A Glycerol Acetylation Study on a Tin Ferrite Nanocatalyst
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Catalysts’ Preparation
2.3. Catalyst Characterization Equipment
2.4. Procedure for Catalyst Testing
3. Results and Discussion
3.1. Catalyst Characterization Results
3.2. Evaluation of Catalyst Performance Using Box–Behnken Design Techniques
3.3. Effect of Process Variables
3.4. Modeling of Process Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dusescu, C.; Rosca, P.; Bombos, D.; Juganaru, T.; Popovici, D.; Dragomir, R. Hydrogen from Glycerol by Steam Reforming. Rev. Chim. 2012, 63, 229–231. [Google Scholar]
- Dusescu, C.; Bolocan, I. The Glycerol Hydrogenolysis on New Supported Catalysts. Rev. Chim. 2012, 63, 305–309. [Google Scholar]
- Dusescu, C.; Bolocan, I. New Catalysts for the Glycerol Hydrogenolysis. Rev. Chim. 2012, 63, 732–738. [Google Scholar]
- Almeida, E.L.; Olivo, J.E.; Andrade, C.M.G. Production of Biofuels from Glycerol from the Biodiesel Production Process-A Brief Review. Fermentation 2023, 9, 18. [Google Scholar] [CrossRef]
- Wan, T.; Lin, Y.; Tu, Y. Plasticizing effect of glyceryl tribenzoate, dipropylene glycol dibenzoate, and glyceryl triacetate on poly(lactic acid). Polym. Eng. Sci. 2016, 56, 1399–1406. [Google Scholar] [CrossRef]
- Murariu, M.; Ferreira, A.D.S.; Alexandre, M.; Dubois, P. Polylactide (PLA) designed with desired end-use properties: 1. PLA compositions with low molecular weight ester-like plasticizers and related performances. Polym. Adv. Technol. 2008, 19, 636–646. [Google Scholar] [CrossRef]
- Fiume, M. Final Report on the Safety Assessment of Triacetin. Int. J. Toxicol. 2003, 22, 1–10. [Google Scholar] [CrossRef]
- Herrera, N.; Mathew, A.P.; Oksman, K. Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: Mechanical, thermal and optical properties. Compos. Sci. Technol. 2015, 106, 149–155. [Google Scholar] [CrossRef]
- Arias, V.; Höglund, A.; Odelius, K.; Albertsson, A.-C. Polylactides with “green” plasticizers: Influence of isomer composition. J. Appl. Polym. Sci. 2013, 130, 2962–2970. [Google Scholar] [CrossRef]
- Singh, A.A.; Sharma, S.; Srivastava, M.; Majumdar, A. Modulating the properties of polylactic acid for packaging applications using biobased plasticizers and naturally obtained fillers. Int. J. Biol. Macromol. 2020, 153, 1165–1175. [Google Scholar] [CrossRef]
- Salas-Papayanopolos, H.; Morales-Cepeda, A.B.; Sanchez, S.; Lafleur, P.G.; Gomez, I. Synergistic effect of silver nanoparticle content on the optical and thermo-mechanical properties of poly(l-lactic acid)/glycerol triacetate blends. Polym. Bull. 2017, 74, 4799–4814. [Google Scholar] [CrossRef]
- Merli, G.; Becci, A.; Amato, A.; Beolchini, F. Acetic acid bioproduction: The technological innovation change. Sci. Total Environ. 2021, 798, 149292. [Google Scholar] [CrossRef]
- Keogh, J.; Inrirai, P.; Artioli, N.; Manyar, H. Nanostructured Solid/Liquid Acid Catalysts for Glycerol Esterification: The Key to Convert Liability into Assets. Nanomaterials 2024, 14, 615. [Google Scholar] [CrossRef] [PubMed]
