Universal Prediction of CO2 Adsorption on Zeolites Using Machine Learning: A Comparative Analysis with Langmuir Isotherm Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection and Compilation
2.2. Zeolite Adsorbent Properties
- Adsorbent type: Zeolite classification based on structural frameworks (e.g., FAU, CHA, ZSM-5, Mordenite, 13X, 5A, 4A).
- Si/Al molar ratio: The silicon-to-aluminum ratio of zeolite frameworks, critically affecting zeolite hydrophobicity, acidity, and adsorption affinity.
- Pore size (nm): Average micropore dimensions, directly influencing molecule adsorption capacity and selectivity.
- Surface area (m2/g): The specific surface area of the adsorbent determined via BET (Brunauer–Emmett–Teller) or comparable nitrogen adsorption methods.
- Cation type: Predominant exchangeable cation present in zeolite frameworks (e.g., Na+, Ca2+, K+, Li+, NH4+), significantly influencing adsorption interactions through electrostatic attraction and polarization effects.
- Temperature (°C): Experimental temperature conditions under which adsorption equilibria were recorded, directly impacting adsorption thermodynamics.
- Pressure (bar): Equilibrium pressure range reported for CO2 adsorption experiments, essential for characterizing adsorption capacity under practical operating conditions.
- Adsorption capacity (mmol/g): The amount of CO2 adsorbed per unit mass of zeolite under specified conditions, expressed in millimoles per gram. This serves as the primary dependent variable in the study and is predicted using machine learning models based on zeolite properties and operational parameters.
2.3. Data Preprocessing and Outlier Detection
2.4. Machine Learning Model Development
2.4.1. ML Platform and Algorithms
- Generalized Linear Model (GLM): Selected for its interpretability and ease of implementation, allowing linear and nonlinear relationships to be examined through link functions.
- Feed-forward Multilayer Perceptron (DL, Deep Neural Network, implemented via RapidMiner’s ‘Deep Learning’ operator): Evaluated for its capacity to capture complex nonlinear interactions among multiple input parameters, especially useful in datasets with diverse features.
- Decision Tree (DT): Included due to its interpretability and effectiveness in handling heterogeneous datasets by segmenting data into branches based on feature conditions.
- Random Forest (RF): Assessed for its ability to reduce overfitting through ensemble methods and to capture complex interactions via multiple Decision Trees.
- Gradient Boosted Trees (GBT): Chosen for their high predictive accuracy and robustness achieved by sequentially building trees, effectively capturing subtle relationships and patterns.
- Support Vector Machine (SVM): Investigated due to its strength in handling high-dimensional feature spaces and performing well even when clear linear separation between features is lacking.
2.4.2. Data Partitioning and Training
2.4.3. Feature Engineering
2.4.4. Performance Evaluation
- Coefficient of Determination (R2): to measure the proportion of variance in adsorption data explained by the model, assessing overall predictive strength.
- Root Mean Square Error (RMSE): to quantify the magnitude of prediction error, penalizing larger deviations and thus providing a clear indicator of model accuracy.
- Mean Absolute Error (MAE): to measure average prediction error magnitude, offering intuitive insight into the practical accuracy of model predictions.
2.5. Langmuir Adsorption Isotherm Fitting
2.5.1. Selection of Datasets for Langmuir Model Comparison
2.5.2. Langmuir Model Fitting Procedure
2.6. Data Presentation and Software
3. Results and Discussion
3.1. Dataset Overview
3.2. Machine Learning Model Performance
- Gradient Boosted Trees (GBT): Highest overall accuracy and robust generalization.
- Random Forest (RF): Competitive performance with strong resilience to overfitting.
- Decision Tree (DT): Substantial accuracy coupled with simplicity and fast training.
3.3. Feature Importance and Interpretation
3.3.1. Correlation-Based Analysis
3.3.2. Gradient Boosted Trees (GBT) Model Feature Importance
3.4. Langmuir Isotherm Modeling and Comparison
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; Matthews, J.B.R.; Berger, S.; Huang, M.; Yelekçi, O.; Yu, R.; et al. Climate Change 2021 The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021; Available online: www.ipcc.ch (accessed on 22 March 2025).
- International Energy Agency (IEA). Energy Technology Perspectives: Special Report on Carbon Capture Utilisation and Storage. 2020. Available online: https://www.iea.org/ (accessed on 18 March 2025).
- Abanades, J.C.; Arias, B.; Lyngfelt, A.; Mattisson, T.; Wiley, D.E.; Li, H.; Ho, M.T.; Mangano, E.; Brandani, S. Emerging CO2 capture systems. Int. J. Greenh. Gas Control 2015, 40, 126–166. [Google Scholar] [CrossRef]
- Choi, S.; Drese, J.H.; Jones, C.W. Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources. ChemSusChem 2009, 2, 796–854. [Google Scholar] [CrossRef]
- Bhavani, A.G.; Reddy, N.S.; Joshi, B.; Sharma, P.; Yadav, P. Enhancing the Adsorption Capacity of CO2 over Modified Microporous Nano-crystalline Zeolite Structure. J. Sci. Res. 2020, 64, 208–211. [Google Scholar] [CrossRef]
