Predicting Suspended Sediment Transport in Urbanised Streams: A Case Study of Dry Creek, South Australia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Catchment
2.2. Data Collection
2.3. Suspended Sediment Concentration (SSC) Estimation
2.4. Development of Sediment Rating Curves
2.5. Model Selection and Performance Evaluation
3. Results
3.1. Patterns of Turbidity, Streamflow, and SSC
3.2. Hysteresis in Sediment Transport Dynamics of Dry Creek
3.3. Relationship Between Streamflow, Turbidity, and SSC
3.4. SRC and Sediment Discharge Dynamics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ebabu, K.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Aklog, D.; Masunaga, T.; Tsubo, M.; Sultan, D.; Fenta, A.A. Analyzing the variability of sediment yield: A case study from paired watersheds in the Upper Blue Nile basin, Ethiopia. Geomorphology 2018, 303, 446–455. [Google Scholar] [CrossRef]
- Bhatti, M.T.; Ashraf, M.; Anwar, A.A. Soil erosion and sediment load management strategies for sustainable irrigation in arid regions. Sustainability 2021, 13, 3547. [Google Scholar] [CrossRef]
- Bekri, E.S.; Economou, P.; Yannopoulos, P.C.; Demetracopoulos, A.C. Reassessing existing reservoir supply capacity and management resilience under climate change and sediment deposition. Water 2021, 13, 1819. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, Y.; Zhao, Y.; Xie, M.; Zhong, J.; Tu, Z.; Liu, J. A water quality prediction method based on the deep LSTM network considering correlation in smart mariculture. Sensors 2019, 19, 1420. [Google Scholar] [CrossRef]
- Wang, S.; Flanagan, D.C.; Engel, B.A. Estimating sediment transport capacity for overland flow. J. Hydrol. 2019, 578, 123985. [Google Scholar] [CrossRef]
- Inoue, T.; Mishra, J.; Kato, K.; Sumner, T.; Shimizu, Y. Supplied sediment tracking for bridge collapse with large-scale channel migration. Water 2020, 12, 1881. [Google Scholar] [CrossRef]
- Bainbridge, Z.T.; Brodie, J.E.; Faithful, J.W.; Sydes, D.A.; Lewis, S.E. Identifying the land-based sources of suspended sediments, nutrients and pesticides discharged to the Great Barrier Reef from the Tully–Murray Basin, Queensland, Australia. Mar. Freshw. Res. 2009, 60, 1081–1090. [Google Scholar] [CrossRef]
- Fernandes, M. Sedimentation Surveys of Adelaide’s Coastal Reefs, Part 2 (Autumn); a report prepared for the Adelaide and Mount Lofty Ranges Natural Resources Management Board. SARDI Publication No. F2008/000103-2; South Australian Research & Development Institute (Aquatic Sciences): Adelaide, Australia, 2008.
- Viers, J.; Dupré, B.; Gaillardet, J. Chemical composition of suspended sediments in World Rivers: New insights from a new database. Sci. Total Environ. 2009, 407, 853–868. [Google Scholar] [CrossRef]
- Hoitink, T.A. Quantifying sediment transport from periodic transect measurements in rivers and estuaries. In Proceedings of the 25th EGU General Assembly Conference Abstracts; EGU2023, Vienna, Austria, 23–28 April 2023. [Google Scholar]
- Wilkinson, J.; White, N.; Smythe, L.; Hutson, J.; Bestland, E.; Simmons, C.; Lamontagne, S.; Fallowfield, H. Volumes of Inputs, Their Concentrations and Loads Received by Adelaide Metropolitan Coastal Waters; South Australian Environment Protection Authority: Adelaide, Australia, 2005.