- Abida, K.; Ali, A. A review on catalytic role of heterogeneous acidic catalysts during glycerol acetylation to yield acetins. J. Indian Chem. Soc. 2022, 99, 100459. [Google Scholar] [CrossRef]
- Gupta, P.; Paul, S. Solid acids: Green alternatives for acid catalysis. Catal. Today 2014, 236, 153–170. [Google Scholar] [CrossRef]
- Keogh, J.; Jeffrey, C.; Tiwari, M.S.; Manyar, H. Kinetic Analysis of Glycerol Esterification Using Tin Exchanged Tungstophosphoric Acid on K-10. Ind. Eng. Chem. Res. 2023, 62, 19095–19103. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.M.; Ma, H.Y.; Wu, Y.; Wang, C.; Yang, M.A.; Yan, P.F.; Welz-Biermann, U. Esterification of glycerol with acetic acid using double SO3H-functionalized ionic liquids as recoverable catalysts. Green Chem. 2011, 13, 697–701. [Google Scholar] [CrossRef]
- Li, L.; Yu, S.-T.; Xie, C.-X.; Liu, F.-S.; Li, H.-J. Synthesis of glycerol triacetate using functionalized ionic liquid as catalyst. J. Chem. Technol. Biotechnol. 2009, 84, 1649–1652. [Google Scholar] [CrossRef]
- Liu, S.; Wang, A.; Liu, Z.; Li, L.; Yu, S.; Xie, C.; Liu, F. Synthesis of Glycerol Triacetate Using a Brønsted–Lewis Acidic Ionic Liquid as the Catalyst. J. Am. Oil Chem. Soc. 2015, 92, 1253–1258. [Google Scholar] [CrossRef]
- Huang, M.Y.; Han, X.X.; Hung, C.T.; Lin, J.C.; Wu, P.H.; Wu, J.C.; Liu, S.B. Heteropolyacid-based ionic liquids as efficient homogeneous catalysts for acetylation of glycerol. J. Catal. 2014, 320, 42–51. [Google Scholar] [CrossRef]
- Gujjala, L.K.S.; Kundu, D.; Dutta, D.; Kumar, A.; Bal, M.; Kumar, A.; Singh, E.; Mishra, R.; Kumar, S.; Vo, D.-V.N. Advances in ionic liquids: Synthesis, environmental remediation and reusability. J. Mol. Liq. 2024, 396, 123896. [Google Scholar] [CrossRef]
- Kong, P.S.; Aroua, M.K.; Daud, W.M.A.W.; Lee, H.V.; Cognet, P.; Pérès, Y. Catalytic role of solid acid catalysts in glycerol acetylation for the production of bio-additives: A review. RSC Adv. 2016, 6, 68885–68905. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, Y.; Huang, Y.; Wang, J.; Gao, J.; Xu, J. Selective esterification of glycerol with acetic acid to diacetin using antimony pentoxide as reusable catalyst. J. Energy Chem. 2015, 24, 632–636. [Google Scholar] [CrossRef]
- Kulkarni, R.M.; Dhanyashree, J.K.; Varma, E.; Sirivibha, S.P. Microwave assisted glycerol esterification using CeO2, ZrO2, mixed metal oxide catalyst. Mater. Today Proc. 2024, 102, 416–427. [Google Scholar] [CrossRef]
- Sun, J.Y.; Tong, X.L.; Yu, L.H.; Wan, J. An efficient and sustainable production of triacetin from the acetylation of glycerol using magnetic solid acid catalysts under mild conditions. Catal. Today 2016, 264, 115–122. [Google Scholar] [CrossRef]
- Reddy, P.S.; Sudarsanam, P.; Raju, G.; Reddy, B.M. Synthesis of bio-additives: Acetylation of glycerol over zirconia-based solid acid catalysts. Catal. Commun. 2010, 11, 1224–1228. [Google Scholar] [CrossRef]
- Wang, B.; Wang, B.; Shukla, S.K.; Wang, R. Enabling Catalysts for Biodiesel Production via Transesterification. Catalysts 2023, 13, 740. [Google Scholar] [CrossRef]