- Bonenfant, D.; Kharoune, M.; Niquette, P.; Mimeault, M.; Hausler, R. Advances in principal factors influencing carbon dioxide adsorption on zeolites. Sci. Technol. Adv. Mater. 2008, 9, 013007. [Google Scholar] [CrossRef]
- Pham, T.D.; Hudson, M.R.; Brown, C.M.; Lobo, R.F. Molecular Basis for the High CO2 Adsorption Capacity of Chabazite Zeolites. ChemSusChem 2014, 7, 3031–3038. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, Z.; Li, P.; Yu, J.; Rodrigues, A.E. Experimental and modeling investigation on post-combustion carbon dioxide capture using zeolite 13X-APG by hybrid VTSA process. Chem. Eng. J. 2012, 197, 151–161. [Google Scholar] [CrossRef]
- Liu, Z.; Shen, C.; Lopes, F.V.S.; Li, P.; Yu, J.; Grande, C.A.; Rodrigues, A.E. Zeolite Apgiia for Adsorption Based Carbon Dioxide Capture. Sep. Sci. Technol. 2013, 48, 388–402. [Google Scholar] [CrossRef]
- Yan, P.; Peng, H.; Wu, X.; Rabiee, H.; Weng, Y.; Konarova, M.; Vogrin, J.; Rozhkovskaya, A.; Zhu, Z. Impact of varied zeolite materials on nickel catalysts in CO2 methanation. J. Catal. 2024, 432, 115439. [Google Scholar] [CrossRef]
- Sircar, S. Basic Research Needs for Design of Adsorptive Gas Separation Processes. Ind. Eng. Chem. Res. 2006, 45, 5435–5448. [Google Scholar] [CrossRef]
- Romá, F.; Riccardo, J.L.; Ramirez-Pastor, A.J. Statistical Thermodynamics Models for Polyatomic Adsorbates: Application to Adsorption of n-Paraffins in 5A Zeolite. Langmuir ACS J. Surf. Colloids 2005, 21, 2454–2459. [Google Scholar] [CrossRef]
- Peng, M.; Nguyen, A.V.; Wang, J.; Miller, R. A critical review of the model fitting quality and parameter stability of equilibrium adsorption models. Adv. Colloid Interface Sci. 2018, 262, 50–68. [Google Scholar] [CrossRef]
- Zouaoui, E.H.; Djamel, N.; Wan Ba Karim Ghani, W.A.; Amokarane, S. High pressure CO2 adsorption onto NaX zeolite: Effect of Li+, K+, Mg2+ and Zn2+ and equilibrium isotherms study. Iran. J. Chem. Chem. Eng. Int. Engl. Ed. 2021, 40, 1195–1215. [Google Scholar] [CrossRef]
- Namdeo, S.; Srivastava, V.C.; Mohanty, P. Machine learning implemented exploration of the adsorption mechanism of carbon dioxide onto porous carbons. J. Colloid Interface Sci. 2023, 647, 174–187. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Zhang, J.; Gu, J.; Zhang, S.; Li, G.; Shao, J.; He, Y.; Yang, H.; Zhang, S.; et al. Applied machine learning to analyze and predict CO2 adsorption behavior of metal-organic frameworks. Carbon Capture Sci. Technol. 2023, 9, 100146. [Google Scholar] [CrossRef]
- Petković, M.; Vicent-Luna, J.M.; Menkovski, V.; Calero, S. Graph Neural Networks for Carbon Dioxide Adsorption Prediction in Aluminum-Substituted Zeolites. ACS Appl. Mater. Interfaces 2024, 16, 56366–56375. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wang, X.; Wang, X.; Su, W. Based on machine learning model for prediction of CO2 adsorption of synthetic zeolite in two-step solid waste treatment. Arab. J. Chem. 2024, 17, 105507. [Google Scholar] [CrossRef]
- Yoon, J.W.; Jhung, S.H.; Hwang, Y.K.; Humphrey, S.M.; Wood, P.T.; Chang, J. Gas-Sorption Selectivity of CUK-1: A Porous Coordination Solid Made of Cobalt(II) and Pyridine-2,4- Dicarboxylic Acid. Adv. Mater. 2007, 19, 1830–1834. [Google Scholar] [CrossRef]
- Sun, W.; Lin, L.; Peng, X.; Smit, B. Computational screening of porous metal-organic frameworks and zeolites for the removal of SO2 and NOx from flue gases. AIChE J. 2014, 60, 2314–2323. [Google Scholar] [CrossRef]
- Talu, O.; Zwiebel, I. Multicomponent adsorption equilibria of nonideal mixtures. AIChE J. 1986, 32, 1263–1276. [Google Scholar] [CrossRef]
- Siperstein, F.R.; Myers, A.L. Mixed-gas adsorption. AIChE J. 2001, 47, 1141–1159. [Google Scholar] [CrossRef]
- Sievers, W.; Mersmann, A. Single and multicomponent adsorption equilibria of carbon dioxide, nitrogen, carbon monoxide and methane in hydrogen purification processes. Chem. Eng. Technol. 1994, 17, 325–337. [Google Scholar] [CrossRef]
- Pirngruber, G.D.; Hamon, L.; Bourrelly, S.; Llewellyn, P.L.; Lenoir, E.; Guillerm, V.; Serre, C.; Devic, T. A Method for Screening the Potential of MOFs as CO2 Adsorbents in Pressure Swing Adsorption Processes. ChemSusChem 2012, 5, 762–776. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Tian, P.; Fan, D.; Xia, Q.; Yang, Y.; Xu, S.; Zhang, L.; Zhang, Y.; Wang, D.; Liu, Z. Synthesis of DNL-6 with a High Concentration of Si (4 Al) Environments and its Application in CO2 Separation. ChemSusChem 2013, 6, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Abdul Kareem, F.A.; Shariff, A.M.; Ullah, S.; Garg, S.; Dreisbach, F.; Keong, L.K.; Mellon, N. Experimental and Neural Network Modeling of Partial Uptake for a Carbon Dioxide/Methane/Water Ternary Mixture on 13X Zeolite. Energy Technol. 2017, 5, 1373–1391. [Google Scholar] [CrossRef]
- Zheng, Y.; Gu, T. Modified van der Waals Equation for the Prediction of Multicomponent Isotherms. J. Colloid Interface Sci. 1998, 206, 457–463. [Google Scholar] [CrossRef]
- Rother, J.; Fieback, T. Multicomponent adsorption measurements on activated carbon, zeolite molecular sieve and metal–organic framework. Adsorption 2013, 19, 1065–1074. [Google Scholar] [CrossRef]
