An Overview of Hydrogen Energy Generation
Abstract
:1. Introduction
- -
- Gray hydrogen: fossil fuels are used to produce hydrogen, like natural gas and oils; this kind of hydrogen releases a large amount of CO2 into the air during its production process.
- -
- Blue hydrogen: hydrogen is produced using fossil fuels, and it is accompanied by carbon-capture storage technology to decrease carbon dioxide emissions.
- -
- Green hydrogen: hydrogen is generated by electrolysis powered by renewable energy, such as solar, wind, geothermal, nuclear, and waste energy. It is considered to be a clean technology to generate hydrogen.
- -
- Brown hydrogen: this type of hydrogen is considered to be the most affordable and the most harmful to the environment due to the thermal coal that is used in the generation process.
- -
- Turquoise hydrogen: hydrogen is fabricated using methane pyrolysis technology that yields solid carbon.
- -
- Yellow hydrogen: this refers to the hydrogen generated by electrolysis using solar energy.
- -
- White hydrogen: this type of hydrogen is geological, which is established in underground deposits and formed via fracking. Presently, there are procedures to harness and exploit it.
2. Current and Future Uses of Hydrogen and Its Generation
3. Main Approaches for Hydrogen Production
3.1. Electrolytic Technique
3.2. Photolytic and Biotechniques
3.3. Thermal Technique
4. Comparison of the Technologies Used to Generate Hydrogen
Technology | Efficiency | Advantages | Drawbacks | Maturity | Reference |
---|---|---|---|---|---|
Alkaline electrolyzer | 50–78% | Long-term stability, cost-effective, low cost, mature technology, non-noble catalyst | Low current densities, low operational pressure, corrosive liquid electrolyte, crossover of gases | Commercial | [23] |
PEM electrolyzer | 50–83% | High current densities and voltage efficiency, high gas purity, rapid system response | High cost of components, acidic corrosive environment, low durability | Commercial | [23] |
Solid oxide electrolysis cells | 89% (lab) | No electrode corrosion, since it performs with high temperatures, so no need for expensive catalysts and better ability to tolerate the presence of impurities, negligible pollution | Bulky design, durability issues, high cost, and complex fabrication | Medium-term | [176] |
Anion exchange membrane | 57–59% | Chloride resistance, oxidation resistance, alkali resistance, and diffusion and dialysis to recover acid, regeneration is not required, high-purity hydrogen | Low power performance, low ionic conductivity, important catalyst loading, and moderate-range membrane stability with significant ohmic resistance loss | Commercial | [43] |
Plasma electrolysis | - | Generate more hydrogen using less energy consumption compared to hydrocarbon electrolysis | [177] | ||
Seawater electrolysis | 72% | Mitigation of freshwater consumption since seawater is a plentiful resource | Capital costs of the water purification equipment and the environmental problem arising from the need to dispose of the residual salts removed during desalinization | R&D | [178] |
Photolysis | 10–11% | CO2 neutral, O2 generation | High needs of light intensity, low performance, expensive | Long term | [179] |
Dark fermentation | 60–80% | Light is not mandatory required, and many substrates can be used as carbon source | Low yield of H2 per substrate consumed—concomitant production of carbon-rich metabolites (i.e., organic acids, alcohols) and CO2, big reactor needed | Long term | [180] |
Photo-fermentation | 10% | Possibility of using different organic biomass—oxygen inhibition effects on hydrogen generation is removed since photosynthetic bacteria do not have PSII | Photochemical performance is low, and nitrogenase activity is restrained due to the existence of oxygen Low efficiency | Long term | [181] |
Microbial electrolysis cells | 78% | Possibility to work at high pressure with low energy consumption, ecofriendly electrolyte, low-cost material, self-sustained and self-assembled electrocatalyst, oxidation of organic compounds | Hydrogen can be consumed at the bioanode, bioanodes do not accept high temperatures and high substrate concentrations and are very sensitive to slightly acidic pH | Long term | [182] |
Steam reformation | 70–85% | No oxygen required, lowest process temperature, good H2/CO ratio | Highest greenhouse gas emission | Commercial | [183] |
Dry reformation | Possibility to use CO2 | Large energy consumption, higher tendency to coke forming, forming and low fineness of syngas | - | [93] | |
Partial oxidation | 60–75% | Catalyst is not required, low methane slip | Very high processing temperatures, Low H2/CO, generation of heavy oils | Commercial | [184] |
Autothermal reformation | 60–75% | Low methane slip, requires less temperature than POX, existing infrastructure, mature | Needs air or oxygen, generation of GHG | Near term | [185] |
Plasma reformation | 9–85% | No need for thermal activation, quick reaction start-up, long durability, reliable, small reaction volume | Requires electrical energy | Long term | [148] |
Biomass gasification | 35–50% | CO2-neutral-decrease the amount of energy sources | Requires a large amount of land and very inefficient | Commercial | [186] |
Pyrolysis | 35–50% | Possibility of using several cheap feedstock materials | Require high amount of energy, seasonal disponibility, Tar formulation | Near term | [187] |
5. Barriers to Hydrogen Generation
- -
- There are many existing technologies for hydrogen generation. Some of these technologies are cheap but pollute the environment, and others are expensive and clean. Hydrogen producers face an important issue in choosing the best technology and the source of energy used to perform the generation process.