- Esmaili, S.; Khazaei, A.; Ghorbani-Choghamarani, A.; Mohammadi, M. Silica sulfuric acid coated on SnFe2O4 MNPs: Synthesis, characterization and catalytic applications in the synthesis of polyhydroquinolines. RSC Adv. 2022, 12, 14397–14410. [Google Scholar] [CrossRef]
- Liu, F.; Li, T.; Zheng, H. Structure and magnetic properties of SnFe2O4 nanoparticles. Phys. Lett. A 2004, 323, 305–309. [Google Scholar] [CrossRef]
- Doukeh, R.; Râpă, M.; Matei, E.; Prodan, D.; Győrgy, R.; Trifoi, A.; Banu, I. An Evaluation of Glycerol Acetalization with Benzaldehyde over a Ferromagnetic Heteropolyacid Catalyst. Catalysts 2023, 13, 782. [Google Scholar] [CrossRef]
- Smirnov, A.A.; Selishcheva, S.A.; Yakovlev, V.A. Acetalization Catalysts for Synthesis of Valuable Oxygenated Fuel Additives from Glycerol. Catalysts 2018, 8, 595. [Google Scholar] [CrossRef]
- Hasabnis, A.; Mahajani, S. Entrainer-Based Reactive Distillation for Esterification of Glycerol with Acetic Acid. Ind. Eng. Chem. Res. 2010, 49, 9058–9067. [Google Scholar] [CrossRef]
- Banu, I.; Bumbac, G.; Bombos, D.; Velea, S.; Gălan, A.-M.; Bozga, G. Glycerol acetylation with acetic acid over Purolite CT-275. Product yields and process kinetics. Renew. Energ. 2020, 148, 548–557. [Google Scholar] [CrossRef]
- Hussain, M.; Gassoumi, A.; Weinstein, I.A.; Kahshan, A.; Ahmad, K.; Henaish, A.M.A. Fabrication of high performance SnFe2O4@PANI electrocatalyst for Oxygen Evaluation Reaction (OER) by hydrothermal method. J. Sol-Gel Sci. Technol. 2024, 112, 322–331. [Google Scholar] [CrossRef]
- Jia, Y.; Kim, D.-H.; Lee, T.; Kang, S.; Lee, B.W.; Rhee, S.J.; Liu, C. One-pot solvothermal synthesis of magnetic SnFe2O4 nanoparticles and their performance in the photocatalytic degradation of chlortetracycline with visible light radiation. RSC Adv. 2016, 6, 76542–76550. [Google Scholar] [CrossRef]
- Lee, K.-T.; Lu, S.-Y. A cost-effective, stable, magnetically recyclable photocatalyst of ultra-high organic pollutant degradation efficiency: SnFe2O4 nanocrystals from a carrier solvent assisted interfacial reaction process. J. Mater. Chem. A 2015, 3, 12259–12267. [Google Scholar] [CrossRef]
- Han, H.; Luo, Y.; Jia, Y.; Hasan, N.; Liu, C. A review on SnFe2O4 and their composites: Synthesis, properties, and emerging applications. Prog. Nat. Sci. Mater. Int. 2022, 32, 517–527. [Google Scholar] [CrossRef]
- Lee, K.-T.; Liu, D.-M.; Lu, S.-Y. SnFe2O4 Nanocrystals as Highly Efficient Catalysts for Hydrogen-Peroxide Sensing. Chem. Eur. J. 2016, 22, 10877–10883. [Google Scholar] [CrossRef]
- Li, S.-S.; Li, W.-J.; Jiang, T.-J.; Liu, Z.-G.; Chen, X.; Cong, H.-P.; Liu, J.-H.; Huang, Y.-Y.; Li, L.-N.; Huang, X.-J. Iron Oxide with Different Crystal Phases (α- and γ-Fe2O3) in Electroanalysis and Ultrasensitive and Selective Detection of Lead(II): An Advancing Approach Using XPS and EXAFS. Anal. Chem. 2016, 88, 906–914. [Google Scholar] [CrossRef]
- Hjiri, M.; Zahmouli, N.; Khouzami, K.; Mir, L.E.; Aida, M.S.; Moulaee, K.; Lemine, O.M.; Leonardi, S.G.; Neri, G. A comparison of NO2 sensing characteristics of α- and γ-iron oxide-based solid-state gas sensors. Appl. Phys. A 2020, 126, 788. [Google Scholar] [CrossRef]