- Peter, S.A.; Baron, G.V.; Gascon, J.; Kapteijn, F.; Denayer, J.F.M. Dynamic desorption of CO2 and CH4 from amino-MIL-53(Al) adsorbent. Adsorption 2013, 19, 1235–1244. [Google Scholar] [CrossRef]
- Möller, A.; Eschrich, R.; Reichenbach, C.; Guderian, J.; Lange, M.; Möllmer, J. Dynamic and equilibrium-based investigations of CO2-removal from CH4-rich gas mixtures on microporous adsorbents. Adsorption 2017, 23, 197–209. [Google Scholar] [CrossRef]
- Wynnyk, K.G.; Hojjati, B.; Pirzadeh, P.; Marriott, R.A. High-pressure sour gas adsorption on zeolite 4A. Adsorption 2017, 23, 149–162. [Google Scholar] [CrossRef]
- Shimomura, M.; Yoshida, M.; Endo, A. Influence of free-space calibration using He on the measurement of adsorption isotherms. Adsorption 2017, 23, 249–255. [Google Scholar] [CrossRef]
- Pourmahdi, Z.; Maghsoudi, H. Adsorption isotherms of carbon dioxide and methane on CHA-type zeolite synthesized in fluoride medium. Adsorption 2017, 23, 799–807. [Google Scholar] [CrossRef]
- Maghsoudi, H.; Aidani, A. Experimental adsorption isotherms of CO2 and CH4 on STT zeolite: Comparison with high- and pure-silica zeolites. Adsorption 2017, 23, 963–969. [Google Scholar] [CrossRef]
- Wilkins, N.S.; Rajendran, A. Measurement of competitive CO2 and N2 adsorption on Zeolite 13X for post-combustion CO2 capture. Adsorption 2019, 25, 115–133. [Google Scholar] [CrossRef]
- Avijegon, G.; Xiao, G.; Li, G.; May, E.F. Binary and ternary adsorption equilibria for CO2/CH4/N2 mixtures on Zeolite 13X beads from 273 to 333 K and pressures to 900 kPa. Adsorption 2018, 24, 381–392. [Google Scholar] [CrossRef]
- Nguyen, H.G.T.; Espinal, L.; van Zee, R.D.; Thommes, M.; Toman, B.; Hudson, M.S.L.; Mangano, E.; Brandani, S.; Broom, D.P.; Benham, M.J.; et al. A reference high-pressure CO2 adsorption isotherm for ammonium ZSM-5 zeolite: Results of an interlaboratory study. Adsorption 2018, 24, 531–539. [Google Scholar] [CrossRef]
- Hwang, K.-J.; Hwang, M.J.; Balathanigaimani, M.S.; Nwe, K.; Youn, Y.; Choi, W.-S.; Kim, H.-A.; Nah, J.W.; Shim, W.G. Adsorption characteristics of light gases on basalt rock-based zeolite 4A. Adsorption 2019, 25, 833–842. [Google Scholar] [CrossRef]
- Chang, C.-K.; Tun, H.; Chen, C.-C. An activity-based formulation for Langmuir adsorption isotherm. Adsorption 2020, 26, 375–386. [Google Scholar] [CrossRef]
- Feng, L.; Shen, Y.; Wu, T.; Liu, B.; Zhang, D.; Tang, Z. Adsorption equilibrium isotherms and thermodynamic analysis of CH4, CO2, CO, N2 and H2 on NaY Zeolite. Adsorption 2020, 26, 1101–1111. [Google Scholar] [CrossRef]
- Yang, X.; Kleinrahm, R.; McLinden, M.O.; Richter, M. Uncertainty analysis of adsorption measurements using commercial gravimetric sorption analyzers with simultaneous density measurement based on a magnetic-suspension balance. Adsorption 2020, 26, 645–659. [Google Scholar] [CrossRef]
- Tun, H.; Chen, C.-C. Isosteric heat of adsorption from thermodynamic Langmuir isotherm. Adsorption 2021, 27, 979–989. [Google Scholar] [CrossRef]
- Tynan, K.J.; Tosso, S.; Ebner, A.D.; Ritter, J.A. On the use of single, dual and three process langmuir models for binary gas mixtures that exhibit unique combinations of these processes. Adsorption 2021, 27, 637–658. [Google Scholar] [CrossRef]
- Nguyen, H.G.T.; Toman, B.; Martinez, J.C.; Siderius, D.W.; van Zee, R.D. Reference surface excess isotherms for carbon dioxide adsorption on ammonium ZSM-5 at various temperatures. Adsorption 2022, 28, 15–25. [Google Scholar] [CrossRef]
- Shigaki, N.; Mogi, Y.; Haraoka, T.; Furuya, E. Measurements and calculations of the equilibrium adsorption amounts of CO2–N2, CO–N2, and CO2–CO mixed gases on 13X zeolite. SN Appl. Sci. 2020, 2, 488. [Google Scholar] [CrossRef]
- Yang, B.; Liu, Y.; Li, M. Separation of CO2–N2 using zeolite NaKA with high selectivity. Chin. Chem. Lett. 2016, 27, 933–937. [Google Scholar] [CrossRef]
- Deng, H.; Yi, H.; Tang, X.; Yu, Q.; Ning, P.; Yang, L. Adsorption equilibrium for sulfur dioxide, nitric oxide, carbon dioxide, nitrogen on 13X and 5A zeolites. Chem. Eng. J. 2012, 188, 77–85. [Google Scholar] [CrossRef]
- Al-Naddaf, Q.; Rownaghi, A.A.; Rezaei, F. Multicomponent adsorptive separation of CO2, CO, CH4, N2, and H2 over core-shell zeolite-5A@MOF-74 composite adsorbents. Chem. Eng. J. 2020, 384, 123251. [Google Scholar] [CrossRef]
- Agueda, V.I.; Delgado, J.A.; Uguina, M.A.; Brea, P.; Spjelkavik, A.I.; Blom, R.; Grande, C. Adsorption and diffusion of H2, N2, CO, CH4 and CO2 in UTSA-16 metal-organic framework extrudates. Chem. Eng. Sci. 2015, 124, 159–169. [Google Scholar] [CrossRef]
- Barbosa, G.D.; Travalloni, L.; Castier, M.; Tavares, F.W. Extending an equation of state to confined fluids with basis on molecular simulations. Chem. Eng. Sci. 2016, 153, 212–220. [Google Scholar] [CrossRef]
- Liang, Z.; Marshall, M.; Chaffee, A.L. Comparison of Cu-BTC and zeolite 13X for adsorbent based CO2 separation. Energy Procedia 2009, 1, 1265–1271. [Google Scholar] [CrossRef]
- Schell, J.; Casas, N.; Marx, D.; Blom, R.; Mazzotti, M. Comparison of commercial and new adsorbent materials for pre-combustion CO2 capture by pressure swing adsorption. Energy Procedia 2013, 37, 167–174. [Google Scholar] [CrossRef]
- Tlili, N.; Grévillot, G.; Vallières, C. Carbon dioxide capture and recovery by means of TSA and/or VSA. Int. J. Greenh. Gas Control 2009, 3, 519–527. [Google Scholar] [CrossRef]
