A Qualitative Assessment of River Plumes Coupling SWAT Model Simulations and a Beach Optical Monitoring System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Setup
2.3. Calibration, Validation and Sensitivity Analysis
2.4. RGB Analysis of Optical Data
3. Results
3.1. SWAT Simulations
3.2. RGB Analysis of the TIMEX Imagery
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Datry, T.; Larned, S.T.; Tockner, K. Intermittent Rivers: A Challenge for Freshwater Ecology. Bioscience 2014, 64, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Magand, C.; Alves, M.H.; Calleja, E.; Datry, T.; Dörflinger, G.; England, J.; Gallart, F.; Gómez, R.; Jorda-Capdevila, D.; Martí, E. Intermittent Rivers and Ephemeral Streams: What Water Managers Need to Know; European Cooperation in Science and Technology: Brussels, Belgium, 2020. [Google Scholar]
- Coch, A.; Mediero, L. Trends in Low Flows in Spain in the Period 1949–2009 Trends in Low Flows in Spain in the Period 1949–2009. Hydrol. Sci. J. 2016, 61, 568–584. [Google Scholar] [CrossRef] [Green Version]
- De Girolamo, A.M.; Bouraoui, F.; Buffagni, A.; Pappagallo, G.; Lo Porto, A. Hydrology under Climate Change in a Temporary River System: Potential Impact on Water Balance and Flow Regime. River Res. Appl. 2017, 33, 1219–1232. [Google Scholar] [CrossRef]
- Marx, A.; Kumar, R.; Thober, S.; Rakovec, O.; Wanders, N.; Zink, M.; Wood, E.F.; Pan, M.; Sheffield, J.; Samaniego, L. Climate Change Alters Low Flows in Europe under Global Warming of 1.5, 2, and 3 C. Hydrol. Earth Syst. Sci. 2018, 22, 1017–1032. [Google Scholar] [CrossRef] [Green Version]
- Shumilova, O.; Von Schiller, D.; Zak, D.; Corti, R.; Arnon, S.; Obrador, B.; Allan, D.C.; Altermatt, F.; Banas, D.; Banegas, A.; et al. Simulating Rewetting Events in Intermittent Rivers and Ephemeral Streams: A Global Analysis of Leached Nutrients and Organic Matter. Glob. Chang. Biol. 2019, 25, 1591–1611. [Google Scholar] [CrossRef] [Green Version]
- Margat, J.; Treyer, S. L’eau Des Méditerranéens; Editions L’Harmattan: Paris, France, 2004; Volume 158, ISBN 2296600255. [Google Scholar]
- Bonada, N.; Resh, V.H. Mediterranean-Climate Streams and Rivers: Geographically Separated but Ecologically Comparable Freshwater Systems. Hydrobiologia 2013, 719, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Stahl, K.; Hisdal, H.; Hannaford, J.; Tallaksen, L.M.; Van Lanen, H.A.J.; Sauquet, E.; Demuth, S.; Fendekova, M.; Jódar, J. Streamflow Trends in Europe: Evidence from a Dataset of near-Natural Catchments. Hydrol. Earth Syst. Sci. 2010, 14, 2367–2382. [Google Scholar] [CrossRef] [Green Version]
- Tzoraki, O.; De Girolamo, A.-M.; Gamvroudis, C.; Skoulikidis, N. Assessing the Flow Alteration of Temporary Streams under Current Conditions and Changing Climate by Soil and Water Assessment Tool Model. Int. J. River Basin Manag. 2016, 14, 9–18. [Google Scholar] [CrossRef]
- Bormann, H.; Pinter, N. Trends in Low Flows of German Rivers since 1950: Comparability of Different Low-flow Indicators and Their Spatial Patterns. River Res. Appl. 2017, 33, 1191–1204. [Google Scholar] [CrossRef]
- Rutkowska, A.; Kohnová, S.; Banasik, K.; Szolgay, J. Flow Characteristics of Intermittent Rivers in Slovakia. Ann. Wars. Univ. Life Sci. SGGW Land Reclam. 2018, 50, 215–227. [Google Scholar] [CrossRef]
- Tramblay, Y.; Rutkowska, A.; Sauquet, E.; Sefton, C.; Laaha, G.; Osuch, M.; Albuquerque, T.; Alves, M.H.; Banasik, K.; Beaufort, A. Trends in Flow Intermittence for European Rivers. Hydrol. Sci. J. 2021, 66, 37–49. [Google Scholar] [CrossRef]
- De Girolamo, A.M.; Barca, E.; Leone, M.; Porto, A. Lo Impact of Long-Term Climate Change on Flow Regime in a Mediterranean Basin. J. Hydrol. Reg. Stud. 2022, 41, 101061. [Google Scholar] [CrossRef]
- WFD Directive. 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; European Environment Agency: Brussels, Belgium, 2000; Volume 327, Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2000:327:FULL&from=EN (accessed on 14 January 2023).
