Enhancing Groundwater Recharge Through Nature-Based Solutions: Benefits and Barriers
Abstract
1. Introduction
2. Literature Review Protocol
3. NbSs for Groundwater Recharge: Approaches and Their Effectiveness
3.1. Managed Aquifer Recharge (MAR)
3.1.1. Spreading Method
3.1.2. Induced Bank Filtration
3.1.3. In-Channel Modifications
3.2. Ancillary Recharge Methods (ARMs)
3.2.1. Afforestation
3.2.2. Wetlands
3.2.3. Regenerative Agricultural Practices
4. Challenges and Opportunities
4.1. Quantification of the Effectiveness of NbSs in Short and Long Term
4.2. Scalability of NbS
4.3. Lack of Stakeholders’ Engagement and Collaboration
4.4. Cost
4.5. Lack of Guidance
4.6. Uncertainties with NbSs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Healy, R.W. Estimating Groundwater Recharge; Cambridge University Press: Cambridge, UK, 2010; ISBN 1-139-49139-3. [Google Scholar]
- Berghuijs, W.R.; Luijendijk, E.; Moeck, C.; van der Velde, Y.; Allen, S.T. Global Recharge Data Set Indicates Strengthened Groundwater Connection to Surface Fluxes. Geophys. Res. Lett. 2022, 49, e2022GL099010. [Google Scholar] [CrossRef]
- Fan, Y.; Clark, M.; Lawrence, D.M.; Swenson, S.; Band, L.E.; Brantley, S.L.; Brooks, P.D.; Dietrich, W.E.; Flores, A.; Grant, G.; et al. Hillslope Hydrology in Global Change Research and Earth System Modeling. Water Resour. Res. 2019, 55, 1737–1772. [Google Scholar] [CrossRef]
- Gnann, S.; Reinecke, R.; Stein, L.; Wada, Y.; Thiery, W.; Müller Schmied, H.; Satoh, Y.; Pokhrel, Y.; Ostberg, S.; Koutroulis, A.; et al. Functional Relationships Reveal Differences in the Water Cycle Representation of Global Water Models. Nat. Water 2023, 1, 1079–1090. [Google Scholar] [CrossRef]
- Gonzalez, M.O.; Preetha, P.; Kumar, M.; Clement, T.P. Comparison of Data-Driven Groundwater Recharge Estimates with a Process-Based Model for a River Basin in the Southeastern USA. J. Hydrol. Eng. 2023, 28, 04023019. [Google Scholar] [CrossRef]
- Malakar, P.; Anshuman, A.; Kumar, M.; Boumis, G.; Clement, T.P.; Tashie, A.; Thakur, H.; Bhat, N.; Rathore, L. An In-Situ Daily Dataset for Benchmarking Temporal Variability of Groundwater Recharge. Earth Syst. Sci. Data Discuss. 2024, 2024, 1–19. [Google Scholar]
- Scanlon, B.; Mukherjee, A.; Gates, J.B.; Reedy, R.C.; Sinha, A.K. Groundwater Recharge in Natural Dune Systems and Agricultural Ecosystems in the Thar Desert Region, Rajasthan, India. Hydrogeol. J. 2010, 18, 959–972. [Google Scholar] [CrossRef]
- Lapworth, D.J.; MacDonald, A.M.; Krishan, G.; Rao, M.S.; Gooddy, D.C.; Darling, W.G. Groundwater Recharge and Age-Depth Profiles of Intensively Exploited Groundwater Resources in Northwest India. Geophys. Res. Lett. 2015, 42, 7554–7562. [Google Scholar] [CrossRef]
- Moeck, C.; Grech-Cumbo, N.; Podgorski, J.; Bretzler, A.; Gurdak, J.J.; Berg, M.; Schirmer, M. A Global-Scale Dataset of Direct Natural Groundwater Recharge Rates: A Review of Variables, Processes and Relationships. Sci. Total Environ. 2020, 717, 137042. [Google Scholar] [CrossRef]
- Condon, L.E.; Maxwell, R.M. Simulating the Sensitivity of Evapotranspiration and Streamflow to Large-Scale Groundwater Depletion. Sci. Adv. 2019, 5, eaav4574. [Google Scholar] [CrossRef]
- Gong, C.; Cook, P.G.; Therrien, R.; Wang, W.; Brunner, P. On Groundwater Recharge in Variably Saturated Subsurface Flow Models. Water Resour. Res. 2023, 59, e2023WR034920. [Google Scholar] [CrossRef]
- Carrera-Hernández, J.J.; Mendoza, C.A.; Devito, K.J.; Petrone, R.M.; Smerdon, B.D. Effects of Aspen Harvesting on Groundwater Recharge and Water Table Dynamics in a Subhumid Climate. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Chen, X.; Kumar, M.; deB Richter, D.; Mau, Y. Impact of Gully Incision on Hillslope Hydrology. Hydrol. Process. 2020, 34, 3848–3866. [Google Scholar] [CrossRef]
- Kumar, M.; Duffy, C.J.; Salvage, K.M. A Second-Order Accurate, Finite Volume–Based, Integrated Hydrologic Modeling (FIHM) Framework for Simulation of Surface and Subsurface Flow. Vadose Zone J. 2009, 8, 873–890. [Google Scholar] [CrossRef]
- Konikow, L.F. Groundwater Depletion in the United States (1900−2008); US Geological Survey: Reston, VA, USA, 2013. [Google Scholar]
- Wada, Y.; van Beek, L.P.H.; van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P. Global Depletion of Groundwater Resources. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Liu, P.-W.; Famiglietti, J.S.; Purdy, A.J.; Adams, K.H.; McEvoy, A.L.; Reager, J.T.; Bindlish, R.; Wiese, D.N.; David, C.H.; Rodell, M. Groundwater Depletion in California’s Central Valley Accelerates during Megadrought. Nat. Commun. 2022, 13, 7825. [Google Scholar] [CrossRef]
- Moench, M. When the Well Runs Dry but Livelihood Continues: Adaptive Responses to Groundwater Depletion and Strategies for Mitigating the Associated Impacts. In The agricultural Groundwater Revolution: Opportunities and Threats to Development; CABI Head Office: Oxford, UK, 2007; Volume 3, pp. 173–192. [Google Scholar]
- Wendt, D.E.; Loon, A.F.V.; Scanlon, B.R.; Hannah, D.M. Managed Aquifer Recharge as a Drought Mitigation Strategy in Heavily-Stressed Aquifers. Environ. Res. Lett. 2021, 16, 014046. [Google Scholar] [CrossRef]
- Feng, G.; Jin, W.; Ouyang, Y.; Huang, Y. The Role of Changing Land Use and Irrigation Scheduling in Groundwater Depletion Mitigation in a Humid Region. Agric. Water Manag. 2024, 291, 108606. [Google Scholar] [CrossRef]
- Singh, R.; Garg, K.K.; Anantha, K.H.; Akuraju, V.; Dev, I.; Dixit, S.; Dhyani, S.K. Building Resilient Agricultural System through Groundwater Management Interventions in Degraded Landscapes of Bundelkhand Region, Central India. J. Hydrol. Reg. Stud. 2021, 37, 100929. [Google Scholar] [CrossRef]
- Alam, S.; Gebremichael, M.; Li, R.; Dozier, J.; Lettenmaier, D.P. Can Managed Aquifer Recharge Mitigate the Groundwater Overdraft in California’s Central Valley? Water Resour. Res. 2020, 56, e2020WR027244. [Google Scholar] [CrossRef]
- Bachand, P.A.M.; Roy, S.B.; Choperena, J.; Cameron, D.; Horwath, W.R. Implications of Using On-Farm Flood Flow Capture To Recharge Groundwater and Mitigate Flood Risks Along the Kings River, CA. Environ. Sci. Technol. 2014, 48, 13601–13609. [Google Scholar] [CrossRef]