- Dasgupta, S.; Biswas, N.; Aarti, N.; Gode, N.G.; Divekar, S.; Nanoti, A.; Goswami, A.N. CO2 recovery from mixtures with nitrogen in a vacuum swing adsorber using metal organic framework adsorbent: A comparative study. Int. J. Greenh. Gas Control 2012, 7, 225–229. [Google Scholar] [CrossRef]
- Maring, B.J.; Webley, P.A. A new simplified pressure/vacuum swing adsorption model for rapid adsorbent screening for CO2 capture applications. Int. J. Greenh. Gas Control 2013, 15, 16–31. [Google Scholar] [CrossRef]
- Bao, Z.; Yu, L.; Ren, Q.; Lu, X.; Deng, S. Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. J. Colloid Interface Sci. 2011, 353, 549–556. [Google Scholar] [CrossRef]
- Silva, J.A.; Schumann, K.; Rodrigues, A.E. Sorption and kinetics of CO2 and CH4 in binderless beads of 13X zeolite. Microporous Mesoporous Mater. 2012, 158, 219–228. [Google Scholar] [CrossRef]
- Raganati, F.; Ammendola, P.; Chirone, R. CO2 capture performances of fine solid sorbents in a sound-assisted fluidized bed. Powder Technol. 2014, 268, 347–356. [Google Scholar] [CrossRef]
- Meng, L.-Y.; Park, S.-J. Influence of MgO template on carbon dioxide adsorption of cation exchange resin-based nanoporous carbon. J. Colloid Interface Sci. 2012, 366, 125–129. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, X.; Xu, Y.; Bao, D.; Zhang, S. Assessment of the energy consumption of the biogas upgrading process with pressure swing adsorption using novel adsorbents. J. Clean. Prod. 2015, 101, 251–261. [Google Scholar] [CrossRef]
- Mendes, P.A.P.; Ribeiro, A.M.; Gleichmann, K.; Ferreira, A.F.P.; Rodrigues, A.E. Separation of CO2/N2 on binderless 5A zeolite. J. CO2 Util. 2017, 20, 224–233. [Google Scholar] [CrossRef]
- AbdulKareem, F.A.; Shariff, A.M.; Ullah, S.; See, T.L.; Keong, L.K.; Mellon, N. Adsorption performance of 5A molecular sieve zeolite in water vapor–binary gas environment: Experimental and modeling evaluation. J. Ind. Eng. Chem. 2018, 64, 173–187. [Google Scholar] [CrossRef]
- Youn, H.-K.; Kim, J.; Chandrasekar, G.; Jin, H.; Ahn, W.-S. High pressure carbon dioxide adsorption on nanoporous carbons prepared by Zeolite Y templating. Mater. Lett. 2011, 65, 1772–1774. [Google Scholar] [CrossRef]
- Harlick, P.J.; Tezel, F.H. An experimental adsorbent screening study for CO2 removal from N2. Microporous Mesoporous Mater. 2004, 76, 71–79. [Google Scholar] [CrossRef]
- Himeno, S.; Tomita, T.; Suzuki, K.; Yoshida, S. Characterization and selectivity for methane and carbon dioxide adsorption on the all-silica DD3R zeolite. Microporous Mesoporous Mater. 2007, 98, 62–69. [Google Scholar] [CrossRef]
- Choi, J.-S.; Son, W.-J.; Kim, J.; Ahn, W.-S. Metal–organic framework MOF-5 prepared by microwave heating: Factors to be considered. Microporous Mesoporous Mater. 2008, 116, 727–731. [Google Scholar] [CrossRef]
- Ghoufi, A.; Gaberova, L.; Rouquerol, J.; Vincent, D.; Llewellyn, P.; Maurin, G. Adsorption of CO2, CH4 and their binary mixture in Faujasite NaY: A combination of molecular simulations with gravimetry–manometry and microcalorimetry measurements. Microporous Mesoporous Mater. 2009, 119, 117–128. [Google Scholar] [CrossRef]
- Pini, R. Interpretation of net and excess adsorption isotherms in microporous adsorbents. Microporous Mesoporous Mater. 2014, 187, 40–52. [Google Scholar] [CrossRef]
- Mofarahi, M.; Gholipour, F. Gas adsorption separation of CO2/CH4 system using zeolite 5A. Microporous Mesoporous Mater. 2014, 200, 1–10. [Google Scholar] [CrossRef]
- Hefti, M.; Marx, D.; Joss, L.; Mazzotti, M. Adsorption equilibrium of binary mixtures of carbon dioxide and nitrogen on zeolites ZSM-5 and 13X. Microporous Mesoporous Mater. 2015, 215, 215–228. [Google Scholar] [CrossRef]
- Yan, B.; Yu, S.; Zeng, C.; Yu, L.; Wang, C.; Zhang, L. Binderless zeolite NaX microspheres with enhanced CO2 adsorption selectivity. Microporous Mesoporous Mater. 2019, 278, 267–274. [Google Scholar] [CrossRef]
- Khoramzadeh, E.; Mofarahi, M.; Chung, K.; Lee, C.-H. Equilibrium adsorption and kinetic study of CO2 and N2 on synthesized carbon Black–Zeolite composite. Sep. Purif. Technol. 2022, 280, 119917. [Google Scholar] [CrossRef]
- Gholipour, F.; Mofarahi, M. Adsorption equilibrium of methane and carbon dioxide on zeolite 13X: Experimental and thermodynamic modeling. J. Supercrit. Fluids 2016, 111, 47–54. [Google Scholar] [CrossRef]
- Moret, S.; Poyet, T.; Bigot, D.; Polster, B.; Crispel, S.; Rouquerol, J.; Llewellyn, P. Complementarity of microcalorimetry, manometry and gravimetry in the study of gas adsorption by microporous solids up to 50 bar. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 2002; Volume 144, pp. 723–729. [Google Scholar]
- Sievers, W.; Mersmann, A. Prediction of High Pressure Multicomponent Adsorption Equilibria. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 1993; Volume 80, pp. 583–590. [Google Scholar]
- Pakseresht, S.; Kazemeini, M.; Akbarnejad, M.M. Equilibrium isotherms for CO, CO2, CH4 and C2H4 on the 5A molecular sieve by a simple volumetric apparatus. In Separation and Purification Technology; Elsevier: Amsterdam, The Netherlands, 2002; Volume 28, Available online: www.elsevier.com (accessed on 21 July 2025).