- European Commission. The Water Framework Directive and the Floods Directive: Action towards the “Good Status” of EU Water and to Reduce Flood Risks; European Commission: Brussels, Belgium, 2015; p. 120. [Google Scholar]
- Borg Galea, A.; Sadler, J.P.; Hannah, D.M.; Datry, T.; Dugdale, S.J. Mediterranean Intermittent Rivers and Ephemeral Streams: Challenges in Monitoring Complexity. Ecohydrology 2019, 12, e2149. [Google Scholar] [CrossRef]
- Datry, T.; Corti, R.; Heino, J.; Hugueny, B.; Rolls, R.J.; Ruhí, A. Chapter 4.9—Habitat Fragmentation and Metapopulation, Metacommunity, and Metaecosystem Dynamics in Intermittent Rivers and Ephemeral Streams. In Intermittent Rivers and Ephemeral Streams; Datry, T., Bonada, N., Boulton, A., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 377–403. ISBN 978-0-12-803835-2. [Google Scholar]
- Devlin, M.; Waterhouse, J.; Taylor, J.; Brodie, J. Flood Plumes in the Great Barrier Reef: Spatial and Temporal Patterns in Composition and Distribution; Series Research Publication Series No. 68; A Report to Great Barrier Reef Marine Park Authority; TropWater, James Cook University: Townsville, QLD, Australia, 2001. [Google Scholar]
- Gaston, T.F.; Schlacher, T.A.; Connolly, R.M. Flood Discharges of a Small River into Open Coastal Waters: Plume Traits and Material Fate. Estuar. Coast. Shelf Sci. 2006, 69, 4–9. [Google Scholar] [CrossRef]
- Costigan, K.H.; Kennard, M.J.; Leigh, C.; Sauquet, E.; Datry, T.; Boulton, A.J. Flow Regimes in Intermittent Rivers and Ephemeral Streams. In Intermittent Rivers and Ephemeral Streams; Elsevier: Amsterdam, The Netherlands, 2017; pp. 51–78. [Google Scholar]
- Velegrakis, A.F.; Vousdoukas, M.I.; Andreadis, O.; Adamakis, G.; Pasakalidou, E.; Meligonitis, R.; Kokolatos, G. Influence of Dams on Downstream Beaches: Eressos, Lesbos, Eastern Mediterranean. Mar. Georesour. Geotechnol. 2008, 26, 350–371. [Google Scholar] [CrossRef]
- Ren, J.; Wu, J. Sediment Trapping by Haloclines of a River Plume in the Pearl River Estuary. Cont. Shelf Res. 2014, 82, 1–8. [Google Scholar] [CrossRef]
- Restrepo, J.C.; Schrottke, K.; Traini, C.; Bartholomae, A.; Ospino, S.; Ortíz, J.C.; Otero, L.; Orejarena, A. Estuarine and Sediment Dynamics in a Microtidal Tropical Estuary of High Fluvial Discharge: Magdalena River (Colombia, South America). Mar. Geol. 2018, 398, 86–98. [Google Scholar] [CrossRef]
- Gelfenbaum, G.; Pennock, J.; Stumpf, R.P. Wind and Tidal Forcing of a Buoyant Plume, Mobile Bay, Alabama. Cont. Shelf Res. 1993, 13, 1281–1301. [Google Scholar]
- Xia, M.; Xie, L.; Pietrafesa, L.J. Modeling of the Cape Fear River Estuary Plume. Estuaries Coasts 2007, 30, 698–709. [Google Scholar] [CrossRef]
- Horner-Devine, A.R.; Hetland, R.D.; MacDonald, D.G. Mixing and Transport in Coastal River Plumes. Annu. Rev. Fluid Mech. 2015, 47, 569–594. [Google Scholar] [CrossRef]
- Frey, D.; Osadchiev, A. Large River Plumes Detection by Satellite Altimetry: Case Study of the Ob–Yenisei Plume. Remote Sens. 2021, 13, 5014. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Zimba, P.V.; Everitt, J.H. Remote Sensing Techniques to Assess Water Quality. Photogramm. Eng. Remote Sens. 2003, 69, 695–704. [Google Scholar] [CrossRef] [Green Version]
- Warrick, J.A.; Mertes, L.A.K.; Washburn, L.; Siegel, D.A. Dispersal Forcing of Southern California River Plumes, Based on Field and Remote Sensing Observations. Geo-Mar. Lett. 2004, 24, 46–52. [Google Scholar] [CrossRef]
