21) | 0.61 (0.20) | 0.63 (0.28) | 0.00 (3.63) | 0.00 (3.67) | |
WRE8 (Cropland) | OF | 30.74 (24.22) | 30.67 (25.10) | 0.67 (0.43) | 0.68 (0.42) | 0.73 (0.43) | 0.73 (0.42) | −30.40 (23.88) | −30.33 (24.75) |
NSE | 32.61 (22.21) | 32.56 (22.24) | 0.70 (0.37) | 0.70 (0.36) | 0.73 (0.37) | 0.73 (0.36) | −32.27 (21.86) | −32.22 (21.89) | |
COD | 32.74 (23.16) | 32.73 (22.94) | 0.70 (0.38) | 0.70 (0.39) | 0.76 (0.39) | 0.76 (0.39) | −32.40 (22.81) | −32.39 (22.59) | |
PBIAS | 30.74 (24.22) | 30.67 (25.10) | 0.67 (0.43) | 0.68 (0.42) | 0.73 (0.43) | 0.73 (0.42) | −30.40 (23.88) | −30.33 (24.75) |
Response Variables | OF | NSE | COD | PBIAS | ||||
---|---|---|---|---|---|---|---|---|
Without | D% | Without | D% | Without | D% | Without | D% | |
Water yield, mm | 130.59 | 5.9 | 130.29 | −7.5 | 138.31 | −1.2 | 130.59 | −0.01 |
Deep percolation, mm | 32.07 | 21.6 | 28.22 | 3.4 | 23.77 | −14.7 | 32.07 | 58.9 |
Sediment, t/ha | 2.21 | 65.2 | 1.87 | 20.1 | 3.25 | 54.1 | 2.21 | 8.3 |
Soil erosion, t/ha | 2.20 | 65.1 | 1.86 | 19.8 | 3.25 | 54.0 | 2.20 | 8.2 |
Evapotranspiration, mm | 805.69 | −2.4 | 814.48 | 1.1 | 810.98 | 0.6 | 805.69 | −2.9 |
Potential ET, mm | 1495.47 | −9.6 | 1741.62 | 8.1 | 1691.97 | 5.4 | 1495.47 | 4.1 |
Total phosphorus, kg/ha | 0.26 | 48.7 | 0.20 | −40.9 | 0.27 | −4.7 | 0.26 | −25.1 |
Total nitrogen, kg/ha | 5.17 | 42.0 | 4.93 | 9.9 | 6.20 | 28.3 | 5.17 | −21.8 |
Plant biomass, t/ha | 13.19 | −98.1 | 14.99 | −18.9 | 10.79 | −65.3 | 13.19 | −23.5 |
Forage yield, t/ha | 9.33 | 65.6 | 10.79 | 83.2 | 7.58 | 76.1 | 9.33 | 83.7 |
Standing dead biomass, t/ha | 5.98 | −258.9 | 7.88 | −89.7 | 5.96 | −150.8 | 5.98 | −129.9 |
Standing live biomass, t/ha | 0.28 | −380.3 | 0.39 | −131.1 | 0.26 | −242.9 | 0.28 | −192.7 |
Drought stress, d | 6.14 | −530.5 | 22.24 | −19.8 | 16.39 | −62.5 | 6.14 | −283.1 |
Temperature stress, d | 137.48 | −1.6 | 139.94 | 3.1 | 135.98 | 0.3 | 137.48 | 2.8 |
Nitrogen stress, d | 76.91 | 98.1 | 23.98 | 8.5 | 0.21 | −100 | 76.91 | 69.9 |
Phosphorus stress, d | 72.12 | −37.5 | 100.71 | −10.2 | 149.05 | 25.6 | 72.12 | −65.6 |
Response Variables | OF | NSE | COD | PBIAS | ||||
---|---|---|---|---|---|---|---|---|
Without | D% | Without | D% | Without | D% | Without | D% | |
Water yield, mm | 142.33 | 0.4 | 144.86 | 0.04 | 144.46 | −0.1 | 142.33 | 0.4 |
Deep percolation, mm | 40.27 | −0.4 | 48.29 | −0.9 | 41.24 | 0.3 | 40.27 | −0.4 |
Sediment, t/ha | 5.92 | 10.3 | 14.85 | 0.4 | 10.46 | −3.4 | 5.92 | 10.3 |
Soil erosion, t/ha | 5.92 | 10.3 | 14.85 | 0.4 | 10.46 | −3.4 | 5.92 | 10.3 |
Evapotranspiration, mm | 949.65 | −0.02 | 936.97 | 0.04 | 947.17 | −0.01 | 949.65 | −0.02 |
Potential ET, mm | 2040.10 | 0.0 | 2002.75 | 0.0 | 2040.10 | 0.0 | 2040.10 | 0.0 |
Total phosphorus, kg/ha | 2.03 | 7.5 | 4.50 | −0.5 | 3.55 | −3.4 | 2.03 | 7.5 |
Total nitrogen, kg/ha | 11.97 | 6.4 | 15.35 | −1.0 | 15.53 | −3.4 | 11.97 | 6.4 |
Crop biomass, t/ha | 19.20 | −0.6 | 18.62 | −0.7 | 20.85 | −0.8 | 19.20 | −0.6 |
Forage yield, t/ha | 4.27 | −3.0 | 3.77 | −2.1 | 4.56 | −3.7 | 4.27 | −3.0 |
Standing dead crop residue, t/ha | 13.44 | −0.2 | 13.07 | −0.2 | 14.61 | −0.5 | 13.44 | −0.2 |
Standing live plant biomass, t/ha | 1.26 | −0.2 | 1.23 | −0.2 | 1.37 | −0.6 | 1.26 | −0.2 |
Drought stress, d | 4.27 | −3.0 | 3.77 | −2.1 | 4.56 | −3.7 | 4.27 | −3.0 |
Temperature stress, d | 58.37 | −0.2 | 57.10 | 0.1 | 62.19 | −0.3 | 58.37 | −0.2 |
Nitrogen stress, d | 18.49 | −0.1 | 22.86 | −0.02 | 1.06 | 11.7 | 18.49 | −0.1 |
Phosphorus stress, d | - | 0.0 | - | 0.0 | 5.94 | 4.8 | - | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nelson, A.M.; Maskey, M.L.; Northup, B.K.; Moriasi, D.N. Calibrating Agro-Hydrological Model under Grazing Activities and Its Challenges and Implications. Hydrology 2024, 11, 42. https://doi.org/10.3390/hydrology11040042
Nelson AM, Maskey ML, Northup BK, Moriasi DN. Calibrating Agro-Hydrological Model under Grazing Activities and Its Challenges and Implications. Hydrology. 2024; 11(4):42. https://doi.org/10.3390/hydrology11040042
Chicago/Turabian StyleNelson, Amanda M., Mahesh L. Maskey, Brian K. Northup, and Daniel N. Moriasi. 2024. "Calibrating Agro-Hydrological Model under Grazing Activities and Its Challenges and Implications" Hydrology 11, no. 4: 42. https://doi.org/10.3390/hydrology11040042
APA StyleNelson, A. M., Maskey, M. L., Northup, B. K., & Moriasi, D. N. (2024). Calibrating Agro-Hydrological Model under Grazing Activities and Its Challenges and Implications. Hydrology, 11(4), 42. https://doi.org/10.3390/hydrology11040042