Analyzing Spatial Trends of Precipitation Using Gridded Data in the Fez-Meknes Region, Morocco
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Source and Quality
3. Methods
3.1. Inverse-Distance-Weighted Interpolation
3.2. Trend Test Analysis
4. Results
5. Discussion
6. Conclusions
- The rainfall trend analysis showed a significant decline at an annual scale in most areas of the region, which is statistically significant at the majority of the grid points, with values ranging between −10 and −20 mm per decade;
- At a seasonal scale, the upward trend revealed during autumn remains weak (around +10 mm per decade) and unable to compensate for the huge decline in winter and spring rainfall (−10 to −20 mm/10 years) within the wet mountains of study area;
- In autumn, only 3% of the cells, located mainly around the central valley of the upper Moulouya, expressed a statistically significant upward trend;
- Declining rainfall in winter was detected over large areas of the Prerifan hills between Taza and Taounat in the northeast, and across the Middle Atlas Mountains zone between the upper Moulouya and western parts of the region;
- Spring rainfall decline was mainly identified in the upper Moulouya and the northwestern quarter of the region;
- The summer rainfall trend was negative and mainly concentrated in the northern and southeastern areas;
- The creation of this gridded dataset is a first for a Moroccan region and will improve the monitoring of drought and rainfall variability inside the region and generally across Morocco.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pal, A.B.; Khare, D.; Mishra, P.K.; Singh, L. Trend Analysis of Rainfall, Temperature and Runoff Data: A Case Study of Rangoon Watershed in Nepal. Int. J. Students’ Res. Technol. Manag. 2017, 5, 21–38. [Google Scholar] [CrossRef] [Green Version]
- Modarres, R.; de Paulo Rodrigues da Silva, V. Rainfall Trends in Arid and Semi-Arid Regions of Iran. J. Arid Environ. 2007, 70, 344–355. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Schilling, J.; Freier, K.P.; Hertig, E.; Scheffran, J. Climate Change, Vulnerability and Adaptation in North Africa with Focus on Morocco. Agric. Ecosyst. Environ. 2012, 156, 12–26. [Google Scholar] [CrossRef]
- Béglé, J. Gouverner, c’est Pleuvoir! 2016. Available online: https://www.lepoint.fr/politique/gouverner-c-est-pleuvoir-31-05-2016-2043231_20.php (accessed on 20 October 2022).
- Tuel, A.; Eltahir, E.A.B. Why Is the Mediterranean a Climate Change Hot Spot? J. Clim. 2020, 33, 5829–5843. [Google Scholar] [CrossRef]
- Seif-Ennasr, M.; Zaaboul, R.; Hirich, A.; Caroletti, G.N.; Bouchaou, L.; El Morjani, Z.E.A.; Beraaouz, E.H.; McDonnell, R.A.; Choukr-Allah, R. Climate Change and Adaptive Water Management Measures in Chtouka Aït Baha Region (Morocco). Sci. Total Environ. 2016, 573, 862–875. [Google Scholar] [CrossRef]
- Bouras, E.; Jarlan, L.; Khabba, S.; Er-Raki, S.; Dezetter, A.; Sghir, F.; Tramblay, Y. Assessing the Impact of Global Climate Changes on Irrigated Wheat Yields and Water Requirements in a Semi-Arid Environment of Morocco. Sci. Rep. 2019, 9, 19142. [Google Scholar] [CrossRef] [Green Version]
- Hssaisoune, M.; Bouchaou, L.; Sifeddine, A.; Bouimetarhan, I.; Chehbouni, A. Moroccan Groundwater Resources and Evolution with Global Climate Changes. Geosciences 2020, 10, 2. [Google Scholar] [CrossRef] [Green Version]
- Tomaszkiewicz, M.A. Future Seasonal Drought Conditions over the CORDEX-MENA/Arab Domain. Atmosphere 2021, 12, 856. [Google Scholar] [CrossRef]
- Puigdefábregas, J.; Mendizabal, T. Perspectives on Desertification: Western Mediterranean. J. Arid Environ. 1998, 39, 209–224. [Google Scholar] [CrossRef]