- Alvarez-Romero, J.G.; Devlin, M.; Teixeira da Silva, E.; Petus, C.; Ban, N.C.; Pressey, R.L.; Kool, J.; Roberts, J.J.; Cerdeira-Estrada, S.; Wenger, A.S.; et al. A Novel Approach to Model Exposure of Coastal-Marine Ecosystems to Riverine Flood Plumes Based on Remote Sensing Techniques. J. Environ. Manag. 2013, 119, 194–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeinali, S.; Dehghani, M.; Rastegar, M.A.; Mojarrad, M. Detecting Shoreline Changes in Chabahar Bay by Processing Satellite Images. Sci. Iran. 2017, 24, 1802–1809. [Google Scholar] [CrossRef] [Green Version]
- Guneroglu, A.; Karsli, F.; Dihkan, M. Automatic Detection of Coastal Plumes Using Landsat TM/ETM+ Images. Int. J. Remote Sens. 2013, 34, 4702–4714. [Google Scholar] [CrossRef]
- Gancheva, I.; Peneva, E.; Slabakova, V. Detecting the Surface Signature of Riverine and Effluent Plumes along the Bulgarian Black Sea Coast Using Satellite Data. Remote Sens. 2021, 13, 4094. [Google Scholar] [CrossRef]
- Haji Gholizadeh, M.; Melesse, A.M.; Reddi, L. Spaceborne and Airborne Sensors in Water Quality Assessment. Int. J. Remote Sens. 2016, 37, 3143–3180. [Google Scholar] [CrossRef]
- Schulz, D.; Yin, H.; Tischbein, B.; Verleysdonk, S.; Adamou, R.; Kumar, N. Land Use Mapping Using Sentinel-1 and Sentinel-2 Time Series in a Heterogeneous Landscape in Niger, Sahel. ISPRS J. Photogramm. Remote Sens. 2021, 178, 97–111. [Google Scholar] [CrossRef]
- Singh, D.; Kaur, M.; Jabarulla, M.Y.; Kumar, V.; Lee, H.-N. Evolving Fusion-Based Visibility Restoration Model for Hazy Remote Sensing Images Using Dynamic Differential Evolution. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1002214. [Google Scholar] [CrossRef]
- Vousdoukas, M. ORASIS—A Coastal Video Monitoring Platform. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 7–12 April 2013. EGU2013-3036. [Google Scholar]
- Huntley, D.; Saulter, A.; Kingston, K.; Holman, R. Use of Video Imagery to Test Model Predictions of Surf Heights. WIT Trans. Ecol. Environ. 2009, 126, 39–50. [Google Scholar] [CrossRef]
- Hattori, N.; Sato, S.; Yamanaka, Y. Development of an Imagery-Based Monitoring System for Nearshore Bathymetry by Using Wave Breaking Density. Coast. Eng. J. 2019, 61, 308–320. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J. Estimation of Water Surface Flow Velocity in Coastal Video Imagery by Visual Tracking with Deep Learning. J. Coast. Res. 2020, 95, 522–526. [Google Scholar] [CrossRef]
- Velegrakis, A.F.; Trygonis, V.; Chatzipavlis, A.E.; Karambas, T.; Vousdoukas, M.I.; Ghionis, G.; Monioudi, I.N.; Hasiotis, T.; Andreadis, O.; Psarros, F. Shoreline Variability of an Urban Beach Fronted by a Beachrock Reef from Video Imagery. Nat. Hazards 2016, 83, 201–222. [Google Scholar] [CrossRef]
- Chatzipavlis, A.; Tsekouras, G.E.; Trygonis, V.; Velegrakis, A.F.; Tsimikas, J.; Rigos, A.; Hasiotis, T.; Salmas, C. Modeling Beach Realignment Using a Neuro-Fuzzy Network Optimized by a Novel Backtracking Search Algorithm. Neural Comput. Appl. 2019, 31, 1747–1763. [Google Scholar] [CrossRef]
- Santos, D.; Abreu, T.; Silva, P.A.; Santos, F.; Baptista, P. Nearshore Bathymetry Retrieval from Wave-Based Inversion for Video Imagery. Remote Sens. 2022, 14, 2155. [Google Scholar] [CrossRef]