- Baptista, V.S.G.; Coelho, V.H.R.; Bertrand, G.F.; da Silva, G.B.L.; Caicedo, N.O.L.; Montenegro, S.M.G.L.; Stefan, C.; Glass, J.; Heim, R.; Conrad, A.; et al. Rooftop Water Harvesting for Managed Aquifer Recharge and Flood Mitigation in Tropical Cities: Towards a Strategy of Co-Benefit Evaluations in João Pessoa, Northeast Brazil. J. Environ. Manag. 2023, 342, 118034. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Shacham, E.; Andrade, A.; Dalton, J.; Dudley, N.; Jones, M.; Kumar, C.; Maginnis, S.; Maynard, S.; Nelson, C.R.; Renaud, F.G.; et al. Core Principles for Successfully Implementing and Upscaling Nature-Based Solutions. Environ. Sci. Policy 2019, 98, 20–29. [Google Scholar] [CrossRef]
- Qiu, Y.; Da Silva Rocha Paz, I.; Chen, F.; Versini, P.A.; Schertzer, D.; Tchiguirinskaia, I. Space Variability Impacts on Hydrological Responses of Nature-Based Solutions and the Resulting Uncertainty: A Case Study of Guyancourt (France). Hydrol. Earth Syst. Sci. 2021, 25, 3137–3162. [Google Scholar] [CrossRef]
- Ribeiro, L. Revisiting Ancestral Groundwater Techniques as Nature Based Solutions for Managing Water. In Advances in Science, Technology and Innovation; Springer: Berlin/Heidelberger, Germany, 2021; pp. 483–487. [Google Scholar]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Link, A.; El-Hokayem, L.; Usman, M.; Conrad, C.; Reinecke, R.; Berger, M.; Wada, Y.; Coroama, V.; Finkbeiner, M. Groundwater-Dependent Ecosystems at Risk—Global Hotspot Analysis and Implications. Environ. Res. Lett. 2023, 18, 094026. [Google Scholar] [CrossRef]
- Dillon, P.; Stuyfzand, P.; Grischek, T.; Lluria, M.; Pyne, R.D.G.; Jain, R.C.; Bear, J.; Schwarz, J.; Wang, W.; Fernandez, E.; et al. Sixty Years of Global Progress in Managed Aquifer Recharge. Hydrogeol. J. 2019, 27, 1–30. [Google Scholar] [CrossRef]
- Acreman, M.; Smith, A.; Charters, L.; Tickner, D.; Opperman, J.; Acreman, S.; Edwards, F.; Sayers, P.; Chivava, F. Evidence for the Effectiveness of Nature-Based Solutions to Water Issues in Africa. Environ. Res. Lett. 2021, 16, 063007. [Google Scholar] [CrossRef]
- Liu, M.; Nie, Z.; Cao, L.; Wang, L.; Lu, H. Nature-Based Solutions for the Restoration of Groundwater Level and Groundwater-Dependent Ecosystems in a Typical Inland Region in China. Water 2024, 16, 33. [Google Scholar] [CrossRef]
- Kourakos, G.; Dahlke, H.E.; Harter, T. Increasing Groundwater Availability and Seasonal Base Flow Through Agricultural Managed Aquifer Recharge in an Irrigated Basin. Water Resour. Res. 2019, 55, 7464–7492. [Google Scholar] [CrossRef]
- European Commission: Directorate-General for Research and Innovation. Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities–Final Report of the Horizon 2020 Expert Group. on “Nature-Based Solutions and Re-Naturing Cities”–(Full Version); Publications Office: Hong Kong, 2015. [Google Scholar]
- WWAP (United Nations World Water Assessment Programme); UN-Water. The United Nations World Water Development Report 2018: Nature-Based Solutions for Water; UNESCO: Paris, France, 2018; ISBN 978-92-3-100264-9. [Google Scholar]
- Han, D.; Currell, M.J.; Cao, G.; Hall, B. Alterations to Groundwater Recharge Due to Anthropogenic Landscape Change. J. Hydrol. 2017, 554, 545–557. [Google Scholar] [CrossRef]
- Gale, I.; Neumann, I.; Calow, R.; Moench, M. The Effectiveness of Artificial Recharge of Groundwater: A Review; British Geological Survey: Nottingham, UK, 2002. [Google Scholar]
- Ringleb, J.; Sallwey, J.; Stefan, C. Assessment of Managed Aquifer Recharge through Modeling-A Review. Water 2016, 8, 579. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Y.; Kanyerere, T. A Review of the Managed Aquifer Recharge: Historical Development, Current Situation and Perspectives. Phys. Chem. Earth Parts A/B/C 2020, 118–119, 102887. [Google Scholar] [CrossRef]
- Bouwer, H. Artificial Recharge of Groundwater: Hydrogeology and Engineering. Hydrogeol. J. 2002, 10, 121–142. [Google Scholar] [CrossRef]
- Dillon, P. Future Management of Aquifer Recharge. Hydrogeol. J. 2005, 13, 313–316. [Google Scholar] [CrossRef]
- van Steenbergen, F. The Dune Water Machine—The Water Channel. Available online: https://thewaterchannel.tv/thewaterblog/the-dune-water-machine/ (accessed on 29 November 2021).
- Alam, M.F.; Pavelic, P.; Sharma, N.; Sikka, A. Managed Aquifer Recharge of Monsoon Runoff Using Village Ponds: Performance Assessment of a Pilot Trial in the Ramganga Basin, India. Water 2020, 12, 1028. [Google Scholar] [CrossRef]
- Pavelic, P.; Srisuk, K.; Saraphirom, P.; Nadee, S.; Pholkern, K.; Chusanathas, S.; Munyou, S.; Tangsutthinon, T.; Intarasut, T.; Smakhtin, V. Balancing-out Floods and Droughts: Opportunities to Utilize Floodwater Harvesting and Groundwater Storage for Agricultural Development in Thailand. J. Hydrol. 2012, 470–471, 55–64. [Google Scholar] [CrossRef]
- Chinnasamy, P.; Muthuwatta, L.; Eriyagama, N.; Pavelic, P.; Lagudu, S. Modeling the Potential for Floodwater Recharge to Offset Groundwater Depletion: A Case Study from the Ramganga Basin, India. Sustain. Water Resour. Manag. 2018, 4, 331–344. [Google Scholar] [CrossRef]
- Tuinhof, A.; Heederik, J.P. Management of Aquifer Recharge and Subsurface Storage: Making Better Use of Our Largest Reservoir; Netherlands National Committee for the IAH: Wageningen, The Netherlands, 2003; ISBN 90-808258-1-6. [Google Scholar]
- Shojaeian, M.R.; Karimidastenaei, Z.; Rahmati, O.; Haghighi, A.T. Assessing Morphological Changes in a Human-Impacted Alluvial System Using Hydro-Sediment Modeling and Remote Sensing. Int. J. Sediment. Res. 2021, 36, 439–448. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Ozaki, M.; Nakamura, K.; Horino, H.; Kawashima, S. Relationship between Increment of Groundwater Level at the Beginning of Irrigation Period and Paddy Filed Area in the Tedori River Alluvial Fan Area, Japan. Paddy Water Environ. 2013, 11, 551–558. [Google Scholar] [CrossRef]
- Esfandiari-Baiat, M. Rahbar Gale Monitoring of Inflow and Outflow Rate from Kaftari Artificial Recharge of Groundwater System in Dorz Sayban Region in South Eastern Iran. In Proceedings of the Proceedings of the Management of Aquifer Recharge and Water Harvesting in Arid and Semi-Arid Region of Asia, Yazd, Iran, 27 November–1 December 2004. [Google Scholar]
- Scanlon, B.R.; Reedy, R.C.; Faunt, C.C.; Pool, D.; Uhlman, K. Enhancing Drought Resilience with Conjunctive Use and Managed Aquifer Recharge in California and Arizona. Environ. Res. Lett. 2016, 11, 049501. [Google Scholar] [CrossRef]
- Ascott, M.J.; Lapworth, D.J.; Gooddy, D.C.; Sage, R.C.; Karapanos, I. Impacts of Extreme Flooding on Riverbank Filtration Water Quality. Sci. Total Environ. 2016, 554–555, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Sendrós, A.; Himi, M.; Lovera, R.; Rivero, L.; Garcia-Artigas, R.; Urruela, A.; Casas, A. Electrical Resistivity Tomography Monitoring of Two Managed Aquifer Recharge Ponds in the Alluvial Aquifer of the Llobregat River (Barcelona, Spain). Near Surf. Geophys. 2020, 18, 353–368. [Google Scholar] [CrossRef]