- Gibson, A.; Hancock, G. Suspended sediment load estimation in an ungauged river in south-eastern Australia. River Res. Appl. 2020, 36, 512–521. [Google Scholar] [CrossRef]
- Davies-Colley, R.J.; Smith, D.G. Turbidity Suspeni)Ed Sediment, and Water Clarity: A Review1. JAWRA J. Am. Water Resour. Assoc. 2007, 37, 1085–1101. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Q.; Wu, Y.; Wang, X.C. Physicochemical conditions and properties of particles in urban runoff and rivers: Implications for runoff pollution. Chemosphere 2017, 173, 318–325. [Google Scholar] [CrossRef] [PubMed]
- O’Driscoll, M.; Clinton, S.; Jefferson, A.; Manda, A.; McMillan, S. Urbanization effects on watershed hydrology and in-stream processes in the southern United States. Water 2010, 2, 605–648. [Google Scholar] [CrossRef]
- Rusnák, M.; Lehotský, M.; Kidová, A.; Kaňuk, J.; Šašak, J.; Labaš, P.; Michaleje, L.; Sládek, J. Sediment Transport Connectivity and Its Response in the Fluvial Ecosystem Detected with High-Resolution Data. In Proceedings of the 10th International Conference on Geomorphology, ICG2022-250, Coimbra, Portugal, 12–16 September 2022. [Google Scholar] [CrossRef]
- Andualem, T.G.; Hewa, G.A.; Myers, B.R.; Peters, S.; Boland, J. Erosion and Sediment Transport Modeling: A Systematic Review. Land 2023, 12, 1396. [Google Scholar] [CrossRef]
- Sherriff, S.; Rowan, J.; Melland, A.; Jordan, P.; Fenton, O.; Ó hUallacháin, D. Investigating suspended sediment dynamics in contrasting agricultural catchments using ex situ turbidity-based suspended sediment monitoring. Hydrol. Earth Syst. Sci. 2015, 19, 3349–3363. [Google Scholar] [CrossRef]
- Dwinovantyo, A.; Manik, H.M.; Prartono, T.; Ilahude, D. Estimation of suspended sediment concentration from Acoustic Doppler Current Profiler (ADCP) instrument: A case study of Lembeh Strait, North Sulawesi. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2017; p. 012082. [Google Scholar]
- Felix, D.; Albayrak, I.; Abgottspon, A.; Boes, R. Real-time measurements of suspended sediment concentration and particle size using five techniques. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2016; p. 122006. [Google Scholar]
- Tachi, S.E.; Bouguerra, H.; Derdous, O.; Djabri, L.; Benmamar, S. Estimating suspended sediment concentration at different time scales in Northeastern Algeria. Appl. Water Sci. 2020, 10, 118. [Google Scholar] [CrossRef]
- Dodds, W.K.; Whiles, M.R. Quality and quantity of suspended particles in rivers: Continent-scale patterns in the United States. Environ. Manag. 2004, 33, 355–367. [Google Scholar] [CrossRef]
- Moore, S. Monitoring Flow and Fluxes of Suspended Sediment in Rivers Using Side-Looking Acoustic Doppler Current Profilers. Doctoral Thesis, Doctorat Sciences de la Terre et de l’Univers et de l’Environnement, Université de Grenoble, Saint-Martin-d’Hères, France, 2011. [Google Scholar]
- Khaleghi, M.R.; Varvani, J. Simulation of relationship between river discharge and sediment yield in the semi-arid river watersheds. Acta Geophys. 2018, 66, 109–119. [Google Scholar] [CrossRef]
- Bright, C.E.; Mager, S.M.; Horton, S.L. Predicting suspended sediment concentration from nephelometric turbidity in organic-rich waters. River Res. Appl. 2018, 34, 640–648. [Google Scholar] [CrossRef]
- Bakar, S.; Ismail, W.R.; Rahaman, Z.A. Suspended sediment concentration and turbidity relationship in two small catchments in Perlis, Malaysia. Malays. J. Civ. Eng. 2007, 19, 156–169. [Google Scholar]
- Wolf, S.; Stenger, D.; Steudtner, F.; Esser, V.; Lehmkuhl, F.; Schüttrumpf, H. Modeling anthropogenic affected sediment transport in a mid-sized European river catchment–extension of the sediment rating curve equation. Model. Earth Syst. Environ. 2023, 9, 3815–3835. [Google Scholar] [CrossRef]