- Hammouzaki, Y. Desertification and Its Control in Morocco. In Combating Desertification in Asia, Africa and the Middle East: Proven Practices; Heshmati, G.A., Squires, V.R., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 91–111. [Google Scholar]
- Karmaoui, A.; El Jaafari, S.; Chaachouay, H.; Hajji, L. The Socio-Ecological System of the Pre-Sahara Zone of Morocco: A Conceptual Framework to Analyse the Impact of Drought and Desertification. GeoJournal 2022, 87, 4961–4974. [Google Scholar] [CrossRef]
- Lionello, P.; Abrantes, F.; Gacic, M.; Planton, S.; Trigo, R.; Ulbrich, U. The Climate of the Mediterranean Region: Research Progress and Climate Change Impacts. Reg. Environ. Chang. 2014, 14, 1679–1684. [Google Scholar] [CrossRef]
- Zittis, G.; Hadjinicolaou, P.; Fnais, M.; Lelieveld, J. Projected Changes in Heat Wave Characteristics in the Eastern Mediterranean and the Middle East. Reg. Environ. Chang. 2016, 16, 1863–1876. [Google Scholar] [CrossRef]
- Díaz-Poso, A.; Lorenzo, N.; Royé, D. Spatio-Temporal Evolution of Heat Waves Severity and Expansion across the Iberian Peninsula and Balearic Islands. Environ. Res. 2022, 217, 114864. [Google Scholar] [CrossRef] [PubMed]
- Lhotka, O.; Kyselý, J. The 2021 European Heat Wave in the Context of Past Major Heat Waves. Earth Sp. Sci. 2022, 9, e2022EA002567. [Google Scholar] [CrossRef]
- Caloiero, T.; Caloiero, P.; Frustaci, F. Long-Term Precipitation Trend Analysis in Europe and in the Mediterranean Basin. Water Environ. J. 2018, 32, 433–445. [Google Scholar] [CrossRef]
- Caloiero, T.; Coscarelli, R.; Pellicone, G. Trend Analysis of Rainfall Using Gridded Data over a Region of Southern Italy. Water 2021, 13, 2271. [Google Scholar] [CrossRef]
- Longobardi, A.; Villani, P. Trend Analysis of Annual and Seasonal Rainfall Time Series in the Mediterranean Area. Int. J. Climatol. 2010, 30, 1538–1546. [Google Scholar] [CrossRef]
- Nouaceur, Z.; Murărescu, O. Rainfall Variability and Trend Analysis of Annual Rainfall in North Africa. Int. J. Atmos. Sci. 2016, 2016, 1–12. [Google Scholar] [CrossRef]
- Benabdelouahab, T.; Gadouali, F.; Boudhar, A.; Lebrini, Y.; Hadria, R.; Salhi, A. Analysis and Trends of Rainfall Amounts and Extreme Events in the Western Mediterranean Region. Theor. Appl. Climatol. 2020, 141, 309–320. [Google Scholar] [CrossRef]
- Hadri, A.; Saidi, M.E.M.; Boudhar, A. Multiscale Drought Monitoring and Comparison Using Remote Sensing in a Mediterranean Arid Region: A Case Study from West-Central Morocco. Arab. J. Geosci. 2021, 14, 118. [Google Scholar] [CrossRef]
- Valdes-Abellan, J.; Pardo, M.A.; Tenza-Abril, A.J. Observed Precipitation Trend Changes in the Western Mediterranean Region. Int. J. Climatol. 2017, 37, 1285–1296. [Google Scholar] [CrossRef] [Green Version]
- Portela, M.M.; Espinosa, L.A.; Studart, T.; Zelenakova, M. Rainfall Trends in Southern Portugal at Different Time Scales. In INCREaSE 2019; Monteiro, J., João Silva, A., Mortal, A., Aníbal, J., da Silva, M., Oliveira, M., Sousa, N., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 3–19. [Google Scholar]
- Zhu, X.; Zhang, M.; Wang, S.; Qiang, F.; Zeng, T.; Ren, Z.; Dong, L. Comparison of Monthly Precipitation Derived from High-Resolution Gridded Datasets in Arid Xinjiang, Central Asia. Quat. Int. 2015, 358, 160–170. [Google Scholar] [CrossRef]
- Shi, H.; Li, T.; Wei, J. Evaluation of the Gridded CRU TS Precipitation Dataset with the Point Raingauge Records over the Three-River Headwaters Region. J. Hydrol. 2017, 548, 322–332. [Google Scholar] [CrossRef] [Green Version]