- Daher, W.; Pistre, S.; Kneppers, A.; Bakalowicz, M.; Najem, W. Karst and Artificial Recharge: Theoretical and Practical Problems. A Preliminary Approach to Artificial Recharge Assessment. J. Hydrol. 2011, 408, 189–202. [Google Scholar] [CrossRef]
- Hoppe-Jones, C.; Oldham, G.; Drewes, J.E. Attenuation of Total Organic Carbon and Unregulated Trace Organic Chemicals in U.S. Riverbank Filtration Systems. Water Res. 2010, 44, 4643–4659. [Google Scholar] [CrossRef] [PubMed]
- Nagy-Kovács, Z.; Davidesz, J.; Czihat-Mártonné, K.; Till, G.; Fleit, E.; Grischek, T. Water Quality Changes during Riverbank Filtration in Budapest, Hungary. Water 2019, 11, 302. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, P.; Mehrotra, I.; Grischek, T. Impact of Riverbank Filtration on Treatment of Polluted River Water. J. Environ. Manag. 2010, 91, 1055–1062. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Saleh, O.K.; Ghanayem, H.M.; Zeleňáková, M.; Kuriqi, A. Numerical Assessment of Riverbank Filtration Using Gravel Back Filter to Improve Water Quality in Arid Regions. Front. Earth Sci. 2022, 10, 1006930. [Google Scholar] [CrossRef]
- Ray, C.; Jasperse, J.; Grischek, T. Bank Filtration as Natural Filtration. In Drinking Water Treatment: Focusing on Appropriate Technology and Sustainability; Springer: Dordrecht, The Netherlands, 2011; pp. 93–158. [Google Scholar]
- Kopač, I.; Vremec, M. Induced Riverbank Filtration (IRBF) for Managed Artificial Groundwater Recharge (MAR) in Slovenia. In Water Resources Management in Balkan Countries; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Rossetto, R.; Barbagli, A.; De Filippis, G.; Marchina, C.; Vienken, T.; Mazzanti, G. Importance of the Induced Recharge Term in Riverbank Filtration: Hydrodynamics, Hydrochemical, and Numerical Modelling Investigations. Hydrology 2020, 7, 1–20. [Google Scholar] [CrossRef]
- Gale, I. Dillon. In Strategies for Managed Aquifer Recharge (MAR) in Semi-Arid Areas; United Nations Educational, Scientific and Cultural Organization (UNESCO): Paris, France, 2005. [Google Scholar]
- Umar, D.A.; Ramli, M.F.; Aris, A.Z.; Sulaiman, W.N.A.; Kura, N.U.; Tukur, A.I. An Overview Assessment of the Effectiveness and Global Popularity of Some Methods Used in Measuring Riverbank Filtration. J. Hydrol. 2017, 550, 497–515. [Google Scholar] [CrossRef]
- Wett, B.; Jarosch, H.; Ingerle, K. Flood Induced Infiltration Affecting a Bank Filtrate Well at the River Enns, Austria. J. Hydrol. 2002, 266, 222–234. [Google Scholar] [CrossRef]
- Huang, T.; Pang, Z.; Edmunds, W.M. Soil Profile Evolution Following Land-Use Change: Implications for Groundwater Quantity and Quality. Hydrol. Process. 2013, 27, 1238–1252. [Google Scholar] [CrossRef]
- Ochoa-Tocachi, B.F.; Bardales, J.D.; Antiporta, J.; Pérez, K.; Acosta, L.; Mao, F.; Zulkafli, Z.; Gil-Ríos, J.; Angulo, O.; Grainger, S.; et al. Potential Contributions of Pre-Inca Infiltration Infrastructure to Andean Water Security. Nat. Sustain. 2019, 2, 584–593. [Google Scholar] [CrossRef]
- Kristanto, Y.; Tarigan, S.; June, T.; Wahjunie, E.D.; Sulistyantara, B. Water Regulation Ecosystem Services of Multifunctional Landscape Dominated by Monoculture Plantations. Land 2022, 11, 818. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W.; Gong, C.; Zhao, M.; Franssen, H.J.H.; Brunner, P. Salix Psammophila Afforestations Can Cause a Decline of the Water Table, Prevent Groundwater Recharge and Reduce Effective Infiltration. Sci. Total Environ. 2021, 780, 146336. [Google Scholar] [CrossRef]
- Liu, X.; He, Y.; Sun, S.; Zhang, T.; Luo, Y.; Zhang, L.; Wang, M.; Cheng, L.; Hu, H.; Xu, Y. Restoration of Sand-Stabilizing Vegetation Reduces Deep Percolation of Precipitation in Semi-Arid Sandy Lands, Northern China. Catena 2022, 208, 105728. [Google Scholar] [CrossRef]
- Benegas, L.; Hasselquist, N.; Bargués-Tobella, A.; Malmer, A.; Ilstedt, U. Positive Effects of Scattered Trees on Soil Water Dynamics in a Pasture Landscape in the Tropics. Front. Water 2021, 3, 736824. [Google Scholar] [CrossRef]
- Nagdeve, M.; Paul, P.K.; Zhang, Y.; Singh, R. Continuous Contour Trench (CCT): Understandings of Hydrological Processes after Standardisation of Dimensions and Development of a User-Friendly Software. Soil Tillage Res. 2021, 205, 104792. [Google Scholar] [CrossRef]
- Bremer, L.L.; Wada, C.A.; Medoff, S.; Page, J.; Falinski, K.; Burnett, K.M. Contributions of Native Forest Protection to Local Water Supplies in East Maui. Sci. Total Environ. 2019, 688, 1422–1432. [Google Scholar] [CrossRef]
- Bargués-Tobella, A.; Hasselquist, N.J.; Bazié, H.R.; Bayala, J.; Laudon, H.; Ilstedt, U. Trees in African Drylands Can Promote Deep Soil and Groundwater Recharge in a Future Climate with More Intense Rainfall. Land Degrad. Dev. 2020, 31, 81–95. [Google Scholar] [CrossRef]
- Jiménez-Martínez, J.; Candela, L.; Molinero, J.; Tamoh, K. Groundwater Recharge in Irrigated Semi-Arid Areas: Quantitative Hydrological Modelling and Sensitivity Analysis. Hydrogeol. J. 2010, 18, 1811–1824. [Google Scholar] [CrossRef]
- Riley, D.; Mieno, T.; Schoengold, K.; Brozović, N. The Impact of Land Cover on Groundwater Recharge in the High Plains: An Application to the Conservation Reserve Program. Sci. Total Environ. 2019, 696, 133871. [Google Scholar] [CrossRef] [PubMed]
- Rains, M.C. Water Sources and Hydrodynamics of Closed-Basin Depressions, Cook Inlet Region, Alaska. Wetlands 2011, 31, 377–387. [Google Scholar] [CrossRef]
- Adane, Z.A.; Gates, J.B. Determining the Impacts of Experimental Forest Plantation on Groundwater Recharge in the Nebraska Sand Hills (USA) Using Chloride and Sulfate. Hydrogeol. J. 2015, 23, 81–94. [Google Scholar] [CrossRef]
- Tuswa, N.; Bugan, R.D.H.; Mapeto, T.; Jovanovic, N.; Gush, M.; Kapangaziwiri, E.; Dzikiti, S.; Kanyerere, T.; Xu, Y. The Impacts of Commercial Plantation Forests on Groundwater Recharge: A Case Study from George (Western Cape, South Africa). Phys. Chem. Earth 2019, 112, 187–199. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Nakamura, K.; Horino, H.; Kawashima, S. Assessment of Factors Influencing Groundwater-Level Change Using Groundwater Flow Simulation, Considering Vertical Infiltration from Rice-Planted and Crop-Rotated Paddy Fields in Japan. Hydrogeol. J. 2014, 22, 1841–1855. [Google Scholar] [CrossRef]