- Zhan, Y.; Aarninkhof, S.G.J.; Wang, Z.; Qian, W.; Zhou, Y. Daily Topographic Change Patterns of Tidal Flats in Response to Anthropogenic Activities: Analysis through Coastal Video Imagery. J. Coast. Res. 2020, 36, 103–115. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Upadhyay, P.; Linhoss, A.; Kelble, C.; Ashby, S.; Murphy, N.; Parajuli, P.B. Applications of the SWAT Model for Coastal Watersheds: Review and Recommendations. J. ASABE 2022, 65, 453–469. [Google Scholar] [CrossRef]
- Daramola, J.; Ekhwan, T.M.; Mokhtar, J.; Lam, K.C.; Adeogun, G.A. Estimating Sediment Yield at Kaduna Watershed, Nigeria Using Soil and Water Assessment Tool (SWAT) Model. Heliyon 2019, 5, e02106. [Google Scholar] [CrossRef] [Green Version]
- Nepal, D.; Parajuli, P.B. Assessment of Best Management Practices on Hydrology and Sediment Yield at Watershed Scale in Mississippi Using SWAT. Agriculture 2022, 12, 518. [Google Scholar] [CrossRef]
- De Girolamo, A.M.; Lo Porto, A.; Pappagallo, G.; Gallart, F. Assessing Flow Regime Alterations in a Temporary River—The River Celone Case Study. J. Hydrol. Hydromech. 2015, 63, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Nabih, S.; Tzoraki, O.; Zanis, P.; Tsikerdekis, T.; Akritidis, D.; Kontogeorgos, I.; Benaabidate, L. Alteration of the Ecohydrological Status of the Intermittent Flow Rivers and Ephemeral Streams Due to the Climate Change Impact (Case Study: Tsiknias River). Hydrology 2021, 8, 43. [Google Scholar] [CrossRef]
- Glavan, M.; Ceglar, A.; Pintar, M. Assessing the Impacts of Climate Change on Water Quantity and Quality Modelling in Small Slovenian Mediterranean Catchment—Lesson for Policy and Decision Makers. Hydrol. Process. 2015, 29, 3124–3144. [Google Scholar] [CrossRef]
- Glavan, M.; Pintar, M.; Volk, M. Land Use Change in a 200-year Period and Its Effect on Blue and Green Water Flow in Two Slovenian Mediterranean Catchments—Lessons for the Future. Hydrol. Process. 2013, 27, 3964–3980. [Google Scholar] [CrossRef]
- Chahinian, N.; Tournoud, M.-G.; Perrin, J.-L.; Picot, B. Flow and Nutrient Transport in Intermittent Rivers: A Modelling Case-Study on the Vène River Using SWAT 2005. Hydrol. Sci. J. J. Sci. Hydrol. 2011, 56, 268–287. [Google Scholar] [CrossRef]
- De Girolamo, A.M.; Lo Porto, A. Land Use Scenario Development as a Tool for Watershed Management within the Rio Mannu Basin. Land Use Policy 2012, 29, 691–701. [Google Scholar] [CrossRef]
- Gamvroudis, C.; Nikolaidis, N.P.; Tzoraki, O.; Papadoulakis, V.; Karalemas, N. Water and Sediment Transport Modeling of a Large Temporary River Basin in Greece. Sci. Total Environ. 2015, 508, 354–365. [Google Scholar] [CrossRef]
- Nerantzaki, S.D.; Giannakis, G.V.; Efstathiou, D.; Nikolaidis, N.P.; Sibetheros, I.A.; Karatzas, G.P.; Zacharias, I. Modeling Suspended Sediment Transport and Assessing the Impacts of Climate Change in a Karstic Mediterranean Watershed. Sci. Total Environ. 2015, 538, 288–297. [Google Scholar] [CrossRef]
- Pastor, A.V.; Tzoraki, O.; Bruno, D.; Kaletová, T.; Mendoza-Lera, C.; Alamanos, A.; Brummer, M.; Datry, T.; De Girolamo, A.M.; Jakubínský, J.; et al. Rethinking Ecosystem Service Indicators for Their Application to Intermittent Rivers. Ecol. Indic. 2022, 137, 108693. [Google Scholar] [CrossRef]
- Alexandrakis, G.; Ghionis, G.; Poulos, S. The Effect of Beach Rock Formation on the Morphological Evolution of a Beach. The Case Study of an Eastern Mediterranean Beach: Ammoudara, Greece. J. Coast. Res. 2013, 69, 47–59. [Google Scholar] [CrossRef]
- Kontogianni, A.; Damigos, D.; Tourkolias, C.; Vousdoukas, M.; Velegrakis, A.; Zanou, B.; Skourtos, M. Eliciting Beach Users’ Willingness to Pay for Protecting European Beaches from Beachrock Processes. Ocean Coast. Manag. 2014, 98, 167–175. [Google Scholar] [CrossRef]