- -
- Hydrogen storage is considered to be a significant barrier since high space is required to stock hydrogen owing to its low density, resulting in increasing hazardous accidents due to the high flammability of hydrogen. Also, energy efficiency is a significant issue for all hydrogen storage technologies. The round-trip efficiency of hydrogen storage is 32% compared to 95% of battery storage [189,190]. Moreover, the cost of hydrogen storage is expensive compared to the storage of petroleum fuels. The capital cost of underground and aboveground hydrogen storage compared to battery storage is shown in Table 4. It is observable that the charging and discharging cost of hydrogen storage is higher than that of battery storage, but the discharging cost of hydrogen storage is lower than that of battery storage.
- -
- A hydrogen-fueled vehicle might be less preferable since less space will be available for commuters due to the high space of hydrogen storage [191]. Also, the mileage that the vehicle can travel before recharge presents a barrier since the vehicles require a big storage capacity, resulting in bigger space in the vehicle. This issue could be solved through electric vehicles using fuel cell batteries, which have some issues related to the cost and the resources that are not renewable [192]. Furthermore, the installation of recharging stations required for hydrogen-fueled vehicles causes a problem since investors will not invest in the installation if they are not sure that people will buy and use hydrogen vehicles [193]. Another issue related to the long process of the design and installation of infrastructure is the road networks and pipelines required for fuel charging stations.
- -
- The expanding hydrogen market is facing the impediment of the ability of the existing technologies to meet the hydrogen demand that is projected to increase in the coming years with a competitive cost.
- -
- The use of hydrogen for transportation, electrification, and heating is less effective than direct technology since hydrogen is an energy carrier and not a primary energy source, resulting in a high conversion loss.
- -
- The carbon capture and storage (CCS) used in the generation of blue hydrogen is unproven at scale and expensive since it requires equipment, materials, and infrastructure for transportation and storage, causing an increase in the cost of the generated energy. In addition, the CO2 captured in CCS is used in enhanced oil recovery to liberate unreachable oil into the depleted oil wells, resulting in increasing CO2 emissions into the atmosphere. Also, the leakage of CO2 during transportation and at the site of underground storage causes an immediate menace to human and animal welfare, even if accident rates are very low.
- -
- The generation of hydrogen through electrolysis consumes a huge amount of water. In addition, the water used in the electrolysis process should be purified before using it. Therefore, the capital cost of hydrogen generation increases with the cost of water, purification, and transportation.
6. Economics of Hydrogen Generation
6.1. Cost of Hydrogen Based on Hydrogen Types
6.2. Cost of Hydrogen Generated Based on the Technologies Used
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mazloomi, K.; Gomes, C. Hydrogen as an energy carrier: Prospects and challenges. Renew. Sustain. Energy Rev. 2012, 16, 3024–3033. [Google Scholar] [CrossRef]
- Stambouli, A.B.; Traversa, E. Fuel cells, an alternative to standard sources of energy. Renew. Sustain. Energy Rev. 2002, 6, 295–304. [Google Scholar] [CrossRef]
- Kochanek, E. The role of hydrogen in the visegrad group approach to energy transition. Energies 2022, 15, 7235. [Google Scholar] [CrossRef]
- Ramachandran, R.; Menon, R.K. An overview of industrial uses of hydrogen. Int. J. Hydrogen Energy 1998, 23, 593–598. [Google Scholar] [CrossRef]
- Ehteshami, S.M.M.; Chan, S. The role of hydrogen and fuel cells to store renewable energy in the future energy network–potentials and challenges. Energy Policy 2014, 73, 103–109. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S.; AL-Garadi, N.Y.; Osman, A.I.; Al-Mubaddel, F.S.; Ibrahim, A.A.; Khan, W.U.; Alanazi, Y.M.; Alrashed, M.M.; Alothman, O.Y. From plastic waste pyrolysis to Fuel: Impact of process parameters and material selection on hydrogen production. Fuel 2023, 344, 128107. [Google Scholar] [CrossRef]
- Navarro, R.M.; Pena, M.; Fierro, J. Hydrogen production reactions from carbon feedstocks: Fossil fuels and biomass. Chem. Rev. 2007, 107, 3952–3991. [Google Scholar] [CrossRef] [PubMed]
- IRENA. Hydrogen, A Renewable Energy Perspective, International Energy Agency; IRENA: Abu Dhabi, United Arab Emirates, 2019. [Google Scholar]
- IEA. Global Hydrogen Review 2021, IEA, Paris. Available online: https://www.iea.org/reports/global-hydrogen-review-2021 (accessed on 20 August 2023).