- Sudmeyer, R.A.; Goodreid, A. Short-Rotation Woody Crops: A Prospective Method for Phytoremediation of Agricultural Land at Risk of Salinisation in Southern Australia? Ecol. Eng. 2007, 29, 350–361. [Google Scholar] [CrossRef]
- Clark, B.; DeFries, R.; Krishnaswamy, J. India’s Commitments to Increase Tree and Forest Cover: Consequences for Water Supply and Agriculture Production within the Central Indian Highlands. Water 2021, 13, 959. [Google Scholar] [CrossRef]
- Steenbergen, F.; Lawrence, P.; Wallingford, H.R.; Salman, M.; Faurès, J.-M.; Anderson, I.M.; Nawaz, K.; Ratsey, J. Guidelines on Spate Irrigation FAO Irrigation and Drainage; FAO Irrigation and Drainage: Rome, Italy, 2010. [Google Scholar]
- Borg, H.; Stoneman, G.; Ward, C. The Effect of Logging and Regeneration on Groundwater, Streamflow and Stream Salinity in the Southern Forest of Western Australia. J. Hydrol. 1988, 99, 253–270. [Google Scholar] [CrossRef]
- Schulz, S.; Becker, R.; Richard-Cerda, J.C.; Usman, M.; aus der Beek, T.; Merz, R.; Schüth, C. Estimating Water Balance Components in Irrigated Agriculture Using a Combined Approach of Soil Moisture and Energy Balance Monitoring, and Numerical Modelling. Hydrol. Process. 2021, 35, e14077. [Google Scholar] [CrossRef]
- Yifru, B.; Kim, M.G.; Chang, S.W.; Lee, J.; Chung, I.M. Assessment of the Effect of Sand Dam on Groundwater Level: A Case Study in Chuncheon, South Korea. J. Eng. Geol. 2020, 30, 119–129. [Google Scholar] [CrossRef]
- Patel, P.M.; Saha, D.; Shah, T. Sustainability of Groundwater through Community-Driven Distributed Recharge: An Analysis of Arguments for Water Scarce Regions of Semi-Arid India. J. Hydrol. Reg. Stud. 2020, 29, 100680. [Google Scholar] [CrossRef]
- Cardella Dammeyer, H.; Schwinning, S.; Schwartz, B.F.; Moore, G.W. Effects of Juniper Removal and Rainfall Variation on Tree Transpiration in a Semi-Arid Karst: Evidence of Complex Water Storage Dynamics. Hydrol. Process. 2016, 30, 4568–4581. [Google Scholar] [CrossRef]
- Bam, E.K.P.; Ireson, A.M.; van der Kamp, G.; Hendry, J.M. Ephemeral Ponds: Are They the Dominant Source of Depression-Focused Groundwater Recharge? Water Resour. Res. 2020, 56, e2019WR026640. [Google Scholar] [CrossRef]
- Xu, Q.; Zhao, K.; Liu, F.; Peng, D.; Chen, W. Effects of Land Use on Groundwater Recharge of a Loess Terrace under Long-Term Irrigation. Sci. Total Environ. 2021, 751, 142340. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Leininger, T.D.; Panda, S.S.; Zipperer, W.C.; Stroope, T.L. Contributions to Groundwater from National Forest Lands in the Mississippi Embayment: A Century-Long Simulation. Water Pract. Technol. 2021, 16, 83–95. [Google Scholar] [CrossRef]
- Soriano, M.A.; Herath, S. Quantifying the Role of Traditional Rice Terraces in Regulating Water Resources: Implications for Management and Conservation Efforts. Agroecol. Sustain. Food Syst. 2018, 42, 885–910. [Google Scholar] [CrossRef]
- Silveira, L.; Gamazo, P.; Alonso, J.; Martínez, L. Effects of Afforestation on Groundwater Recharge and Water Budgets in the Western Region of Uruguay. Hydrol. Process. 2016, 30, 3596–3608. [Google Scholar] [CrossRef]
- Mattos, T.S.; de Oliveira, P.T.S.; Lucas, M.C.; Wendland, E. Groundwater Recharge Decrease Replacing Pasture by Eucalyptus Plantation. Water 2019, 11, 1213. [Google Scholar] [CrossRef]
- Eisma, J.A.; Merwade, V.M. Investigating the Environmental Response to Water Harvesting Structures: A Field Study in Tanzania. Hydrol. Earth Syst. Sci. 2020, 24, 1891–1906. [Google Scholar] [CrossRef]
- Grajewski, S.; Miler, A.T.; Okoński, B. Seasonal Variability of Ground Water Levels in the Puszcza Zielonka Forest. J. Water Land Dev. 2014, 21, 55–62. [Google Scholar] [CrossRef]
- Schenk, E.R.; O’Donnell, F.; Springer, A.E.; Stevens, L.E. The Impacts of Tree Stand Thinning on Groundwater Recharge in Aridland Forests. Ecol. Eng. 2020, 145, 105701. [Google Scholar] [CrossRef]
- Anzai, T.; Kitamura, Y.; Shimizu, K. The Influence of Seepage from Canals and Paddy Fields on the Groundwater Level of Neighboring Rotation Cropping Fields: A Case Study from the Lower Ili River Basin, Kazakhstan. Paddy Water Environ. 2014, 12, 387–392. [Google Scholar] [CrossRef]
- Somers, L.D.; McKenzie, J.M.; Zipper, S.C.; Mark, B.G.; Lagos, P.; Baraer, M. Does Hillslope Trenching Enhance Groundwater Recharge and Baseflow in the Peruvian Andes? Hydrol. Process. 2018, 32, 318–331. [Google Scholar] [CrossRef]
- Dzikiti, S.; Schachtschneider, K.; Naiken, V.; Gush, M.; Moses, G.; Le Maitre, D.C. Water Relations and the Effects of Clearing Invasive Prosopis Trees on Groundwater in an Arid Environment in the Northern Cape, South Africa. J. Arid. Environ. 2013, 90, 103–113. [Google Scholar] [CrossRef]
- Jiao, P.; Hu, S.-J. Estimation of Evapotranspiration in the Desert–Oasis Transition Zone Using the Water Balance Method and Groundwater Level Fluctuation Method—Taking the Haloxylon Ammodendron Forest at the Edge of the Gurbantunggut Desert as an Example. Water 2023, 15, 1210. [Google Scholar] [CrossRef]
- Nan, T.; Cao, W. Effect of Ecological Water Supplement on Groundwater Restoration in the Yongding River Based on Multi-Model Linkage. Water 2023, 15, 374. [Google Scholar] [CrossRef]
- Benyon, R.G.; Doody, T.M.; Lawson, J.; Hay, A.; Myers, B. Effects of Climate Variability and Change on Groundwater Impacts of Forestry Plantations. Hydrol. Process. 2024, 38, e15213. [Google Scholar] [CrossRef]
- Sappa, G.; Vitale, S.; Ferranti, F.; Barbieri, M. Limpopo National Park (Mozambico): Groundwater Assessment as a Tool for a Sustainable Management of the Area. Env. Earth Sci. 2023, 82, 461. [Google Scholar] [CrossRef]
- Bali, K.M.; Mohamed, A.Z.; Begna, S.; Wang, D.; Putnam, D.; Dahlke, H.E.; Eltarabily, M.G. The Use of HYDRUS-2D to Simulate Intermittent Agricultural Managed Aquifer Recharge (Ag-MAR) in Alfalfa in the San Joaquin Valley. Agric. Water Manag. 2023, 282, 108296. [Google Scholar] [CrossRef]
- Fennell, J.; Soulsby, C.; Wilkinson, M.E.; Daalmans, R.; Geris, J. Assessing the Role of Location and Scale of Nature Based Solutions for the Enhancement of Low Flows. Int. J. River Basin Manag. 2023, 21, 743–758. [Google Scholar] [CrossRef]
- Khardi, Y.; Lacombe, G.; Dewandel, B.; Hammani, A.; Taky, A.; Bouarfa, S. Conjunctive Use of Floodwater Harvesting for Managed Aquifer Recharge and Irrigation on a Date Farm in Morocco. Irrig. Drain. 2024, 73, 1424–1436. [Google Scholar] [CrossRef]