- Faiz, M.A.; Liu, D.; Fu, Q.; Sun, Q.; Li, M.; Baig, F.; Li, T.; Cui, S. How Accurate Are the Performances of Gridded Precipitation Data Products over Northeast China? Atmos. Res. 2018, 211, 12–20. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958-2015. Sci. Data 2018, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Singh, H.; Reza Najafi, M. Evaluation of Gridded Climate Datasets over Canada Using Univariate and Bivariate Approaches: Implications for Hydrological Modelling. J. Hydrol. 2020, 584, 124673. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Perera, H.; Senaratne, N.; Gunathilake, M.B.; Mutill, N.; Rathnayake, U. Appraisal of Satellite Rainfall Products for Malwathu, Deduru, and Kalu River Basins, Sri Lanka. Climate 2022, 10, 156. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, Q.; Chen, X.; Li, J.; Li, Q.; Chen, D.; Liu, W.; Yin, G. Evaluation of Three Global Gridded Precipitation Data Sets in Central Asia Based on Rain Gauge Observations. Int. J. Climatol. 2018, 38, 3475–3493. [Google Scholar] [CrossRef]
- Henn, B.; Newman, A.J.; Livneh, B.; Daly, C.; Lundquist, J.D. An Assessment of Differences in Gridded Precipitation Datasets in Complex Terrain. J. Hydrol. 2018, 556, 1205–1219. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistical Approaches for Incorporating Elevation into the Spatial Interpolation of Rainfall. J. Hydrol. 2000, 228, 113–129. [Google Scholar] [CrossRef]
- Satgé, F.; Defrance, D.; Sultan, B.; Bonnet, M.-P.; Seyler, F.; Rouché, N.; Pierron, F.; Paturel, J.-E. Evaluation of 23 Gridded Precipitation Datasets across West Africa. J. Hydrol. 2020, 581, 124412. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Chen, Y.; Yu, X.; Zhao, Y.; Guan, X.; Yang, L. Evaluation of Multiple Gridded Precipitation Datasets for the Arid Region of Northwestern China. Atmos. Res. 2020, 236, 104818. [Google Scholar] [CrossRef]
- HCP. Recensement Général de La Populatiion et de l’Habitat. Monographie Générale, Région de Fès-Meknès; HCP: Rabat, Morocco, 2014; p. 171. [Google Scholar]
- DGCL. Monographie Générale, Région de Fès-Meknès; DGCL: Rabat, Morocco, 2015; p. 62.
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Guijarro, J.A. Daily Series Homogenization and Gridding with Climatol v.3. In Proceedings of the Ninth Seminar for Homogenization and Quality Control in Climatological Databases and Fourth Conference on Spatial Interpolation Techniques in Climatology and Meteorology, Budapest, Hungary, 3–7 April 2017; WMO: Geneva, Switzerland, 2017; pp. 175–180. [Google Scholar]
- Guijarro, J.A. Homogenization of Climatological Series with Climatol Version 3.1.1.; R Package: Vienna, Austria, 2018; p. 20. [Google Scholar]
- Coll, J.; Domonkos, P.; Guijarro, J.; Curley, M.; Rustemeier, E.; Aguilar, E.; Walsh, S.; Sweeney, J. Application of Homogenization Methods for Ireland’s Monthly Precipitation Records: Comparison of Break Detection Results. Int. J. Climatol. 2020, 40, 6169–6188. [Google Scholar] [CrossRef]
- Skrynyk, O.; Aguilar, E.; Guijarro, J.; Randriamarolaza, L.Y.A.; Bubin, S. Uncertainty Evaluation of Climatol’s Adjustment Algorithm Applied to Daily Air Temperature Time Series. Int. J. Climatol. 2021, 41, E2395–E2419. [Google Scholar] [CrossRef]
- Dewan, A.; Shahid, S.; Bhuian, M.H.; Hossain, S.M.J.; Nashwan, M.S.; Chung, E.-S.; Hassan, Q.K.; Asaduzzaman, M. Developing a High-Resolution Gridded Rainfall Product for Bangladesh during 1901–2018. Sci. Data 2022, 9, 471. [Google Scholar] [CrossRef]
- Kuya, E.K.; Gjelten, H.M.; Tveito, O.E. Homogenization of Norwegian Monthly Precipitation Series for the Period 1961--2018. Adv. Sci. Res. 2022, 19, 73–80. [Google Scholar] [CrossRef]