- Morales-Ospino, R.; Santos, V.N.; Lima, A.R.A.; Torres, A.E.B.; Vilarrasa-García, E.; Bastos-Neto, M.; Cavalcante, C.L.; Azevedo, D.C.S.; Marques, C.R.M.; de Aquino, T.F.; et al. Parametric Analysis of a Moving Bed Temperature Swing Adsorption (MBTSA) Process for Postcombustion CO2 Capture. Ind. Eng. Chem. Res. 2021, 60, 10736–10752. [Google Scholar] [CrossRef]
- Shirani, B.; Eic, M. Novel Differential Column Method for Measuring Multicomponent Gas Adsorption Isotherms in NaY Zeolite. Ind. Eng. Chem. Res. 2017, 56, 1008–1018. [Google Scholar] [CrossRef]
- Nikolaidis, G.N.; Kikkinides, E.S.; Georgiadis, M.C. An Integrated Two-Stage P/VSA Process for Postcombustion CO2 Capture Using Combinations of Adsorbents Zeolite 13X and Mg-MOF-74. Ind. Eng. Chem. Res. 2017, 56, 974–988. [Google Scholar] [CrossRef]
- Yavary, M.; Ebrahim, H.A.; Falamaki, C. Competitive Adsorption Equilibrium Isotherms of CO, CO2, CH4, and H2 on Activated Carbon and Zeolite 5A for Hydrogen Purification. J. Chem. Eng. Data 2016, 61, 3420–3427. [Google Scholar] [CrossRef]
- Franco, L.F.M.; Economou, I.G.; Castier, M. Statistical Mechanical Model for Adsorption Coupled with SAFT-VR Mie Equation of State. Langmuir 2017, 33, 11291–11298. [Google Scholar] [CrossRef] [PubMed]
- Garcés, S.I.; Villarroel-Rocha, J.; Sapag, K.; Korili, S.A.; Gil, A. Comparative Study of the Adsorption Equilibrium of CO2on Microporous Commercial Materials at Low Pressures. Ind. Eng. Chem. Res. 2013, 52, 6785–6793. [Google Scholar] [CrossRef]
- Mason, J.A.; McDonald, T.M.; Bae, T.-H.; Bachman, J.E.; Sumida, K.; Dutton, J.J.; Kaye, S.S.; Long, J.R. Application of a High-Throughput Analyzer in Evaluating Solid Adsorbents for Post-Combustion Carbon Capture via Multicomponent Adsorption of CO2, N2, and H2O. J. Am. Chem. Soc. 2015, 137, 4787–4803. [Google Scholar] [CrossRef]
- Cavenati, S.; Grande, C.A.; Rodrigues, A.E. Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures. J. Chem. Eng. Data 2004, 49, 1095–1101. [Google Scholar] [CrossRef]
- Aprea, P.; Caputo, D.; Gargiulo, N.; Iucolano, F.; Pepe, F. Modeling Carbon Dioxide Adsorption on Microporous Substrates: Comparison between Cu-BTC Metal−Organic Framework and 13X Zeolitic Molecular Sieve. J. Chem. Eng. Data 2010, 55, 3655–3661. [Google Scholar] [CrossRef]
- Calleja, G.; Pau, J.; Calles, J.A. Pure and Multicomponent Adsorption Equilibrium of Carbon Dioxide, Ethylene, and Propane on ZSM-5 Zeolites with Different Si/Al Ratios. J. Chem. Eng. Data 1998, 43, 994–1003. [Google Scholar] [CrossRef]
- Loera, S.; Llewellyn, P.L.; Lima, E. Na+ Charge Tuning through Encapsulation of Sulfur Chromophores in Zeolite A and the Consequences in Adsorbent Properties. J. Phys. Chem. C 2010, 114, 7880–7887. [Google Scholar] [CrossRef]
- Remy, T.; Peter, S.A.; Van Tendeloo, L.; Van der Perre, S.; Lorgouilloux, Y.; Kirschhock, C.E.A.; Baron, G.V.; Denayer, J.F.M. Adsorption and Separation of CO2 on KFI Zeolites: Effect of Cation Type and Si/Al Ratio on Equilibrium and Kinetic Properties. Langmuir 2013, 29, 4998–5012. [Google Scholar] [CrossRef] [PubMed]
- Kaur, B. Feature engıneerıng in machıne learnıng: Selectıon, extractıon, and theır ımpact on model performance. Int. J. Inf. Technol. Manag. Inf. Syst. 2025, 16, 1–18. [Google Scholar] [CrossRef]
- Overman, T.; Klabjan, D.; Utke, J. IIFE: Interaction Information Based Automated Feature Engineering. In Proceedings of the 2024 IEEE International Conference on Data Mining (ICDM), Abu Dhabi, United Arab Emirates, 9–12 December 2024; pp. 803–808. [Google Scholar] [CrossRef]
- Zhu, G.; Jiang, S.; Guo, X.; Yuan, C.; Huang, Y. Evolutionary Automated Feature Engineering. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13629 LNCS. In Pacific Rim International Conference on Artificial Intelligence; Springer Nature: Cham, Switzerland, 2022; pp. 574–586. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Benin, A.I.; Jakubczak, P.; Willis, R.R.; LeVan, M.D. CO2/H2O Adsorption Equilibrium and Rates on Metal−Organic Frameworks: HKUST-1 and Ni/DOBDC. Langmuir 2010, 26, 14301–14307. [Google Scholar] [CrossRef]
- Liu, Z.; Grande, C.A.; Li, P.; Yu, J.; Rodrigues, A.E. Adsorption and Desorption of Carbon Dioxide and Nitrogen on Zeolite 5A. Sep. Sci. Technol. 2011, 46, 434–451. [Google Scholar] [CrossRef]
- Figini-Albisetti, A.; Velasco, L.F.; Parra, J.B.; Ania, C.O. Effect of outgassing temperature on the performance of porous materials. Appl. Surf. Sci. 2010, 256, 5182–5186. [Google Scholar] [CrossRef]
- Llewellyn, P.L.; Bourrelly, S.; Vagner, C.; Heymans, N.; Leclerc, H.; Ghoufi, A.; Bazin, P.; Vimont, A.; Daturi, M.; Devic, T.; et al. Evaluation of MIL-47(V) for CO2-Related Applications. J. Phys. Chem. C 2013, 117, 962–970. [Google Scholar] [CrossRef]
- Choi, H.J.; Hong, S.B. Effect of framework Si/Al ratio on the mechanism of CO2 adsorption on the small-pore zeolite gismondine. Chem. Eng. J. 2022, 433, 133800. [Google Scholar] [CrossRef]
- Tao, Z.; Tian, Y.; Wu, W.; Liu, Z.; Fu, W.; Kung, C.-W.; Shang, J. Development of zeolite adsorbents for CO2 separation in achieving carbon neutrality. NPJ Mater. Sustain. 2024, 2, 20. [Google Scholar] [CrossRef]