- Sahin, Y.; Tayfur, G. 3D Modelling of Surface Spreading and Underground Dam Groundwater Recharge: Egri Creek Subbasin, Turkey. Env. Monit. Assess. 2023, 195, 688. [Google Scholar] [CrossRef] [PubMed]
- Nawale, S.; Mategaonkar, M. Groundwater Flow Simulation for Artificial Recharge: A GIS, Remote Sensing, and MODFLOW Integration. Water Pract. Technol. 2024, 19, 2136–2157. [Google Scholar] [CrossRef]
- Blango, M.M.; Cooke, R.A.C.; Moiwo, J.P.; Sawyerr, P.A.; Kangoma, E. Rainwater Harvesting for Supplemental Irrigation under Tropical Inland Valley Swamp Conditions. Irrig. Drain. 2020, 69, 1095–1105. [Google Scholar] [CrossRef]
- Yadav, B.; Patidar, N.; Sharma, A.; Panigrahi, N.; Sharma, R.K.; Loganathan, V.; Krishan, G.; Singh, J.; Kumar, S.; Parker, A. Assessment of Traditional Rainwater Harvesting System in Barren Lands of a Semi-Arid Region: A Case Study of Rajasthan (India). J. Hydrol. Reg. Stud. 2022, 42, 101149. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, J.; Duan, L. Simulation of Irrigation-Induced Groundwater Recharge in an Arid Area of China. Hydrogeol. J. 2021, 29, 525–540. [Google Scholar] [CrossRef]
- Shamsuddin, M.K.N.; Sulaiman, W.N.A.; Ramli, M.F.; Mohd Kusin, F.; Samuding, K. Assessments of Seasonal Groundwater Recharge and Discharge Using Environmental Stable Isotopes at Lower Muda River Basin, Malaysia. Appl. Water Sci. 2018, 8, 120. [Google Scholar] [CrossRef]
- Perera, M.P. Shallow Groundwater Behavior of Tank Cascade Areas in Sri Lanka: A Study Based on Geo-Spatial Technology. In Proceedings of the In Proceedings of the Seventh UGIT International Conference on “Climate Change, Disaster Risk Reduction, and Sustainable Development through Geospatial Technologies” (CDSGeo-2018), Kandy, Sri Lanka, 24 November 2018. [Google Scholar]
- Hut, R.; Ertsen, M.; Joeman, N.; Vergeer, N.; Winsemius, H.; van de Giesen, N. Effects of Sand Storage Dams on Groundwater Levels with Examples from Kenya. Phys. Chem. Earth 2008, 33, 56–66. [Google Scholar] [CrossRef]
- Dashora, Y.; Dillon, P.; Maheshwari, B.; Soni, P.; Dashora, R.; Davande, S.; Purohit, R.C.; Mittal, H.K. A Simple Method Using Farmers’ Measurements Applied to Estimate Check Dam Recharge in Rajasthan, India. Sustain. Water Resour. Manag. 2018, 4, 301–316. [Google Scholar] [CrossRef]
- Ritchie, H.; Eisma, J.A.; Parker, A. Sand Dams as a Potential Solution to Rural Water Security in Drylands: Existing Research and Future Opportunities. Front. Water 2021, 3, 651954. [Google Scholar] [CrossRef]
- Yifru, B.A.; Kim, M.G.; Lee, J.W.; Kim, I.H.; Chang, S.W.; Chung, I.M. Water Storage in Dry Riverbeds of Arid and Semi-arid Regions: Overview, Challenges, and Prospects of Sand Dam Technology. Sustainability 2021, 13, 5905. [Google Scholar] [CrossRef]
- Eisma, J.A.; Merwade, V. A Data-Driven Approach to Assessing the Impact of Water Harvesting Structures on Regional Water Storage in East Africa. J. Hydroinformatics 2021, 23, 352–367. [Google Scholar] [CrossRef]
- Agoramoorthy, G.; Chaudhary, S.; Chinnasamy, P.; Hsu, M.J. Harvesting River Water through Small Dams Promote Positive Environmental Impact. Env. Monit. Assess. 2016, 188, 645. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Piton, G.; Yu, Y.; Castillo, C.; Antonio Zema, D. Check Dams Worldwide: Objectives, Functions, Effectiveness and Undesired Effects. CATENA 2021, 204, 105390. [Google Scholar] [CrossRef]
- Cooper, R. Nature-Based Solutions and Water Security; Institute of Development Studies: Brighton, UK, 2020. [Google Scholar]
- Ilstedt, U.; Bargués Tobella, A.; Bazié, H.R.; Bayala, J.; Verbeeten, E.; Nyberg, G.; Sanou, J.; Benegas, L.; Murdiyarso, D.; Laudon, H.; et al. Intermediate Tree Cover Can Maximize Groundwater Recharge in the Seasonally Dry Tropics. Sci. Rep. 2016, 6, 21930. [Google Scholar] [CrossRef]
- Adelana, S.M.; Dresel, P.E.; Hekmeijer, P.; Zydor, H.; Webb, J.A.; Reynolds, M.; Ryan, M. A Comparison of Streamflow, Salt and Water Balances in Adjacent Farmland and Forest Catchments in South-Western Victoria, Australia. Hydrol. Process. 2015, 29, 1630–1643. [Google Scholar] [CrossRef]
- Fan, J.; Oestergaard, K.T.; Guyot, A.; Lockington, D.A. Estimating Groundwater Recharge and Evapotranspiration from Water Table Fluctuations under Three Vegetation Covers in a Coastal Sandy Aquifer of Subtropical Australia. J. Hydrol. 2014, 519, 1120–1129. [Google Scholar] [CrossRef]
- van Dijk, A.I.J.M.; Hairsine, P.B.; Arancibia, J.P.; Dowling, T.I. Reforestation, Water Availability and Stream Salinity: A Multi-Scale Analysis in the Murray-Darling Basin, Australia. For. Ecol. Manag. 2007, 251, 94–109. [Google Scholar] [CrossRef]
- Chausson, A.; Turner, B.; Seddon, D.; Chabaneix, N.; Girardin, C.A.J.; Kapos, V.; Key, I.; Roe, D.; Smith, A.; Woroniecki, S.; et al. Mapping the Effectiveness of Nature-Based Solutions for Climate Change Adaptation. Glob. Change Biol. 2020, 26, 6134–6155. [Google Scholar] [CrossRef]
- Gujja, B.; Dalai, S.; Shaik, H.; Goud, V. Adapting to Climate Change in the Godavari River Basin of India by Restoring Traditional Water Storage Systems. Clim. Dev. 2009, 1, 229–240. [Google Scholar] [CrossRef]
- Staes, J.; Rubarenzya, M.H.; Meire, P.; Willems, P. Modelling Hydrological Effects of Wetland Restoration: A Differentiated View. Water Sci. Technol. 2009, 59, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Gratzer, M.C.; Davidson, G.R.; O’Reilly, A.M.; Rigby, J.R. Groundwater Recharge from an Oxbow Lake-Wetland System in the Mississippi Alluvial Plain. Hydrol. Process. 2020, 34, 1359–1370. [Google Scholar] [CrossRef]
- Yin, D.; Chen, Y.; Jia, H.; Wang, Q.; Chen, Z.; Xu, C.; Li, Q.; Wang, W.; Yang, Y.; Fu, G.; et al. Sponge City Practice in China: A Review of Construction, Assessment, Operational and Maintenance. J. Clean. Prod. 2021, 280, 124963. [Google Scholar] [CrossRef]
- Bullock, A.; Acreman, M. The Role of Wetlands in the Hydrological Cycle. Hydrol. Earth Syst. Sci. 2003, 7, 358–389. [Google Scholar] [CrossRef]
- Acharya, G.; Barbier, E.B. Valuing Groundwater Recharge through Agricultural Production in the Hadejia-Nguru Wetlands in Northern Nigeria. Agric. Econ. 2000, 22, 247–259. [Google Scholar] [CrossRef]
- van der Kamp, G.; Hayashi, M. The Groundwater Recharge Function of Small Wetlands in the Semi-Arid Northern Prairies. Great Plains Res. 1998, 8, 39–56. [Google Scholar]