- Tsekouras, G.E.; Trygonis, V.; Maniatopoulos, A.; Rigos, A.; Chatzipavlis, A.; Tsimikas, J.; Mitianoudis, N.; Velegrakis, A.F. A Hermite Neural Network Incorporating Artificial Bee Colony Optimization to Model Shoreline Realignment at a Reef-Fronted Beach. Neurocomputing 2018, 280, 32–45. [Google Scholar] [CrossRef]
- Rentzepopoulou, M.S. Morphodynamics of Ammoudara Beach, Herakleion, Crete: Interaction with the a Natural Submerged Reef/Wave Breaker. Master’s Thesis, University of the Aegean, Department of Marine Sciences, Mytilene, Greece, 2014. [Google Scholar]
- Chatzipavlis, A.E.; Zamboukas, V.; Trygonis, V.; Velegrakis, A.F. Automated 2-D Shoreline and Wave Run-Up Detections from High Frequency Optical Data. Example from an Urban Perched Beach: Ammoudara, Herakleion—Crete. In Proceedings of the HydroMedit International Congress on Applied Ichtyology Oceanography and Aquatic Environment, Athens Greece, 4–6 November 2021; pp. 269–272. [Google Scholar]
- Ganoulis, J. The 1994 Flood of the Giofyros on the Crete Island: A Case Study of Risk-Based Floodplain Management. In Proceedings of the U.S.—Italy Research Workshop on the Hydrometeorology, Impacts, and Management of Extreme Floods, Perugia, Italy, 13–17 November 1995. [Google Scholar]
- Kontogeorgos, I. Modeling of the Hydrology of the Drainage Basin of Giofyros and Xiropotamos Rivers, Heraklion Crete. Ph.D. Thesis, Environmental Engineering School, Technical University of Crete, Chania, Greece, 2014. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development 1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Neitsch, S.; Arnold, J.G.; Kiniry, J.; Williams, J. Soil & Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute Technical Report No. 406; Texas A&M University System: College Station, TX, USA, 2011. [Google Scholar]
- Jha, M.K. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis. Water 2011, 3, 604–617. [Google Scholar] [CrossRef] [Green Version]
- Mehan, S.; Neupane, R.P.; Kumar, S. Coupling of SUFI 2 and SWAT for Improving the Simulation of Streamflow in an Agricultural Watershed of South Dakota. Hydrol. Curr. Res. 2017, 8, 1000280. [Google Scholar] [CrossRef]
- Feyereisen, G.W.; Strickland, T.C.; Bosch, D.D.; Sullivan, D.G. Evaluation of SWAT Manual Calibration and Input Parameter Sensitivity in the Little River Watershed. Trans. ASABE 2007, 50, 843–855. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Vaghefi, S.A.; Srinivasan, R. A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference. Water 2017, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Di, Z.; Duan, Q. Effect of Sensitivity Analysis on Parameter Optimization: Case Study Based on Streamflow Simulations Using the SWAT Model in China. J. Hydrol. 2021, 603, 126896. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling Hydrology and Water Quality in the Pre-Alpine/Alpine Thur Watershed Using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Krause, P.; Boyle, D.P.; Bäse, F. Comparison of Different Efficiency Criteria for Hydrological Model Assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe Jr, G.J. Evaluating the Use of “Goodness-of-fit” Measures in Hydrologic and Hydroclimatic Model Validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Grayson, R.; Blöschl, G. Spatial Modelling of Catchment Dynamics. In Spatial Patterns in Catchment Hydrology: Observations and Modelling; Cambridge University Press: Cambridge, UK, 2001; pp. 51–81. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting Through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Lane, S.N.; Richards, K.S.; Chandler, J.H. Discharge and Sediment Supply Controls on Erosion and Deposition in a Dynamic Alluvial Channel. Geomorphology 1996, 15, 1–15. [Google Scholar] [CrossRef]