- Mohanty, L.; Istalkar, P.; Biswal, B. Dynamic aspects of suspended-sediment-concentration recession curves. J. Hydrol. 2023, 617, 129107. [Google Scholar] [CrossRef]
- Hapsari, D.; Onishi, T.; Imaizumi, F.; Noda, K.; Senge, M. The use of sediment rating curve under its limitations to estimate the suspended load. Rev. Agric. Sci. 2019, 7, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Jung, B.M.; Fernandes, E.H.; Möller, O.O., Jr.; García-Rodríguez, F. Estimating suspended sediment concentrations from river discharge data for reconstructing gaps of information of long-term variability studies. Water 2020, 12, 2382. [Google Scholar] [CrossRef]
- Tilahun, A.K.; Verstraeten, G.; Chen, M.; Gulie, G.; Belayneh, L.; Endale, T. Temporal and spatial variability of suspended sediment rating curves for rivers draining into the Ethiopian Rift Valley. Land Degrad. Dev. 2023, 34, 478–492. [Google Scholar] [CrossRef]
- Sadeghi, S.; Mizuyama, T.; Miyata, S.; Gomi, T.; Kosugi, K.; Fukushima, T.; Mizugaki, S.; Onda, Y. Development, evaluation and interpretation of sediment rating curves for a Japanese small mountainous reforested watershed. Geoderma 2008, 144, 198–211. [Google Scholar] [CrossRef]
- Wang, K.; Steinschneider, S. Characterization of multi-scale fluvial suspended sediment transport dynamics across the United States using turbidity and dynamic regression. Water Resour. Res. 2022, 58, e2021WR031863. [Google Scholar] [CrossRef]
- Smith, H.G.; Dragovich, D. Interpreting sediment delivery processes using suspended sediment-discharge hysteresis patterns from nested upland catchments, south-eastern Australia. Hydrol. Process 2009, 23, 2415–2426. [Google Scholar] [CrossRef]
- Wang, L.; Wang, D.; Cuthbertson, A.; Zhong, D.; Pender, G. Hysteretic Implications for Graded Bed Load Sediment Transport in Symmetrical Hydrograph Flows. Front. Environ. Sci. 2021, 9, 800832. [Google Scholar] [CrossRef]
- Malutta, S.; Kobiyama, M.; Chaffe, P.L.B.; Bonumá, N.B. Hysteresis analysis to quantify and qualify the sediment dynamics: State of the art. Water Sci. Technol. 2020, 81, 2471–2487. [Google Scholar] [CrossRef]
- Ghimire, S.; Singh, U.; Panthi, K.K.; Bhattarai, P.K. Suspended Sediment Source and Transport Mechanisms in a Himalayan River. Water 2024, 16, 1063. [Google Scholar] [CrossRef]
- Gao, P.; Josefson, M. Event-based suspended sediment dynamics in a central New York watershed. Geomorphology 2012, 139, 425–437. [Google Scholar] [CrossRef]
- Marttila, H.; Kløve, B. Dynamics of erosion and suspended sediment transport from drained peatland forestry. J. Hydrol. 2010, 388, 414–425. [Google Scholar] [CrossRef]
- Kleinhans, M.; Wilbers, A.; Ten Brinke, W. Opposite hysteresis of sand and gravel transport upstream and downstream of a bifurcation during a flood in the River Rhine, the Netherlands. Neth. J. Geosci./Geol. Mijnb. 2007, 86, 273–285. [Google Scholar] [CrossRef]
- Aich, V.; Zimmermann, A.; Elsenbeer, H. Quantification and interpretation of suspended-sediment discharge hysteresis patterns: How much data do we need? Catena 2014, 122, 120–129. [Google Scholar] [CrossRef]
- Zhu, M.; Yu, X.; Li, Z.; Xu, X.; Ye, Z. Quantifying and interpreting the hysteresis patterns of monthly sediment concentration and water discharge in karst watersheds. J. Hydrol. 2023, 618, 129179. [Google Scholar] [CrossRef]
- Bettel, L.; Fox, J.; Husic, A.; Zhu, J.; Al Aamery, N.; Mahoney, T.; Gold-McCoy, A. Sediment transport investigation in a karst aquifer hypothesizes controls on internal versus external sediment origin and saturation impact on hysteresis. J. Hydrol. 2022, 613, 128391. [Google Scholar] [CrossRef]