- Thorslund, J.; Jarsjo, J.; Jaramillo, F.; Jawitz, J.W.; Manzoni, S.; Basu, N.B.; Chalov, S.R.; Cohen, M.J.; Creed, I.F.; Goldenberg, R.; et al. Wetlands as Large-Scale Nature-Based Solutions: Status and Challenges for Research, Engineering and Management. Ecol. Eng. 2017, 108, 489–497. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Reedy, R.C.; Stonestrom, D.A.; Prudic, D.E.; Dennehy, K.F. Impact of Land Use and Land Cover Change on Groundwater Recharge and Quality in the Southwestern US. Glob. Change Biol. 2005, 11, 1577–1593. [Google Scholar] [CrossRef]
- Chinnasamy, P.; Srivastava, A. Revival of Traditional Cascade Tanks for Achieving Climate Resilience in Drylands of South India. Front. Water 2021, 3, 639637. [Google Scholar] [CrossRef]
- Dakhlalla, A.O.; Parajuli, P.B.; Ouyang, Y.; Schmitz, D.W. Evaluating the Impacts of Crop Rotations on Groundwater Storage and Recharge in an Agricultural Watershed. Agric. Water Manag. 2016, 163, 332–343. [Google Scholar] [CrossRef]
- Leduc, C.; Favreau, G.; Schroeter, P. Long-Term Rise in a Sahelian Water-Table: The Continental Terminal in South-West Niger. J. Hydrol. 2001, 243, 43–54. [Google Scholar] [CrossRef]
- Boumis, G.; Kumar, M.; Nimmo, J.R.; Clement, T.P. Influence of Shallow Groundwater Evapotranspiration on Recharge Estimation Using the Water Table Fluctuation Method. Water Resour. Res. 2022, 58, e2022WR032073. [Google Scholar] [CrossRef]
- Crosbie, R.S.; Doble, R.C.; Turnadge, C.; Taylor, A.R. Constraining the Magnitude and Uncertainty of Specific Yield for Use in the Water Table Fluctuation Method of Estimating Recharge. Water Resour. Res. 2019, 55, 7343–7361. [Google Scholar] [CrossRef]
- Liu, G.; Wilson, B.B.; Bohling, G.C.; Whittemore, D.O.; Butler Jr, J.J. Estimation of Specific Yield for Regional Groundwater Models: Pitfalls, Ramifications, and a Promising Path Forward. Water Resour. Res. 2022, 58, e2021WR030761. [Google Scholar] [CrossRef]
- Silvestro, F.; Gabellani, S.; Rudari, R.; Delogu, F.; Laiolo, P.; Boni, G. Uncertainty Reduction and Parameter Estimation of a Distributed Hydrological Model with Ground and Remote-Sensing Data. Hydrol. Earth Syst. Sci. 2015, 19, 1727–1751. [Google Scholar] [CrossRef]
- Stisen, S.; McCabe, M.F.; Refsgaard, J.C.; Lerer, S.; Butts, M.B. Model Parameter Analysis Using Remotely Sensed Pattern Information in a Multi-Constraint Framework. J. Hydrol. 2011, 409, 337–349. [Google Scholar] [CrossRef]
- Cerlini, P.B.; Silvestri, L.; Meniconi, S.; Brunone, B. Simulation of the Water Table Elevation in Shallow Unconfined Aquifers by Means of the ERA5 Soil Moisture Dataset: The Umbria Region Case Study. Earth Interact. 2021, 25, 15–32. [Google Scholar] [CrossRef]
- Rossman, N.R.; Zlotnik, V.A.; Rowe, C.M. Simulating Lake and Wetland Areal Coverage under Future Groundwater Recharge Projections: The Nebraska Sand Hills System. J. Hydrol. 2019, 576, 185–196. [Google Scholar] [CrossRef]
- Liu, Y.; Kumar, M. Role of Meteorological Controls on Interannual Variations in Wet-Period Characteristics of Wetlands. Water Resour. Res. 2016, 52, 5056–5074. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Y.; Kumar, M. Using Nested Discretization for a Detailed yet Computationally Efficient Simulation of Local Hydrology in a Distributed Hydrologic Model. Sci. Rep. 2018, 8, 5785. [Google Scholar] [CrossRef]
- Park, J.; Kumar, M.; Lane, C.R.; Basu, N.B. Seasonality of Inundation in Geographically Isolated Wetlands across the United States. Environ. Res. Lett. 2022, 17, 054005. [Google Scholar] [CrossRef] [PubMed]
- Havril, T.; Tóth, Á.; Molson, J.W.; Galsa, A.; Mádl-Szőnyi, J. Impacts of Predicted Climate Change on Groundwater Flow Systems: Can Wetlands Disappear Due to Recharge Reduction? J. Hydrol. 2018, 563, 1169–1180. [Google Scholar] [CrossRef]
- Zhu, J.; Sun, G.; Li, W.; Zhang, Y.; Miao, G.; Noormets, A.; McNulty, S.G.; King, J.S.; Kumar, M.; Wang, X. Modeling the Potential Impacts of Climate Change on the Water Table Level of Selected Forested Wetlands in the Southeastern United States. Hydrol. Earth Syst. Sci. 2017, 21, 6289–6305. [Google Scholar] [CrossRef]
- Wang, M.; Wang, H.; Qin, D.; Lu, C.; Li, Y. Modelling the Artificial Recharge of a Wetland and Its Influence on Regional Hydrological Process in China: A Case Study. Ecohydrology 2011, 4, 589–596. [Google Scholar] [CrossRef]
- Haan, C. Parametric Uncertainty in Hydrologic Modeling. Trans. ASAE 1989, 32, 137–0146. [Google Scholar] [CrossRef]
- Gupta, A.; Govindaraju, R.S. Propagation of Structural Uncertainty in Watershed Hydrologic Models. J. Hydrol. 2019, 575, 66–81. [Google Scholar] [CrossRef]
- Parasuraman, K.; Elshorbagy, A. Toward Improving the Reliability of Hydrologic Prediction: Model Structure Uncertainty and Its Quantification Using Ensemble-Based Genetic Programming Framework. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- McMillan, H.K.; Westerberg, I.K.; Krueger, T. Hydrological Data Uncertainty and Its Implications. WIREs Water 2018, 5, e1319. [Google Scholar] [CrossRef]
- Kumar, M.; Duffy, C. Exploring the Role of Domain Partitioning on Efficiency of Parallel Distributed Hydrologic Model Simulations. J. Hydrogeol. Hydrol. Eng. 2015, 12, 2. [Google Scholar]
- Kollet, S.J.; Maxwell, R.M.; Woodward, C.S.; Smith, S.; Vanderborght, J.; Vereecken, H.; Simmer, C. Proof of Concept of Regional Scale Hydrologic Simulations at Hydrologic Resolution Utilizing Massively Parallel Computer Resources. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Healy, R.W.; Cook, P.G. Choosing Appropriate Techniques for Quantifying Groundwater Recharge. Hydrogeol. J. 2002, 10, 18–39. [Google Scholar] [CrossRef]
- Allison, G.B.; Hughes, M.W. The Use of Environmental Chloride and Tritium to Estimate Total Recharge to an Unconfined Aquifer. Soil Res. 1978, 16, 181–195. [Google Scholar] [CrossRef]
- Reichert, J.M.; Rodrigues, M.F.; Peláez, J.J.Z.; Lanza, R.; Minella, J.P.G.; Arnold, J.G.; Cavalcante, R.B.L. Water Balance in Paired Watersheds with Eucalyptus and Degraded Grassland in Pampa Biome. Agric. For. Meteorol. 2017, 237–238, 282–295. [Google Scholar] [CrossRef]
- Rodrigues Capítulo, L.; Carretero, S.C.; Kruse, E.E. Impact of Afforestation on Coastal Aquifer Recharge. Case Study: Eastern Coast of the Province of Buenos Aires, Argentina. Environ. Earth Sci. 2018, 77, 74. [Google Scholar] [CrossRef]
- Krishnaswamy, J.; Bonell, M.; Venkatesh, B.; Purandara, B.K.; Rakesh, K.N.; Lele, S.; Kiran, M.C.; Reddy, V.; Badiger, S. The Groundwater Recharge Response and Hydrologic Services of Tropical Humid Forest Ecosystems to Use and Reforestation: Support for the “Infiltration-Evapotranspiration Trade-off Hypothesis”. J. Hydrol. 2013, 498, 191–209. [Google Scholar] [CrossRef]