- Goodwin, N.; Turner, R.; Merton, R. Classifying Eucalyptus Forests with High Spatial and Spectral Resolution Imagery: An Investigation of Individual Species and Vegetation Communities. Aust. J. Bot. 2005, 53, 337–345. [Google Scholar] [CrossRef]
- Malagò, A.; Efstathiou, D.; Bouraoui, F.; Nikolaidis, N.P.; Franchini, M.; Bidoglio, G.; Kritsotakis, M. Regional Scale Hydrologic Modeling of a Karst-Dominant Geomorphology: The Case Study of the Island of Crete. J. Hydrol. 2016, 540, 64–81. [Google Scholar] [CrossRef]
- Huang, D.; Wang, Y.; Song, W.; Sequeira, J.; Mavromatis, S. Shallow-Water Image Enhancement Using Relative Global Histogram Stretching Based on Adaptive Parameter Acquisition. In MultiMedia Modeling; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 10704, pp. 453–465. [Google Scholar]
- Vozinaki, A.-E.; Tapoglou, E.; Tsanis, I.K. Hydrometeorological Impact of Climate Change in Two Mediterranean Basins. Int. J. River Basin Manag. 2018, 16, 245–257. [Google Scholar] [CrossRef]
- Dierssen, H.M.; Kudela, R.M.; Ryan, J.P.; Zimmerman, R.C. Red and Black Tides: Quantitative Analysis of Water-Leaving Radiance and Perceived Color for Phytoplankton, Colored Dissolved Organic Matter, and Suspended Sediments. Limnol. Oceanogr. 2006, 51, 2646–2659. [Google Scholar] [CrossRef] [Green Version]
- Soulis, K.X. Soil Conservation Service Curve Number (SCS-CN) Method: Current Applications, Remaining Challenges, and Future Perspectives. Water 2021, 13, 192. [Google Scholar] [CrossRef]
- Beven, K. Prophecy, Reality and Uncertainty in Distributed Hydrological Modelling. Adv. Water Resour. 1993, 16, 41–51. [Google Scholar] [CrossRef]
- Beven, K. A Manifesto for the Equifinality Thesis. J. Hydrol. 2006, 320, 18–36. [Google Scholar] [CrossRef] [Green Version]
- Gaume, E.; Borga, M.; Llassat, M.C.; Maouche, S.; Lang, M.; Diakakis, M. Mediterranean Extreme Floods. In The Mediterranean Region under Climate Change. A Scientific Update; IRD Editions: Paris, France, 2016. [Google Scholar]
- Gaume, E.; Bain, V.; Bernardara, P.; Newinger, O.; Barbuc, M.; Bateman, A.; Blaškovičová, L.; Blöschl, G.; Borga, M.; Dumitrescu, A. A Compilation of Data on European Flash Floods. J. Hydrol. 2009, 367, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Bainbridge, Z.; Lewis, S.; Stevens, T.; Petus, C.; Lazarus, E.; Gorman, J.; Smithers, S. Measuring Sediment Grain Size across the Catchment to Reef Continuum: Improved Methods and Environmental Insights. Mar. Pollut. Bull. 2021, 168, 112339. [Google Scholar] [CrossRef]
- Yankovsky, A.E.; Hickey, B.M.; Münchow, A.K. Impact of Variable Inflow on the Dynamics of a Coastal Buoyant Plume. J. Geophys. Res. Ocean. 2001, 106, 19809–19824. [Google Scholar] [CrossRef] [Green Version]
- Ostrander, C.E.; McManus, M.A.; DeCarlo, E.H.; Mackenzie, F.T. Temporal and Spatial Variability of Freshwater Plumes in a Semienclosed Estuarine-Bay System. Estuaries Coasts 2008, 31, 192–203. [Google Scholar] [CrossRef]
Data | Source | Resolution |
---|---|---|