- Pietroń, J.; Jarsjö, J.; Romanchenko, A.O.; Chalov, S.R. Model analyses of the contribution of in-channel processes to sediment concentration hysteresis loops. J. Hydrol. 2015, 527, 576–589. [Google Scholar] [CrossRef]
- Andualem, T.G.; Peters, S.; Hewa, G.A.; Myers, B.R.; Boland, J.; Pezzaniti, D. Channel morphological change monitoring using high-resolution LiDAR-derived DEM and multi-temporal imageries. Sci. Total Environ. 2024, 921, 171104. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater; APHA: Washington, DC, USA, 1985. [Google Scholar]
- Ziegler, A.D.; Benner, S.G.; Tantasirin, C.; Wood, S.H.; Sutherland, R.A.; Sidle, R.C.; Jachowski, N.; Nullet, M.A.; Xi, L.X.; Snidvongs, A. Turbidity-based sediment monitoring in northern Thailand: Hysteresis, variability, and uncertainty. J. Hydrol. 2014, 519, 2020–2039. [Google Scholar] [CrossRef]
- Ellison, C.A.; Kiesling, R.L.; Fallon, J.D. Correlating streamflow, turbidity, and suspended-sediment concentration in Minnesota’s Wild Rice River. In Proceedings of the 2nd Joint Federal Interagency Conference, Reno, NV, USA, 27 June–1 July 2010. [Google Scholar]
- Sulaiman, W.N.A.; Hamid, M.R. Suspended Sediment and Turbidity Relationships for Individual and Multiple Catchments. Pertanika J. Sci. Technol 1997, 5, 127–137. [Google Scholar]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis; John Wiley & Sons: New York, NY, USA, 2021. [Google Scholar]
- Draper, N. Applied Regression Analysis; McGraw-Hill, Inc.: New York, NY, USA, 1998. [Google Scholar]
- Anderson, D.; Burnham, K. Model Selection and Multi-Model Inference, 2nd ed.; Springer: New York, NY, USA, 2004; Volume 63, p. 10. [Google Scholar]
- Meral, R.; Kaya, S.; Demir, A.D.; Demir, Y. Water quality limitation for turbidity based sediment measurement in rivers. Eurasia Proc. Sci. Technol. Eng. Math. 2017, 1, 383–387. [Google Scholar]
- Folorunso, O. Variations of turbidity (NTU) and suspended solid concentrations (SSC) in Elemi River, Ado-Ekiti, Nigeria. Int. J. Environ. Sci. Nat. Resour. 2018, 9, 63–66. [Google Scholar]
- Bayram, A.; Önsoy, H.; Kankal, M.; Kömürcü, M.İ. Spatial and temporal variation of suspended sediment concentration versus turbidity in the stream Harşit Watershed, NE Turkey. Arab. J. Geosci. 2014, 7, 4987–4996. [Google Scholar] [CrossRef]
- Landers, M.N.; Sturm, T.W. Hysteresis in suspended sediment to turbidity relations due to changing particle size distributions. Water Resour. Res. 2013, 49, 5487–5500. [Google Scholar] [CrossRef]
- Fortesa, J.; Ricci, G.F.; García-Comendador, J.; Gentile, F.; Estrany, J.; Sauquet, E.; Datry, T.; De Girolamo, A.M. Analysing hydrological and sediment transport regime in two Mediterranean intermittent rivers. Catena 2021, 196, 104865. [Google Scholar] [CrossRef]
- Hess, A.; Baum, C.; Schiessl, K.; Besmer, M.D.; Hammes, F.; Morgenroth, E. Stagnation leads to short-term fluctuations in the effluent water quality of biofilters: A problem for greywater reuse? Water Res. X 2021, 13, 100120. [Google Scholar] [CrossRef]
- Kumar, M.A.; Deekshitha, R.; Gaurav, G.; Inchara, R.; Pushpamala, S. Sensor Based System to Study the Native Environmental Conditions of Stagnant Water. In Proceedings of the 2020 IEEE International Conference on Technology, Engineering, Management for Societal Impact Using Marketing, Entrepreneurship and Talent (TEMSMET), Bengaluru, India, 10 December 2020; pp. 1–5. [Google Scholar]
- Samuelsson, O.; Lindblom, E.U.; Björk, A.; Carlsson, B. To calibrate or not to calibrate, that is the question. Water Res. 2023, 229, 119338. [Google Scholar] [CrossRef]