- Kumar, P.; Debele, S.E.; Sahani, J.; Rawat, N.; Marti-Cardona, B.; Alfieri, S.M.; Basu, B.; Basu, A.S.; Bowyer, P.; Charizopoulos, N.; et al. An Overview of Monitoring Methods for Assessing the Performance of Nature-Based Solutions against Natural Hazards. Earth-Sci. Rev. 2021, 217, 103603. [Google Scholar] [CrossRef]
- Jaafarzadeh, M.S.; Tahmasebipour, N.; Haghizadeh, A.; Pourghasemi, H.R.; Rouhani, H. Groundwater Recharge Potential Zonation Using an Ensemble of Machine Learning and Bivariate Statistical Models. Sci. Rep. 2021, 11, 5587. [Google Scholar] [CrossRef]
- Crosbie, R.S.; Pickett, T.; Mpelasoka, F.S.; Hodgson, G.; Charles, S.P.; Barron, O.V. An Assessment of the Climate Change Impacts on Groundwater Recharge at a Continental Scale Using a Probabilistic Approach with an Ensemble of GCMs. Clim. Change 2013, 117, 41–53. [Google Scholar] [CrossRef]
- Reinecke, R.; Müller Schmied, H.; Trautmann, T.; Andersen, L.S.; Burek, P.; Flörke, M.; Gosling, S.N.; Grillakis, M.; Hanasaki, N.; Koutroulis, A.; et al. Uncertainty of Simulated Groundwater Recharge at Different Global Warming Levels: A Global-Scale Multi-Model Ensemble Study. Hydrol. Earth Syst. Sci. 2021, 25, 787–810. [Google Scholar] [CrossRef]
- Molina, J.-L.; Pulido-Velázquez, D.; García-Aróstegui, J.L.; Pulido-Velázquez, M. Dynamic Bayesian Networks as a Decision Support Tool for Assessing Climate Change Impacts on Highly Stressed Groundwater Systems. J. Hydrol. 2013, 479, 113–129. [Google Scholar] [CrossRef]
- Manzione, R.L.; Castrignanò, A. A Geostatistical Approach for Multi-Source Data Fusion to Predict Water Table Depth. Sci. Total Environ. 2019, 696, 133763. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Bhatt, G.; Duffy, C.J. An Efficient Domain Decomposition Framework for Accurate Representation of Geodata in Distributed Hydrologic Models. Int. J. Geogr. Inf. Sci. 2009, 23, 1569–1596. [Google Scholar] [CrossRef]
- Hublart, P.; Ruelland, D.; Dezetter, A.; Jourde, H. Reducing Structural Uncertainty in Conceptual Hydrological Modelling in the Semi-Arid Andes. Hydrol. Earth Syst. Sci. 2015, 19, 2295–2314. [Google Scholar] [CrossRef]
- Saavedra, D.; Mendoza, P.A.; Addor, N.; Llauca, H.; Vargas, X. A Multi-Objective Approach to Select Hydrological Models and Constrain Structural Uncertainties for Climate Impact Assessments. Hydrol. Process. 2022, 36, e14446. [Google Scholar] [CrossRef]
- Panagopoulos, Y.; Dimitriou, E. A Large-Scale Nature-Based Solution in Agriculture for Sustainable Water Management: The Lake Karla Case. Sustainability 2020, 12, 6761. [Google Scholar] [CrossRef]
- Martire, S.; Enyedi, E.; Breil, M.; Budding-Polo, M.; Ballinas, D.Z.; Tonks, E.; Vikstrom, S.; Turunen, V. Understanding the Scaling Potential of Nature-Based Solutions; PublisherThe European Topic Centre on Climate change adaptation and LULUCF (ETC-CA): Amsterdam, The Netherlands, 2022. [Google Scholar]
- Fennell, J.; Soulsby, C.; Wilkinson, M.E.; Daalmans, R.; Geris, J. Time Variable Effectiveness and Cost-Benefits of Different Nature-Based Solution Types and Design for Drought and Flood Management. Nat.-Based Solut. 2023, 3, 100050. [Google Scholar] [CrossRef]
- Qiu, Y.; Schertzer, D.; Tchiguirinskaia, I. Assessing Cost-Effectiveness of Nature-Based Solutions Scenarios: Integrating Hydrological Impacts and Life Cycle Costs. J. Clean. Prod. 2021, 329, 129740. [Google Scholar] [CrossRef]
- Maliva, R.G. Economics of Managed Aquifer Recharge. Water 2014, 6, 1257–1279. [Google Scholar] [CrossRef]
- Gómez Martín, E.; Máñez Costa, M.; Egerer, S.; Schneider, U.A. Assessing the Long-Term Effectiveness of Nature-Based Solutions under Different Climate Change Scenarios. Sci. Total Environ. 2021, 794, 148515. [Google Scholar] [CrossRef]
- Nika, C.E.; Gusmaroli, L.; Ghafourian, M.; Atanasova, N.; Buttiglieri, G.; Katsou, E. Nature-Based Solutions as Enablers of Circularity in Water Systems: A Review on Assessment Methodologies, Tools and Indicators. Water Res. 2020, 183, 115988. [Google Scholar] [CrossRef]
NbS Type | Country | Hydrogeology/Hydrology | NbS’s Main Target | Recharge | Effect Measurement Method | Year | Source |
---|---|---|---|---|---|---|---|
Sand dam | Kenya | Arid with erratic rainfall | livestock, irrigation | Improved | Groundwater level comparison | 2013 | [64] |
Induced bank filtration | Slovenia | River with stable flow throughout the year | Groundwater recharge | Improved | Groundwater level comparison | 2020 | [59] |
UTFI | India | Alluvial aquifer | Flood control | Improved | Relative mound height | 2020 | [43] |
Infiltration pond | Iran | Overexploited aquifer | Mitigating drawdown | Improved | Mass balance/field measurement | 2004 | [49] |
Infiltration system | Peru | Arid coastal region | Runoff harvesting | Improved | Tracer experiments | 2019 | [65] |
UTFI | India | Flood control and recharge | Improved | Hydrologic simulation | 2018 | [45] | |
Forest patches | Indonesia | Tropical lowland/sandy clay loam soil | Ecosystem regulation | Improved | Hydrological model (SWAT) | 2022 | [66] |
Trees | China | Semi-arid | Desertification prevention | Reduced | Field measurement/lysimeters | 2021 | [67] |
Dune vegetation | China | Semi-arid region with deep aquifer | Erosion control | Reduced | Field measurement/lysimeters | 2022 | [68] |
Trees | Guatemala | Tropical forestry pasture/scattered native trees | Erosion control | Improved | Isotopic measurement | 2021 | [69] |
Infiltration pond | Iran | Alluvial aquifer in arid region | Flood control | Improved | Observed data from wells | 2021 | [47] |
Paddy field | Japan | Confined alluvial aquifer | Improving farming system | Improved | Field measurement | 2013 | [48] |
Infiltration pond | Netherlands | Coastal aquifer in dune area | Salt intrusion reduction | Improved | Insights of the scheme operators | 2021 | [42] |
Continuous contour trench | India | Semi-arid watershed | Soil conservation | Improved | Hydrological modeling | 2021 | [70] |
Trees | USA | Conserving natural forest | Improved | Water balance | 2019 | [71] | |
Trees | Burkina Faso | Semi-arid dryland with high rainfall condition | Agroforestry | Improved | Isotropic analysis | 2020 | [72] |
Crop rotation | Spain | Semi-arid region | Soil fertility | Improved | Modeling/Water balance | 2010 | [73] |
Grassland | USA | Unconfined aquifer | Soil erosion control | Reduced | Water table fluctuation (WTF) | 2019 | [74] |