- Fardood, S.T.; Ramazani, A.; Golfar, Z.; Joo, S.W. Green Synthesis of α-Fe2O (hematite) Nanoparticles using Tragacanth Gel. J. Appl. Chem. Res. 2017, 11, 19–27. [Google Scholar]
- Sedaghati-Jamalabad, G.; Bagheri-Mohagheghi, M.M. Influence of synthesis route on structural properties of SnFe2O4 spinel phase via methods of co-precipitation, sol–gel and solvothermal: Morphology, phase analysis, crystallite size and lattice strain. Discov. Appl. Sci. 2024, 6, 202. [Google Scholar] [CrossRef]
- Sedaghati-Jamalabad, G.; Bagheri-Mohagheghi, M.M. A study on the structural and optical properties of the SnFe2O4 spinel compound as anode electrode in Li ion-battery: The optical and dielectric parameters via synthesis methods. Opt. Quantum Electron. 2024, 56, 965. [Google Scholar] [CrossRef]
- Elkahoui, Y.; Abahdou, F.-Z.; Ben Ali, M.; Alahiane, S.; Elhabacha, M.; Boutarba, Y.; El Hajjaji, S. Photocatalytic and Photo-Fenton-like Degradation of Cationic Dyes Using SnFe2O4/g-C3N4 Under LED Irradiation: Optimization by RSM-BBD and Artificial Neural Networks (ANNs). Reactions 2025, 6, 23. [Google Scholar] [CrossRef]
- Wahab, R.; Khan, F.; Al-Khedhairy, A.A. Hematite iron oxide nanoparticles: Apoptosis of myoblast cancer cells and their arithmetical assessment. RSC Adv. 2018, 8, 24750–24759. [Google Scholar] [CrossRef] [PubMed]
- Zainuri, M. Hematite from Natural Iron Stones as Microwave Absorbing Material on X-Band Frequency Ranges. IOP Conf. Ser. Mater. Sci. Eng. 2017, 196, 012008. [Google Scholar] [CrossRef]
- Akhgar, B.N. Comparing the Microstructural Changes of Mechanically Activated Hematite During Nano Zero-Valent Iron Preparation. J. Sustain. Metall. 2024, 10, 749–758. [Google Scholar] [CrossRef]
- Sargazi, S.; Hajinezhad, M.R.; Rahdar, A.; Zafar, M.N.; Awan, A.; Baino, F. Assessment of SnFe2O4 Nanoparticles for Potential Application in Theranostics: Synthesis, Characterization, In Vitro, and In Vivo Toxicity. Materials 2021, 14, 825. [Google Scholar] [CrossRef]
- Marinescu, M.; Ciuparu, D.; Bombos, D.; Dusescu-Vasile, C.M.; Popovici, R.D.; Matei, V. Hydrogenolysis of palm oil derived methyl esters over niobium and tungsten base catalysts. Stud. Univ. Babes-Bolyai Chem. 2023, 68, 71–98. [Google Scholar] [CrossRef]
- Banerjee, S.; Mukhopadhyay, P. (Eds.) Chapter 1—Phases and Crystal Structures. In Pergamon Materials Series; Pergamon: Oxford, UK, 2007; Volume 12, pp. 1–86. [Google Scholar]
- Malik, R.; Tomer, V.K.; Duhan, S.; Nehra, S.P.; Rana, P.S. One-Pot Hydrothermal Synthesis of Porous SnO2 Nanostructures for Photocatalytic Degradation of Organic Pollutants. Energy Environ. Focus 2015, 4, 340–345. [Google Scholar] [CrossRef]
- Topaloǧlu Yazıcı, D.; Bilgiç, C. Determining the surface acidic properties of solid catalysts by amine titration using Hammett indicators and FTIR-pyridine adsorption methods. Surf. Interface Anal. 2010, 42, 959–962. [Google Scholar] [CrossRef]