- Junling, W.; Bin, W.; Quancheng, Q.; Cuimin, F.; Lihua, S.; Junqi, L. Study on initial flushing effect of two new permeable pavements. Int. J. Pavement Eng. 2021, 22, 173–180. [Google Scholar] [CrossRef]
- Kim, J.; Seo, D.; Lee, T. Effectiveness of settling treatment system to reduce urban nonpoint source pollutant load by first flush. J. Korean Soc. Environ. Eng. 2017, 39, 140–148. [Google Scholar] [CrossRef]
- Yan, Y.; Song, D.; Bao, X.; Wang, N. The response of turbidity maximum to peak river discharge in a macrotidal estuary. Water 2021, 13, 106. [Google Scholar] [CrossRef]
- Bača, P. Hysteresis effect in suspended sediment concentration in the Rybárik basin, Slovakia/Effet d’hystérèse dans la concentration des sédiments en suspension dans le bassin versant de Rybárik (Slovaquie). Hydrol. Sci. J. 2008, 53, 224–235. [Google Scholar] [CrossRef]
- Paul, M.J.; Meyer, J.L. Streams in the urban landscape. Annu. Rev. Ecol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Chapman, P.J.; Kay, P.; Mitchell, G.; Pitts, C.S. Surface water quality. In Water Resources; Routledge: London, UK, 2019; pp. 99–150. [Google Scholar]
- Ferreira, A.J.; Soares, D.; Serrano, L.M.; Walsh, R.P.; Dias-Ferreira, C.; Ferreira, C.S. Roads as sources of heavy metals in urban areas. The Covões catchment experiment, Coimbra, Portugal. J. Soils Sediments 2016, 16, 2622–2639. [Google Scholar] [CrossRef]
- Ralston, D.K.; Yellen, B.; Woodruff, J.D.; Fernald, S. Turbidity hysteresis in an estuary and tidal river following an extreme discharge event. Geophys. Res. Lett. 2020, 47, e2020GL088005. [Google Scholar] [CrossRef]
- Zabaleta, A.; Martínez, M.; Uriarte, J.A.; Antigüedad, I. Factors controlling suspended sediment yield during runoff events in small headwater catchments of the Basque Country. Catena 2007, 71, 179–190. [Google Scholar] [CrossRef]
- Loperfido, J. Surface Water Quality in Streams and Rivers: Scaling, and Climate Change; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Wang, L.; Yao, W.; Xiao, P.; Hou, X. The Spatiotemporal Characteristics of Flow–Sediment Relationships in a Hilly Watershed of the Chinese Loess Plateau. Int. J. Environ. Res. Public Health 2022, 19, 9089. [Google Scholar] [CrossRef]
- Kang, W.; Lee, K.; Kim, J. Prediction of suspended sediment concentration based on the turbidity-concentration relationship determined via underwater image analysis. Appl. Sci. 2022, 12, 6125. [Google Scholar] [CrossRef]
- Mohanty, L.; Biswal, B. Event scale analysis of sediment concentration-river discharge relationship. Mater. Today Proc. 2022, 62, 6379–6384. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, J.; Han, Z.; Xu, Q.; Peart, M.; Ng, C.N.; Lee, F.Y.; Hau, B.C.; Law, W.W. Nonlinear and abnormal relationship between turbidity and suspended solids concentration in mountainous rivers: A case study of the Lai Chi Wo river in Hong Kong, China. Sci. Total Environ. 2024, 947, 174483. [Google Scholar] [CrossRef]
- Minella, J.P.; Merten, G.H.; Reichert, J.M.; Clarke, R.T. Estimating suspended sediment concentrations from turbidity measurements and the calibration problem. Hydrol. Process. Int. J. 2008, 22, 1819–1830. [Google Scholar] [CrossRef]
- Asselman, N. Fitting and interpretation of sediment rating curves. J. Hydrol. 2000, 234, 228–248. [Google Scholar] [CrossRef]
- Zhang, W.; Wei, X.; Jinhai, Z.; Yuliang, Z.; Zhang, Y. Estimating suspended sediment loads in the Pearl River Delta region using sediment rating curves. Cont. Shelf Res. 2012, 38, 35–46. [Google Scholar] [CrossRef]