- Myers, A.L.; Monson, P.A. Adsorption in Porous Materials at High Pressure: Theory and Experiment. Langmuir 2002, 18, 10261–10273. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, H.A.H.; Hakami, N.A.; Hafez, A.M.; Kooh, M.R.R. An Intelligent Deep Learning Model for CO2 Adsorption Prediction. Adsorpt. Sci. Technol. 2022, 2022, 8136302. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Chapman and Hall/CRC: New York, NY, USA, 2017; pp. 1–358. [Google Scholar] [CrossRef]
- Deng, X.; Yang, W.; Li, S.; Liang, H.; Shi, Z.; Qiao, Z. Large-Scale Screening and Machine Learning to Predict the Computation-Ready, Experimental Metal-Organic Frameworks for CO2 Capture from Air. Appl. Sci. 2020, 10, 569. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V.; Saitta, L. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Gu, Y.-T.; Gu, Y.-M.; Tao, Q.; Wang, X.; Zhu, Q.; Ma, J. Machine learning for prediction of CO2/N2/H2O selective adsorption and separation in metal-zeolites. J. Mater. Inform. 2023, 3, 19. [Google Scholar] [CrossRef]
- Kim, M.-H.; Cho, I.-H.; Choi, S.-O.; Choo, S.-T. Zeolites: Their Features as Pressure Swing Adsorbents and CO2 Adsorption Capacity. J. Environ. Sci. Int. 2014, 23, 943–962. [Google Scholar] [CrossRef]
- Dabbawala, A.A.; Ismail, I.; Vaithilingam, B.V.; Polychronopoulou, K.; Singaravel, G.; Morin, S.; Berthod, M.; Al Wahedi, Y. Synthesis of hierarchical porous Zeolite-Y for enhanced CO2 capture. Microporous Mesoporous Mater. 2020, 303, 110261. [Google Scholar] [CrossRef]
- Jhung, S.H.; Yoon, J.W.; Lee, J.S.; Chang, J. Low-Temperature Adsorption/Storage of Hydrogen on FAU, MFI, and MOR Zeolites with Various Si/Al Ratios: Effect of Electrostatic Fields and Pore Structures. Chem. Eur. J. 2007, 13, 6502–6507. [Google Scholar] [CrossRef]
- Sayari, A.; Belmabkhout, Y.; Serna-Guerrero, R. Flue gas treatment via CO2 adsorption. Chem. Eng. J. 2011, 171, 760–774. [Google Scholar] [CrossRef]
- Choi, H.J.; Bruce, E.L.; Kencana, K.S.; Hong, J.; Wright, P.A.; Hong, S.B. Highly Cooperative CO2 Adsorption via a Cation Crowding Mechanism on a Cesium-Exchanged Phillipsite Zeolite. Angew. Chem. Int. Ed. Engl. 2023, 62, e202305816. [Google Scholar] [CrossRef]
- Yang, J.; Li, J.; Wang, W.; Li, L.; Li, J. Adsorption of CO2, CH4, and N2 on 8-, 10-, and 12-Membered Ring Hydrophobic Microporous High-Silica Zeolites: DDR, Silicalite-1, and Beta. Ind. Eng. Chem. Res. 2013, 52, 17856–17864. [Google Scholar] [CrossRef]
- Orsikowsky-Sanchez, A.; Plantier, F.; Miqueu, C. Coupled gravimetric, manometric and calorimetric study of CO2, N2 and CH4 adsorption on zeolites for the assessment of classical equilibrium models. Adsorption 2020, 26, 1137–1152. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Ruthven, D.M. Dynamics of adsorption columns: Single-transition systems. In Principles of Adsorption and Adsorption Processes; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1984; p. 433. Available online: https://www.wiley.com/en-us/Principles+of+Adsorption+and+Adsorption+Processes-p-9780471866060 (accessed on 21 March 2025).
- Lu, X.; Rothstein, D.; Madey, R.; Huang, J.-C. Pressure Swing Adsorption for a System with a Langmuir Isotherm. Sep. Sci. Technol. 1988, 23, 281–291. [Google Scholar] [CrossRef]
Study ID | Name | Type of Zeolite | Cation | Number of Datasets | Number of Data | Reference |
---|---|---|---|---|---|---|
1 | Gas-Sorption Selectivity of CUK-1: A Porous Coordination Solid Made of Cobalt(II) and Pyridine-2,4-Dicarboxylic Acid | Zeolite 4A | Na+ | 1 | 9 | [19] |
2 | Computational Screening of Porous Metal-Organic Frameworks and Zeolites for the Removal of SO2 and NOₓ from Flue Gases | Zeolite FAU | None | 1 | 6 | [20] |
3 | Multicomponent Adsorption Equilibria of Nonideal Mixtures | H-Mordenite | H+ | 2 | 56 | [21] |
4 | Mixed-Gas Adsorption | Zeolite 13X | Na+ | 2 | 58 | [22] |
5 | Single- and Multicomponent Adsorption Equilibria of Carbon Dioxide, Nitrogen, Carbon Monoxide, and Methane in Hydrogen Purification Processes | Zeolite 5A | Ca2+/Na+ | 1 | 19 | [23] |
6 | A Method for Screening the Potential of MOFs as CO2 Adsorbents in Pressure Swing Adsorption Processes | Zeolite 13X | Na+ | 2 | 28 | [24] |
7 | Synthesis of DNL-6 with a High Concentration of Si (4 Al) Environments and its Application in CO2 Separation | Zeolite A | Na+ | 1 | 23 | [25] |
8 | Experimental and Neural Network Modeling of Partial Uptake for a Carbon Dioxide/Methane/Water Ternary Mixture on 13X Zeolite | Zeolite 13X | Na+ | 3 | 26 | [26] |
9 | Modified van der Waals Equation for the Prediction of Multicomponent Isotherms | Zeolite Y | Cu+/Na+ | 6 | 82 | [27] |
10 | Multicomponent Adsorption Measurements on Activated Carbon, Zeolite Molecular Sieve, and Metal–Organic Framework | Zeolite 13X | Na+ | 3 | 24 | [28] |
11 | Dynamic Desorption of CO2 and CH4 from Amino-MIL-53(Al) Adsorbent | Zeolite 13X | Na+ | 3 | 34 | [29] |
12 | Dynamic and Equilibrium-Based Investigations of CO2 Removal from CH4-Rich Gas Mixtures on Microporous Adsorbents | Zeolite 13X | Na+ | 3 | 98 | [30] |
13 | High-Pressure Sour Gas Adsorption on Zeolite 4A | Zeolite 4A | Na+ | 6 | 568 | [31] |
14 | Influence of Free-Space Calibration Using He on the Measurement of Adsorption Isotherms | Zeolite Y | Na+ | 1 | 44 | [32] |
15 | Adsorption Isotherms of Carbon Dioxide and Methane on CHA-Type Zeolite Synthesized in Fluoride Medium | Zeolite CHA | H+/Na+ | 4 | 38 | [33] |