- Barzetti, T.; Selli, E.; Moscotti, D.; Forni, L. Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts. J. Chem. Soc. Faraday Trans. 1996, 92, 1401–1407. [Google Scholar] [CrossRef]
- Xiao, H.; Zhang, J.; Wang, P.; Zhang, Z.; Zhang, Q.; Xie, H.; Yang, G.; Han, Y.; Tan, Y. Mechanistic insight to acidity effects of Ga/HZSM-5 on its activity for propane aromatization. RSC Adv. 2015, 5, 92222–92233. [Google Scholar] [CrossRef]
- Emeis, C.A. Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. J. Catal. 1993, 141, 347–354. [Google Scholar] [CrossRef]
- Zhu, S.; Zhu, Y.; Gao, X.; Mo, T.; Zhu, Y.; Li, Y. Production of bioadditives from glycerol esterification over zirconia supported heteropolyacids. Bioresour. Technol. 2013, 130, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Tao, M.; Xue, L.; Sun, Z.; Wang, S.; Wang, X.; Shi, J. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions. Sci. Rep. 2015, 5, 13764. [Google Scholar] [CrossRef]
- Perez, F.M.; Gatti, M.N.; Santori, G.F.; Pompeo, F. Transformations of Glycerol into High-Value-Added Chemical Products: Ketalization and Esterification Reactions. Reactions 2023, 4, 569–634. [Google Scholar] [CrossRef]
- Chen, B.; Sigmund, E.E.; Halperin, W.P. Stokes-Einstein Relation in Supercooled Aqueous Solutions of Glycerol. Phys. Rev. Lett. 2006, 96, 145502. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C. Response Surface Methodology Process and Product Optimization Using Designed Experiments, 4th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2016; p. xv, 825. [Google Scholar]
- Navidi, W. Statistics for Engineers and Scientists, 3rd ed.; McGraw-Hill: New York, NY, USA, 2011; p. 908. [Google Scholar]
- Matei, P.L.; Deleanu, I.; Brezoiu, A.M.; Chira, N.A.; Busuioc, C.; Isopencu, G.; Cîlțea-Udrescu, M.; Alexandrescu, E.; Stoica-Guzun, A. Ultrasound-Assisted Extraction of Blackberry Seed Oil: Optimization and Oil Characterization. Molecules 2023, 28, 2486. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 10th ed.; Emea Edition; Wiley: Hoboken, NJ, USA, 2020; pp. x, 550, 592, 527, 552. [Google Scholar]
2θ (Degrees) | H K L | FWHM | Oxide Type | Crystallite Size (nm) |
---|---|---|---|---|
22.84 | 012 | 0.64214 | α-Fe2O3 | 13.74 |
29.22 | 220 | 1.61203 | SnFe2O4 | 5.54 |
33.92 | 104 | 0.20908 | α-Fe2O3 | 43.26 |
37.98 | 331 | 0.20815 | SnFe2O4 | 43.95 |
44.50 | 400 | 0.76432 | SnFe2O4 | 12.22 |
51.80 | 422 | 0.24541 | SnFe2O4 | 39.18 |
54.76 | 511 | 0.395 | SnFe2O4 | 24.66 |
61.90 | 440 | 0.25023 | α-Fe2O3 | 40.31 |
64.74 | 300 | 0.348 | α-Fe2O3 | 29.43 |
Experiment | X1 | X2 | X3 | Y1 | Y2 | Y3 | Y4 |
---|---|---|---|---|---|---|---|
1 | 85 | 3.3 | 1 | 34.81 | 10.89 | 23.095 | 1.825 |
2 | 85 | 3.6 | 1.5 | 64.607 | 21.53 | 37.029 | 4.048 |
3 | 100 | 3.6 | 1 | 60.933 | 25.709 | 30.76 | 4.464 |
4 | 115 | 3.6 | 1.5 | 90.082 | 37.545 | 36.7 | 15.437 |
5 | 100 | 3.3 | 1.5 | 70.497 | 27.285 | 38.947 | 4.265 |
6 | 100 | 3 | 1 | 51.136 | 18.96 | 28.833 | 3.343 |
7 | 115 | 3 | 1.5 | 76.549 | 36.81 | 28.491 | 8.648 |
8 | 115 | 3.3 | 2 | 86.028 | 37.041 | 39.56 | 10.75 |
9 | 100 | 3.6 | 2 | 89.016 | 31.049 | 50.542 | 8.178 |