Ponds | USA | Intrusive rocks with moraine deposits | Conservation measure | Improved | Water balance | 2011 | [75] |
Tree | USA | Afforestation | Declined | Chemical tracers | 2015 | [76] | |
Tree | South Africa | Sandstone/shale rock aquifer in subtropics | Conserving natural forests | Improved | Modeling using Hydrus 2D | 2019 | [77] |
Crop rotation | Japan | Upland crop-rotated paddy fields/sandy aquifer | Improving farming system | Declined | Modeling using Hydrus 1D | 2014 | [78] |
Phase farming with trees | Australia | Mediterranean/precipitation in growing seasons | Improving farming system | Declined | Numerical model | 2006 | [79] |
UTFI | Thailand | Shallow alluvial aquifer | Flood control | Improved | Long-term measurement | 2012 | [44] |
Trees | India | Highlands agro-ecological zone | Afforestation | Variable | Field measurement/modeling | 2021 | [80] |
Infiltration pond | Spain | Alluvial aquifer prone to salt intrusion | Groundwater recharge | Low rate | ERT survey | 2020 | [52] |
Bank filtration | Italy | Sand/gravel aquifer | Groundwater recharge | Improved | Numerical modeling | 2020 | [60] |
Spate irrigation | Yemen | Unconfined, coastal quaternary aquifers | Irrigation | Improved | Water balance | 2010 | [81] |
Trees | Australia | Logging and regeneration | Variable | Groundwater level | 1988 | [82] | |
Crop rotation | Pakistan | Arid region | Regenerative farming | Improved | Energy balance/modeling | 2021 | [83] |
Sand dams | South Korea | Storage of ephemeral river | Improved | Numerical model (MODFLOW) | 2020 | [84] | |
MAR | India | Semi-arid region with hard rock basalt aquifer | Groundwater recharge | Improved | Water table fluctuation | 2020 | [85] |
Forest | USA | Karst aquifer | Forest management | Improved | Isotopic analysis | 2016 | [86] |
Wetlands | Canada | Prairie regions | Eco-change tracking | Improved | Isotropic analysis | 2020 | [87] |
Terraces flood irrigation | China | Loess area in a semi-arid region | Erosion control | Improved | ERT survey, field measurement | 2021 | [88] |
National forests | USA | Mixed hydrogeological unit | Conservation measure | Variable | Hydrologic simulations | 2021 | [89] |
Traditional rice terraces | Philippines | Wet region with high annual precipitation | Sustainable farming | Improved | Long-term field measurements | 2018 | [90] |
Afforestation | Uruguay | Temperate region with shallow aquifer | Forest expansion | Variable | Hydrograph separation/WTF | 2016 | [91] |
Eucalyptus Plantation | Brazil | Unconfined aquifer with sandstone layers | Forest expansion | Declined | Water table fluctuation | 2019 | [92] |
Sand dams | Tanzania | Semi-arid region | Groundwater recharge | Improved | Groundwater level | 2020 | [93] |
Forest | Poland | Clayey sand aquifer in a compacted forest area | Conservation measure | Variable | Water table fluctuation | 2014 | [94] |
Forest management | USA | Arid land forests | Wildfire suppression | Improved | Process and statistical modeling | 2020 | [95] |
Paddy fields/crop rotation | Kazakhstan | Arid region | Improved irrigation | Improved | Groundwater table fluctuation | 2014 | [96] |
Hillslope trench | Peru | Steep alpine grassland with seasonal rainfall | Glacier retreat adaptation | Improved | Hydrological models | 2018 | [97] |
Trees | South Africa | Alluvium aquifer in arid region | Conservation measures | Declined | Groundwater level | 2013 | [98] |
Forest | China | Temperate desert, desert–oasis transition zone | Conservation measures | Declined | Water balance/measurement | 2023 | [99] |
MAR | China | Phreatic aquifer with coarse gravel soil | Groundwater recharge | Improved | Process- and data-based models | 2023 | [100] |
Forestry plantation | Australia | Undulating coastal plain of marine origin | Conservation measures | Reduced | Empirical models | 2024 | [101] |
Biodiversity conservation | Mozambique | Gently undulating terrain with tributary streams | Conservation measures | Improved | Hydrogeological inverse budget | 2023 | [102] |
MAR | USA | Alluvium floodplain with well-drained soil | Groundwater recharge | Improved | Numerical modeling (Hydrus) | 2023 | [103] |
Flow path interception | UK | Poorly draining soil with lower water storage | Runoff attenuation | Improved | Hydrological mode (MIKE-SHE) | 2022 | [104] |
MAR | Morocco | Alluvium and underlying fractured aquifers with rare but intense rainfall | Groundwater recharge and floodwater harvesting | Improved | Measurement of piezometric variations in groundwater table | 2024 | [105] |
Underground dam | Turkey | Alluvium aquifer | Groundwater recharge | Improved | Numerical modeling | 2023 | [106] |
MAR | India | Basaltic and alluvium aquifer | Groundwater recharge | Improved | Numerical modeling | 2024 | [107] |
In-channel modification | Sierra Leone | Inland valley swamp | Rainwater harvesting | Improved | Field measurement | 2020 | [108] |
MAR | India | Semi-arid region with sandy/loamy soil | Groundwater recharge | Improved | Numerical modeling | 2022 | [109] |
Flood irrigation | China | Closed-drainage depression in arid region | Groundwater recharge | Improved | Numerical modeling | 2021 | [110] |
Wetland | Australia | Semi-arid and suburban area | Stormwater management | Improved | Isotopic measurements | 2017 | [36] |
Riverbank filtration | Malaysia | Shallow alluvial aquifer | Groundwater recharge | Improved | Isotopic measurement | 2018 | [111] |
Cascade tanks | Sri Lanka | Alluvium aquifer on weathered bedrock | Storing runoff | Improved | Water table fluctuation | 2018 | [112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kebede, M.M.; Kumar, M.; Mekonnen, M.M.; Clement, T.P. Enhancing Groundwater Recharge Through Nature-Based Solutions: Benefits and Barriers. Hydrology 2024, 11, 195. https://doi.org/10.3390/hydrology11110195
Kebede MM, Kumar M, Mekonnen MM, Clement TP. Enhancing Groundwater Recharge Through Nature-Based Solutions: Benefits and Barriers. Hydrology. 2024; 11(11):195. https://doi.org/10.3390/hydrology11110195
Chicago/Turabian StyleKebede, Mahlet M., Mukesh Kumar, Mesfin M. Mekonnen, and T. Prabhakar Clement. 2024. "Enhancing Groundwater Recharge Through Nature-Based Solutions: Benefits and Barriers" Hydrology 11, no. 11: 195. https://doi.org/10.3390/hydrology11110195
APA StyleKebede, M. M., Kumar, M., Mekonnen, M. M., & Clement, T. P. (2024). Enhancing Groundwater Recharge Through Nature-Based Solutions: Benefits and Barriers. Hydrology, 11(11), 195. https://doi.org/10.3390/hydrology11110195