16 | Experimental Adsorption Isotherms of CO2 and CH4 on STT Zeolite: Comparison with High- and Pure-Silica Zeolites | Zeolite STT | None | 6 | 78 | [34] |
17 | Measurement of Competitive CO2 and N2 Adsorption on Zeolite 13X for Post-Combustion CO2 Capture | Zeolite 13X | Na+ | 6 | 240 | [35] |
18 | Binary and Ternary Adsorption Equilibria for CO2/CH4/N2 Mixtures on Zeolite 13X Beads from 273 to 333 K and Pressures to 900 kPa | Zeolite 13X | Na+ | 9 | 77 | [36] |
19 | A Reference High-Pressure CO2 Adsorption Isotherm for Ammonium ZSM-5 Zeolite: Results of an Interlaboratory Study | Zeolite ZSM-5 | NH4+ | 13 | 344 | [37] |
20 | Adsorption Characteristics of Light Gases on Basalt Rock-Based Zeolite 4A | Zeolite 4A | Na+ | 3 | 90 | [38] |
21 | An activity-based formulation for Langmuir adsorption isotherm | Zeolite 5A | Ca2+ | 3 | 39 | [39] |
22 | Adsorption equilibrium isotherms and thermodynamic analysis of CH4, CO2, CO, N2, and H2 on NaY Zeolite | Zeolite Y | Na+ | 4 | 108 | [40] |
23 | Uncertainty analysis of adsorption measurements using commercial gravimetric sorption analyzers with simultaneous density measurement based on a magnetic-suspension balance | Zeolite 13X | Na+ | 1 | 43 | [41] |
24 | Isosteric heat of adsorption from thermodynamic Langmuir isotherm | Zeolite 13X | Na+ | 10 | 279 | [42] |
25 | On the use of single-, dual-, and three-process Langmuir models for binary gas mixtures that exhibit unique combinations of these processes | Zeolite 13X | Na+ | 5 | 73 | [43] |
26 | Reference surface excess isotherms for carbon dioxide adsorption on ammonium ZSM-5 at various temperatures | Zeolite ZSM-5 | NH4+ | 12 | 278 | [44] |
27 | Measurements and calculations of the equilibrium adsorption amounts of CO2–N2, CO–N2, and CO2–CO mixed gases on 13X zeolite | Zeolite 13X | Na+ | 6 | 84 | [45] |
28 | Separation of CO2–N2 using zeolite NaKA with high selectivity | Zeolite A | Na+/K+ | 8 | 44 | [46] |
29 | Adsorption equilibrium for sulfur dioxide, nitric oxide, carbon dioxide, nitrogen on 13X and 5A zeolites | Zeolite 5A | Ca2+ | 14 | 164 | [47] |
30 | Multicomponent adsorptive separation of CO2, CO, CH4, N2, and H2 over core-shell zeolite-5A@MOF-74 composite adsorbents | Zeolite 5A | Ca2+ | 1 | 38 | [48] |
31 | Adsorption and diffusion of H2, N2, CO, CH4, and CO2 in UTSA-16 metal-organic framework extrudates | Zeolite 13X | Na+ | 1 | 42 | [49] |
32 | Extending an equation of state to confined fluids with basis on molecular simulations | Zeolite 13X | Na+ | 2 | 26 | [50] |
33 | Comparison of Cu-BTC and zeolite 13X for adsorbent-based CO2 separation | Zeolite 13X | Na+ | 1 | 9 | [51] |
34 | Comparison of commercial and new adsorbent materials for pre-combustion CO2 capture by pressure swing adsorption | Zeolite 13X | Na+ | 1 | 31 | [52] |
35 | Carbon dioxide capture and recovery by means of TSA and/or VSA | Zeolite 5A | Ca2+ | 10 | 100 | [53] |
36 | CO2 recovery from mixtures with nitrogen in a vacuum swing adsorber using metal-organic framework adsorbent: A comparative study | Zeolite 13X | Na+ | 2 | 21 | [54] |
37 | A new simplified pressure/vacuum swing adsorption model for rapid adsorbent screening for CO2 capture applications | Zeolite 13X | Na+ | 3 | 122 | [55] |
38 | Adsorption of CO2 and CH4 on a magnesium-based metal-organic framework | Zeolite 13X | Na+ | 6 | 72 | [56] |
39 | Sorption and kinetics of CO2 and CH4 in binderless beads of 13X zeolite | Zeolite 13X | Na+ | 3 | 24 | [57] |
40 | CO2 capture performances of fine solid sorbents in a sound-assisted fluidized bed | Zeolite 13X | Na+ | 1 | 2 | [58] |
41 | Influence of MgO template on carbon dioxide adsorption of cation exchange resin-based nanoporous carbon | Zeolite 13X | Na+ | 1 | 14 | [59] |
42 | Assessment of the energy consumption of the biogas upgrading process with pressure swing adsorption using novel adsorbents | Zeolite 13X | Na+ | 2 | 31 | [60] |
43 | Separation of CO2/N2 on binderless 5A zeolite | Zeolite 5A | Ca2+ | 2 | 36 | [61] |
44 | Adsorption performance of 5A molecular sieve zeolite in water vapor–binary gas environment: Experimental and modeling evaluation | Zeolite 5A | Ca2+/Na+ | 2 | 20 | [62] |
45 | High-pressure carbon dioxide adsorption on nanoporous carbons prepared by Zeolite Y templating | Zeolite 13X | Na+ | 1 | 24 | [63] |
46 | An experimental adsorbent screening study for CO2 removal from N2 | Zeolite Y | Na+ | 8 | 68 | [64] |
47 | Characterization and selectivity for methane and carbon dioxide adsorption on the all-silica DD3R zeolite | Zeolite DD3R | None | 4 | 53 | [65] |
48 | Metal–organic framework MOF-5 prepared by microwave heating: Factors to be considered | Zeolite 13X | Na+ | 1 | 10 | [66] |
49 | Adsorption of CO2, CH4, and their binary mixture in Faujasite NaY: A combination of molecular simulations with gravimetry–manometry and microcalorimetry measurements | Zeolite Y | Na+ | 8 | 123 | [67] |
50 | Interpretation of net and excess adsorption isotherms in microporous adsorbents | Zeolite 13X | Na+ | 2 | 94 | [68] |
51 | Gas adsorption separation of CO2/CH4 system using zeolite 5A | Zeolite 5A | Ca2+ | 2 | 44 | [69] |
52 | Adsorption equilibrium of binary mixtures of carbon dioxide and nitrogen on zeolites ZSM-5 and 13X | Zeolite ZSM-5 | H+ | 3 | 61 | [70] |