- Kessabi, R.; Hanchane, M.; Guijarro, J.A.; Krakauer, N.Y.; Addou, R.; Sadiki, A.; Belmahi, M. Homogenization and Trends Analysis of Monthly Precipitation Series in the Fez-Meknes Region, Morocco. Climate 2022, 10, 64. [Google Scholar] [CrossRef]
- Giarno; Didiharyono, D.; Fisu, A.A.; Mattingaragau, A. Influence Rainy and Dry Season to Daily Rainfall Interpolation in Complex Terrain of Sulawesi. IOP Conf. Ser. Earth Environ. Sci. 2020, 469, 12003. [Google Scholar] [CrossRef]
- Dirks, K.N.; Hay, J.E.; Stow, C.D.; Harris, D. High-Resolution Studies of Rainfall on Norfolk Island: Part II: Interpolation of Rainfall Data. J. Hydrol. 1998, 208, 187–193. [Google Scholar] [CrossRef]
- Pellicone, G.; Caloiero, T.; Modica, G.; Guagliardi, I. Application of Several Spatial Interpolation Techniques to Monthly Rainfall Data in the Calabria Region (Southern Italy). Int. J. Climatol. 2018, 38, 3651–3666. [Google Scholar] [CrossRef]
- Caloiero, T.; Pellicone, G.; Modica, G.; Guagliardi, I. Comparative Analysis of Different Spatial Interpolation Methods Applied to Monthly Rainfall as Support for Landscape Management. Appl. Sci. 2021, 11, 9566. [Google Scholar] [CrossRef]
- Yang, R.; Xing, B. A Comparison of the Performance of Different Interpolation Methods in Replicating Rainfall Magnitudes under Different Climatic Conditions in Chongqing Province (China). Atmosphere 2021, 12, 1318. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G.; Stuart, A. The Advanced Theory of Statistics; Macmillan: New York, NY, USA, 1977. [Google Scholar]
- Achite, M.; Wałęga, A.; Toubal, A.K.; Mansour, H.; Krakauer, N. Spatiotemporal Characteristics and Trends of Meteorological Droughts in the Wadi Mina Basin, Northwest Algeria. Water 2021, 13, 3103. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall ’ s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Knippertz, P.; Christoph, M.; Speth, P. Long-Term Precipitation Variability in Morocco and the Link to the Large-Scale Circulation in Recent and Future Climates. Meteorol. Atmos. Phys. 2003, 83, 67–88. [Google Scholar] [CrossRef]
- Singla, S.; Mahé, G.; Dieulin, C.; Driouech, F.; Milano, M.; El Guelai, F.Z.; Ardoin-Bardin, S. Evolution Des Relations Pluie-Débit Sur Des Bassins Versants Du Maroc. IAHS-AISH Publ. 2010, 340, 679–687. [Google Scholar]
- Ouatiki, H.; Boudhar, A.; Ouhinou, A.; Arioua, A.; Hssaisoune, M.; Bouamri, H.; Benabdelouahab, T. Trend Analysis of Rainfall and Drought over the Oum Er-Rbia River Basin in Morocco during 1970–2010. Arab. J. Geosci. 2019, 12, 128. [Google Scholar] [CrossRef]
- Driouech, F. Distribution Des Précipitations Hivernales Sur Le Maroc Dans Le Cadre d’un Changement Climatique: Descente d’échelle et Incertitudes; L’université de Toulouse: Toulouse, France, 2010; pp. 1–164. [Google Scholar]
- Espinosa, L.A.; Portela, M.M. Rainfall Trends over a Small Island Teleconnected to the North Atlantic Oscillation—The Case of Madeira Island, Portugal. Water Resour. Manag. 2020, 34, 4449–4467. [Google Scholar] [CrossRef]
- Bouklikha, A.; Habi, M.; Elouissi, A.; Benzater, B.; Hamoudi, S. The Innovative Trend Analysis Applied to Annual and Seasonal Rainfall in the Tafna Watershed (Algeria). Rev. Bras. Meteorol. 2020, 35, 631–647. [Google Scholar] [CrossRef]
- Benzater, B.; Elouissi, A.; Dabanli, I.; Harkat, S.; Hamimed, A. New Approach to Detect Trends in Extreme Rain Categories by the ITA Method in Northwest Algeria. Hydrol. Sci. J. 2021, 66, 2298–2311. [Google Scholar] [CrossRef]