- Zhang, F.; Shi, X.; Zeng, C.; Wang, L.; Xiao, X.; Wang, G.; Chen, Y.; Zhang, H.; Lu, X.; Immerzeel, W. Recent stepwise sediment flux increase with climate change in the Tuotuo River in the central Tibetan Plateau. Sci. Bull. 2020, 65, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Huang, Y.; Zhao, G.; Jiang, F.; Wang, M.-k.; Ge, H. Flow-driven soil erosion processes and the size selectivity of eroded sediment on steep slopes using colluvial deposits in a permanent gully. Catena 2017, 157, 47–57. [Google Scholar] [CrossRef]
- Smith, C.; Croke, B. Sources of uncertainty in estimating suspended sediment load. IAHS-AISH Publ. 2005, 292, 136–143. [Google Scholar]
- Joo, M.; Yu, B.; Fentie, B.; Caroll, C. Estimation of long-term sediment loads in the Fitzroy catchment, Queensland, Australia. In Proceedings of the MODSIM 2005 International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand, Melbourne, Australia, 12–15 December 2005; pp. 1161–1167. [Google Scholar]
- Kido, R.; Inoue, T.; Hatono, M.; Yamanoi, K. Assessing the impact of climate change on sediment discharge using a large ensemble rainfall dataset in Pekerebetsu River basin, Hokkaido. Prog. Earth Planet. Sci. 2023, 10, 54. [Google Scholar] [CrossRef]
Variable | Min | Mean | Median | Max | StDev | CV (%) | p-Value |
---|---|---|---|---|---|---|---|
Streamflow (L/s) | 11.0 | 1703.0 | 516.0 | 5889.0 | 1935.0 | 114 | <0.005 |
Turbidity (NTU) | 3.4 | 131.8 | 105.0 | 348.0 | 131.1 | 99 | <0.005 |
SSC (mg/L) | 3.2 | 119.9 | 77.3 | 431.8 | 122.2 | 102 | 0.007 |
Hydrograph | Statistics | Streamflow (L/s) | Turbidity (NTU) | SSC (mg/L) | SSC/Q | SSC/T |
---|---|---|---|---|---|---|
Rising limb | Min | 65.0 | 3.4 | 4.7 | 0.04 | 0.31 |
Mean | 1223.3 | 169.2 | 66.9 | 0.15 | 2.77 | |
Median | 1198.8 | 162.8 | 68.8 | 0.05 | 0.87 | |
Max | 2430.7 | 348.0 | 125.3 | 0.47 | 9.05 | |
Stdev | 1323.9 | 191.7 | 58.5 | 0.21 | 4.21 | |
CV (%) | 108.2 | 113.3 | 87.3 | 134.8 | 151.9 | |
Peak | Min | 4178.8 | 105.0 | 232.4 | 0.06 | 2.09 |
Mean | 4816.0 | 127.6 | 299.4 | 0.06 | 2.32 | |
Median | 4476.1 | 125.5 | 262.1 | 0.06 | 2.21 | |
Max | 5889.5 | 157.0 | 431.8 | 0.07 | 2.75 | |
Stdev | 711.8 | 20.3 | 81.6 | 0.01 | 0.26 | |
CV (%) | 14.8 | 15.9 | 27.2 | 11.6 | 11.3 | |
Falling limb | Min | 258.7 | 17.7 | 3.2 | 0.01 | 0.18 |
Mean | 294.6 | 18.9 | 11.7 | 0.04 | 0.63 | |
Median | 263.5 | 18.3 | 8.4 | 0.03 | 0.43 | |
Max | 347.9 | 21.6 | 30.3 | 0.09 | 1.71 | |
Stdev | 44.9 | 1.6 | 10.6 | 0.03 | 0.61 | |
CV (%) | 15.3 | 8.2 | 90.7 | 76.78 | 96.51 |
Function | Model | R2 | NSE | p-Value | RSS | AIC | BIC |
---|---|---|---|---|---|---|---|
SSC = f (Q) | SSC = 0.064Q | 0.92 | 0.85 | <0.0001 | 45,248 | 165 | 167 |
SSC = f (T); T < 250 NTU | SSC = 2.378T | 0.97 | 0.94 | <0.0001 | 15,149 | 142 | 144 |
SSC = f (T); T > 250 NTU | SSC = 0.316T | 0.73 | 0.13 | 0.014 | 22,434 | 150 | 152 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andualem, T.G.; Hewa, G.A.; Myers, B.R.; Boland, J.; Peters, S. Predicting Suspended Sediment Transport in Urbanised Streams: A Case Study of Dry Creek, South Australia. Hydrology 2024, 11, 196. https://doi.org/10.3390/hydrology11110196
Andualem TG, Hewa GA, Myers BR, Boland J, Peters S. Predicting Suspended Sediment Transport in Urbanised Streams: A Case Study of Dry Creek, South Australia. Hydrology. 2024; 11(11):196. https://doi.org/10.3390/hydrology11110196
Chicago/Turabian StyleAndualem, Tesfa Gebrie, Guna A. Hewa, Baden R. Myers, John Boland, and Stefan Peters. 2024. "Predicting Suspended Sediment Transport in Urbanised Streams: A Case Study of Dry Creek, South Australia" Hydrology 11, no. 11: 196. https://doi.org/10.3390/hydrology11110196
APA StyleAndualem, T. G., Hewa, G. A., Myers, B. R., Boland, J., & Peters, S. (2024). Predicting Suspended Sediment Transport in Urbanised Streams: A Case Study of Dry Creek, South Australia. Hydrology, 11(11), 196. https://doi.org/10.3390/hydrology11110196