53 | Binderless zeolite NaX microspheres with enhanced CO2 adsorption selectivity | Zeolite NaX@NaA | Na+ | 6 | 132 | [71] |
54 | Equilibrium adsorption and kinetic study of CO2 and N2 on synthesized carbon Black–Zeolite composite | Zeolite 13X | Na+ | 3 | 28 | [72] |
55 | Adsorption equilibrium of methane and carbon dioxide on zeolite 13X: Experimental and thermodynamic modeling | Zeolite 13X | Na+ | 5 | 99 | [73] |
57 | Complementarity of microcalorimetry, manometry, and gravimetry in the study of gas adsorption by microporous solids up to 50 bar | Zeolite 13X | Na+ | 5 | 50 | [74] |
58 | CO2 adsorption in faujasite systems: microcalorimetry and molecular simulation | Zeolite Y | Na+ | 4 | 99 | [67] |
59 | Prediction of High-Pressure Multicomponent Adsorption Equilibria | Zeolite 5A | Ca2+/Na+ | 1 | 21 | [75] |
60 | Equilibrium isotherms for CO, CO2, CH4, and C2H4 on the 5A molecular sieve by a simple volumetric apparatus | Zeolite 5A | Ca2+/Na+ | 6 | 82 | [76] |
61 | Parametric Analysis of a Moving Bed Temperature Swing Adsorption (MBTSA) Process for Post-combustion CO2 Capture | Zeolite 13X | Na+ | 5 | 69 | [77] |
62 | Novel Differential Column Method for Measuring Multicomponent Gas Adsorption Isotherms in NaY Zeolite | Zeolite Y | Na+ | 6 | 93 | [78] |
63 | An Integrated Two-Stage P/VSA Process for Post-combustion CO2 Capture Using Combinations of Adsorbents Zeolite 13X and Mg-MOF-74 | Zeolite 13X | Na+ | 2 | 57 | [79] |
64 | Competitive Adsorption Equilibrium Isotherms of CO, CO2, CH4, and H2 on Activated Carbon and Zeolite 5A for Hydrogen Purification | Zeolite 5A | Ca2+/Na+ | 3 | 18 | [80] |
65 | Statistical Mechanical Model for Adsorption Coupled with SAFT-VR Mie Equation of State | Zeolite 13X | Na+ | 5 | 71 | [81] |
66 | Comparative Study of the Adsorption Equilibrium of CO2 on Microporous Commercial Materials at Low Pressures | Zeolite 13X | Na+ | 3 | 53 | [82] |
67 | Application of a High-Throughput Analyzer in Evaluating Solid Adsorbents for Post-Combustion Carbon Capture via Multicomponent Adsorption of CO2, N2, and H2O | Zeolite 13X | Na+ | 2 | 38 | [83] |
68 | Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures | Zeolite 13X | Na+ | 3 | 46 | [84] |
69 | Modeling Carbon Dioxide Adsorption on Microporous Substrates: Comparison between Cu-BTC Metal-Organic Framework and 13X Zeolitic Molecular Sieve | Zeolite 13X | Na+ | 6 | 51 | [85] |
71 | Application of a High-Throughput Analyzer in Evaluating Solid Adsorbents for Post-Combustion Carbon Capture via Multicomponent Adsorption of CO2, N2, and H2O | Zeolite ZSM-5 | Na+ | 6 | 58 | [86] |
72 | Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures | Zeolite 4A | Na+ | 6 | 313 | [87] |
73 | Modeling Carbon Dioxide Adsorption on Microporous Substrates: Comparison between Cu-BTC Metal-Organic Framework and 13X Zeolitic Molecular Sieve | Zeolite KFI | Li+ | 32 | 268 | [88] |
Study ID | Name | Type of Zeolite | Cation | Number of Data | Reference |
---|---|---|---|---|---|
L1 | CO2/H2O Adsorption Equilibrium and Rates on Metal-Organic Frameworks: HKUST-1 and Ni/DOBDC | Zeolite 13X | Na+ | 15 | [92] |
L2 | Adsorption and Desorption of Carbon Dioxide and Nitrogen on Zeolite 5A | Zeolite 5A | Ca2+ | 11 | [93] |
L3 | Effect of Outgassing Temperature on the Performance of Porous Materials | Zeolite 4A | Na+ | 13 | [94] |
L4 | Evaluation of MIL-47(V) for CO2-Related Applications | Zeolite Y | Na+ | 19 | [95] |
Model | R2 | RMSE (mmol/g) | MAE (mmol/g) |
---|---|---|---|
Generalized Linear Model | 0.544 ± 0.034 | 1.929 ± 0.156 | 1.377 ± 0.034 |
Feed-forward Multilayer Perceptron | 0.713 ± 0.029 | 1.648 ± 0.152 | 1.025 ± 0.026 |
Decision Tree | 0.902 ± 0.023 | 0.990 ± 0.119 | 0.523 ± 0.044 |
Random Forest | 0.909 ± 0.009 | 1.017 ± 0.068 | 0.667 ± 0.016 |
Gradient Boosted Trees | 0.936 ± 0.012 | 0.806 ± 0.055 | 0.458 ± 0.023 |
Support Vector Machine | 0.850 ± 0.032 | 1.244 ± 0.121 | 0.641 ± 0.028 |
Authors | Adsorbent Type | Cation Type | Temperature (K) | Si Al Ratio | Pore Size (nm) | Surface Area (m2/g) |
---|---|---|---|---|---|---|
Liu et al. (2010) [92] | Zeolite 13X | Na+ | 298 | 1.375 | 1 | 590 |
Liu et al. (2011) [93] | Zeolite 5A | Ca2+ | 303 | 1 | 0.5 | 450 |
Figini-Albisetti et al. (2010) [94] | Zeolite 4A | Na+ | 298 | 1 | 0.41 | 500 |
Llewellyn et al. (2013) [95] | Zeolite Y | Na+ | 298 | 2.6 | 0.74 | 700 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirtil, E. Universal Prediction of CO2 Adsorption on Zeolites Using Machine Learning: A Comparative Analysis with Langmuir Isotherm Models. ChemEngineering 2025, 9, 80. https://doi.org/10.3390/chemengineering9040080
Kirtil E. Universal Prediction of CO2 Adsorption on Zeolites Using Machine Learning: A Comparative Analysis with Langmuir Isotherm Models. ChemEngineering. 2025; 9(4):80. https://doi.org/10.3390/chemengineering9040080
Chicago/Turabian StyleKirtil, Emrah. 2025. "Universal Prediction of CO2 Adsorption on Zeolites Using Machine Learning: A Comparative Analysis with Langmuir Isotherm Models" ChemEngineering 9, no. 4: 80. https://doi.org/10.3390/chemengineering9040080
APA StyleKirtil, E. (2025). Universal Prediction of CO2 Adsorption on Zeolites Using Machine Learning: A Comparative Analysis with Langmuir Isotherm Models. ChemEngineering, 9(4), 80. https://doi.org/10.3390/chemengineering9040080