- Driouech, F.; Stafi, H.; Khouakhi, A.; Moutia, S.; Badi, W.; ElRhaz, K.; Chehbouni, A. Recent Observed Country-Wide Climate Trends in Morocco. Int. J. Climatol. 2021, 41, E855–E874. [Google Scholar] [CrossRef]
- Achite, M.; Caloiero, T.; Toubal, A.K. Rainfall and Runoff Trend Analysis in the Wadi Mina Basin (Northern Algeria) Using Non-Parametric Tests and the ITA Method. Sustainability 2022, 14, 9892. [Google Scholar] [CrossRef]
- Knippertz, P. A Simple Identification Scheme for Upper-Level Troughs and Its Application to Winter Precipitation Variability in Northwest Africa. J. Clim. 2004, 17, 1411–1418. [Google Scholar] [CrossRef]
- Hakam, O.; Baali, A.; Ait Brahim, Y.; El Kamel, T.; Azennoud, K. Regional and Global Teleconnections Patterns Governing Rainfall in the Western Mediterranean: Case of the Lower Sebou Basin, North-West Morocco. Model. Earth Syst. Environ. 2022, 8, 5107–5128. [Google Scholar] [CrossRef]
- Kelley, C.; Ting, M.; Seager, R.; Kushnir, Y. Mediterranean precipitation climatology, seasonal cycle, and trend as simulated by CMIP5. Geophys. Res. Lett. 2012, 39, L21703. [Google Scholar] [CrossRef]
- Zamrane, Z.; Mahé, G.; Laftouhi, N.E. Wavelet Analysis of Rainfall and Runoff Multidecadal Time Series on Large River Basins in Western North Africa. Water 2021, 13, 3243. [Google Scholar] [CrossRef]
- Dieulin, C.; Mahé, G.; Paturel, J.-E.; Ejjiyar, S.; Tramblay, Y.; Rouché, N.; EL Mansouri, B. A New 60-Year 1940/1999 Monthly-Gridded Rainfall Data Set for Africa. Water 2019, 11, 387. [Google Scholar] [CrossRef]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at High Resolution for the Earth’s Land Surface Areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessabi, R.; Hanchane, M. Spatialisation Des Types De Bioclimats Au Niveau De La Région De Fès-Meknès (Maroc) à Travers Les Données CHELSA Et Projections Futures; Actes du XXXIV ème Colloque International de l’AIC: Mohammadia, Morocco, 2021; pp. 276–281. [Google Scholar]
- Kessabi, R.; Hanchane, M.; Belmahi, M. Estimation Des Indices de La Sècheresse Climatique Selon Les Données TerraClimate et Celles Des Stations de Mesures (Cas de Cinq Stations de La Région de Fès-Meknès). In Changement Climatique, Potentialités Territoriales et Justice Environnementale; Hanchane, M., El Khazzan, B., Eds.; Université sidi Mohamed Ben Abdellahh: Fez, Morocco, 2021; pp. 163–181. [Google Scholar]
- Arias, E.C.; Barriga, J.C. Performance of High-Resolution Precipitation Datasets CHIRPS and TerraClimate in a Colombian High Andean Basin. Geocarto Int. 2022, 1–21. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kessabi, R.; Hanchane, M.; Caloiero, T.; Pellicone, G.; Addou, R.; Krakauer, N.Y. Analyzing Spatial Trends of Precipitation Using Gridded Data in the Fez-Meknes Region, Morocco. Hydrology 2023, 10, 37. https://doi.org/10.3390/hydrology10020037
Kessabi R, Hanchane M, Caloiero T, Pellicone G, Addou R, Krakauer NY. Analyzing Spatial Trends of Precipitation Using Gridded Data in the Fez-Meknes Region, Morocco. Hydrology. 2023; 10(2):37. https://doi.org/10.3390/hydrology10020037
Chicago/Turabian StyleKessabi, Ridouane, Mohamed Hanchane, Tommaso Caloiero, Gaetano Pellicone, Rachid Addou, and Nir Y. Krakauer. 2023. "Analyzing Spatial Trends of Precipitation Using Gridded Data in the Fez-Meknes Region, Morocco" Hydrology 10, no. 2: 37. https://doi.org/10.3390/hydrology10020037
APA StyleKessabi, R., Hanchane, M., Caloiero, T., Pellicone, G., Addou, R., & Krakauer, N. Y. (2023). Analyzing Spatial Trends of Precipitation Using Gridded Data in the Fez-Meknes Region, Morocco. Hydrology, 10(2), 37. https://doi.org/10.3390/hydrology10020037