DEM | STRM- United States Geological Survey (USGS) https://earthexplorer.usgs.gov/ (accessed on 15 October 2021) | 30 m |
Land use | Land use map of The European Environment Agency (EEA) | - |
Soil | Harmonized world soil database (HWSD)/FAO | - |
Observed Hydrometeorology | Directorate of Water of the Decentralized Administration of Crete/National Meteorological Service | Daily |
File 1 | Parameter Name | Description | Range |
---|---|---|---|
.GW | GWQMN | Threshold depth of water in shallow aquifer required for return flow to occur (mm H2O) | 0–5000 |
RCHRG_DP ALPHA_BF | Deep aquifer percolation fraction Baseflow alpha factor (1/days) | 0–1 0.1–1 | |
.SOL | SOL_Z | Depth from soil surface to bottom of layer (mm) | 0–3500 |
SOL_AWC | Available water capacity of the soil layer (mm H2O/mm soil) | 0–1 | |
.HRU | LAT_TIME | Lateral flow travel time (days) | 0–18 |
EPCO | Plant uptake compensation factor. | 0–1 | |
ESCO | Soil evapotranspiration compensation factor | 0–1 | |
CANMX | Maximum canopy storage (mm H2O) | 0–100 | |
.RTE | CH_K2 | Effective hydraulic conductivity in main channel alluvium (mm/h) | (−0.01) until 150 |
.MGT | CN2 | Initial SCS runoff curve number for moisture condition II. | 35–98 |
No. 1 | Parameter Name | Fitted Value | Min | Max | p Value |
---|---|---|---|---|---|
1 | R__SOL_K (1).sol | 0.88450 | −0.10000 | 1.0000 | 0.00000 |
2 | R__RCHRG_DP.gw | 0.43550 | −0.10000 | 0.6000 | 0.00000 |
3 | R__SOL_Z (1).sol | 1.02765 | 0.50000 | 1.1100 | 0.00005 |
4 | V__CANMX.hru | 12.1500 | 0.00000 | 30.000 | 0.01127 |
5 | V__EPCO.bsn | 0.93912 | 0.927336 | 0.9821 | 0.02186 |
6 | R__CH_K1.sub | 17.6250 | 15.0000 | 40.000 | 0.12865 |
7 | V__ESCO.bsn | 0.17315 | 0.15667 | 0.27032 | 0.31120 |
8 | R__CN2.mgt | −0.37277 | −0.39585 | −0.34922 | 0.40871 |
9 | R__SOL_AWC (1).sol | 0.57501 | 0.49290 | 0.58363 | 0.42238 |
10 | R__GWQMN.gw | −0.43125 | −0.50000 | 0.75000 | 0.65486 |
11 | R__ALPHA_BF.gw | −1.09526 | −1.09568 | −1.0100 | 0.72990 |
Satisfactory Level | Calibration | Validation | |
---|---|---|---|
NSE | >0.5 | 0.62 | 0.58 |
PBIAS | 25% | 8.6 | −2.3 |
RSR | <0.7 | 0.61 | 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joumar, N.; Nabih, S.; Chatzipavlis, A.; Velegrakis, A.; Hasiotis, T.; Tzoraki, O.; Stitou El Messari, J.E.; Benaabidate, L. A Qualitative Assessment of River Plumes Coupling SWAT Model Simulations and a Beach Optical Monitoring System. Hydrology 2023, 10, 38. https://doi.org/10.3390/hydrology10020038
Joumar N, Nabih S, Chatzipavlis A, Velegrakis A, Hasiotis T, Tzoraki O, Stitou El Messari JE, Benaabidate L. A Qualitative Assessment of River Plumes Coupling SWAT Model Simulations and a Beach Optical Monitoring System. Hydrology. 2023; 10(2):38. https://doi.org/10.3390/hydrology10020038
Chicago/Turabian StyleJoumar, Nada, Soumaya Nabih, Antonis Chatzipavlis, Adonis Velegrakis, Thomas Hasiotis, Ourania Tzoraki, Jamal Eddine Stitou El Messari, and Lahcen Benaabidate. 2023. "A Qualitative Assessment of River Plumes Coupling SWAT Model Simulations and a Beach Optical Monitoring System" Hydrology 10, no. 2: 38. https://doi.org/10.3390/hydrology10020038
APA StyleJoumar, N., Nabih, S., Chatzipavlis, A., Velegrakis, A., Hasiotis, T., Tzoraki, O., Stitou El Messari, J. E., & Benaabidate, L. (2023). A Qualitative Assessment of River Plumes Coupling SWAT Model Simulations and a Beach Optical Monitoring System. Hydrology, 10(2), 38. https://doi.org/10.3390/hydrology10020038