10 | 100 | 3.3 | 1.5 | 70.351 | 27.185 | 38.516 | 4.65 |
11 | 85 | 3 | 1.5 | 35.938 | 9.631 | 22.82 | 3.487 |
12 | 115 | 3.3 | 1 | 73.617 | 32.048 | 30.895 | 11.274 |
13 | 85 | 3.3 | 2 | 56.206 | 16.122 | 36.827 | 3.257 |
14 | 100 | 3 | 2 | 56.734 | 24.944 | 30.75 | 1.04 |
15 | 100 | 3.3 | 1.5 | 70.209 | 27.152 | 38.952 | 4.105 |
Factor | Value | ||
---|---|---|---|
Low | Medium | High | |
Temperature (°C), X1 | 85 | 100 | 115 |
Initial AA/GLY ratio (mol/mol), X2 | 3 | 3.3 | 3.6 |
Catalyst amount (wt.%), X3 | 1 | 1.5 | 2 |
Response | Determination Coefficient, R2 | Adjusted R2 | Predicted R2 | F-Value (Calculated) | p-Value |
---|---|---|---|---|---|
Y1 | 0.999 | 0.999 | 0.996 | 2630 | 0.0001 |
Y2 | 0.999 | 0.999 | 0.997 | 2449 | 0.0001 |
Y3 | 0.995 | 0.986 | 0.923 | 111.5 | 0.0001 |
Y4 | 0.998 | 0.996 | 0.987 | 28.33 | 0.0001 |
Coefficient | Model Term | Y1 | Y2 | Y3 | Y4 |
---|---|---|---|---|---|
70.35·(1 ± 0.01) | 27.21·(1 ± 0.01) | 38.80·(1 ± 0.03) | 4.34·(1 ± 0.09) | ||
16.84·(1 ± 0.03) | 10.66·(1 ± 0.02) | 1.98·(1 ± 0.39) | 4.19·(1 ± 0.05) | ||
10.54·(1 ± 0.04) | 3.19·(1 ± 0.06) | 5.52·(1 ± 0.14) | 1.95·(1 ± 0.12) | ||
8.44·(1 ± 0.04) | 2.69·(1 ± 0.07) | 5.51·(1 ± 0.14) | 0.29·(1 ± 0.78) | ||
−3.78·(1 ± 0.14) | −2.79·(1 ± 0.10) | −1.5·(1 ± 0.73) | 1.56·(1 ± 0.21) | ||
−2.25·(1 ± 0.23) | — | −1.27·(1 ± 0.86) | −0.48·(1 ± 0.66) | ||
5.62·(1 ± 0.09) | −0.161·(1 ± 1.80) | 4.47·(1 ± 0.25) | 1.5·(1 ± 0.21) | ||
−2.67·(1 ± 0.21) | −0.984·(1 ± 0.31) | −5.09·(1 ± 0.22) | 3.04·(1 ± 0.11) | ||
−0.88·(1 ± 0.62) | 0.156·(1 ± 1.93) | −2.46·(1 ± 0.46) | 0.52·(1 ± 0.64) | ||
−5.01·(1 ± 0.11) | −2.2·(1 ± 0.13) | −1.12·(1 ± 1.02) | −0.61·(1 ± 0.55) |
X1 | X2 | X3 | Y1 | Y2 | Y3 | Y4 | |
---|---|---|---|---|---|---|---|
Calculated | 115 | 3.6 | 2 | 93.2 | 34.1 | 49.4 | 9.7 |
Experimental | 115 | 3.6 | 2 | 93.8 | 35.2 | 50.4 | 10.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doukeh, R.; Joe, A.-C.; Onuțu, I.; Ghețiu, I.V.; Băjan, M.; Vasilievici, G.; Bomboș, D.; Baioun, A.; Panaitescu, C.; Banu, I.; et al. A Glycerol Acetylation Study on a Tin Ferrite Nanocatalyst. ChemEngineering 2025, 9, 86. https://doi.org/10.3390/chemengineering9040086
Doukeh R, Joe A-C, Onuțu I, Ghețiu IV, Băjan M, Vasilievici G, Bomboș D, Baioun A, Panaitescu C, Banu I, et al. A Glycerol Acetylation Study on a Tin Ferrite Nanocatalyst. ChemEngineering. 2025; 9(4):86. https://doi.org/10.3390/chemengineering9040086
Chicago/Turabian StyleDoukeh, Rami, Andreea-Cătălina Joe, Ion Onuțu, Iuliana Veronica Ghețiu, Marian Băjan, Gabriel Vasilievici, Dorin Bomboș, Abeer Baioun, Cașen Panaitescu, Ionuț Banu, and et al. 2025. "A Glycerol Acetylation Study on a Tin Ferrite Nanocatalyst" ChemEngineering 9, no. 4: 86. https://doi.org/10.3390/chemengineering9040086
APA StyleDoukeh, R., Joe, A.-C., Onuțu, I., Ghețiu, I. V., Băjan, M., Vasilievici, G., Bomboș, D., Baioun, A., Panaitescu, C., Banu, I., & Győrgy, R. (2025). A Glycerol Acetylation Study on a Tin Ferrite Nanocatalyst. ChemEngineering, 9(4), 86. https://doi.org/10.3390/chemengineering9040086