- IEA. Global Hydrogen Review 2022, IEA, Paris. Available online: https://www.iea.org/reports/global-hydrogen-review-2022 (accessed on 20 August 2023).
- Nastasi, B. Hydrogen Policy, Market, and R&D Projects. In Solar Hydrogen Production; Elsevier: Amsterdam, The Netherlands, 2019; pp. 31–44. [Google Scholar]
- Arregi, A.; Amutio, M.; Lopez, G.; Bilbao, J.; Olazar, M. Evaluation of thermochemical routes for hydrogen production from biomass: A review. Energy Convers. Manag. 2018, 165, 696–719. [Google Scholar] [CrossRef]
- Zeng, K.; Zhang, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010, 36, 307–326. [Google Scholar] [CrossRef]
- IRENA. Hydrogen from Renewable Power: Technology Outlook for the Energy Transition; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2018. [Google Scholar]
- Shabaker, J.W.; Dumesic, J.A. Kinetics of aqueous-phase reforming of oxygenated hydrocarbons: Pt/Al2O3 and Sn-modified Ni catalysts. Ind. Eng. Chem. Res. 2004, 43, 3105–3112. [Google Scholar] [CrossRef]
- Wang, Z.; Roberts, R.; Naterer, G.; Gabriel, K. Comparison of thermochemical, electrolytic, photoelectrolytic and photochemical solar-to-hydrogen production technologies. Int. J. Hydrogen Energy 2012, 37, 16287–16301. [Google Scholar] [CrossRef]
- Harrison, K.W.; Remick, R.; Hoskin, A.; Martin, G. Hydrogen Production: Fundamentals and Case Study Summaries; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2010. [Google Scholar]
- Correa, G.; Marocco, P.; Muñoz, P.; Falagüerra, T.; Ferrero, D.; Santarelli, M. Pressurized PEM water electrolysis: Dynamic modelling focusing on the cathode side. Int. J. Hydrogen Energy 2022, 47, 4315–4327. [Google Scholar] [CrossRef]
- Chen, K.; Dong, D.; Jiang, S.P. Hydrogen Production from Water and Air through Solid Oxide Electrolysis. In Production of Hydrogen from Renewable Resources; Springer: Berlin/Heidelberg, Germany, 2015; pp. 223–248. [Google Scholar]
- Delgado, H.E.; Radomsky, R.C.; Martin, D.C.; Bartels, D.M.; Rumbach, P.; Go, D.B. Effect of competing oxidizing reactions and transport limitation on the faradaic efficiency in plasma electrolysis. J. Electrochem. Soc. 2019, 166, E181. [Google Scholar] [CrossRef]
- Ursua, A.; Gandia, L.M.; Sanchis, P. Hydrogen production from water electrolysis: Current status and future trends. Proc. IEEE 2011, 100, 410–426. [Google Scholar] [CrossRef]
- Keçebaş, A.; Kayfeci, M.; Bayat, M. Electrochemical Hydrogen Generation. In Solar Hydrogen Production; Elsevier: Amsterdam, The Netherlands, 2019; pp. 299–317. [Google Scholar]
- Carmo, M.; Fritz, D.L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934. [Google Scholar] [CrossRef]
- Lei, Q.; Wang, B.; Wang, P.; Liu, S. Hydrogen generation with acid/alkaline amphoteric water electrolysis. J. Energy Chem. 2019, 38, 162–169. [Google Scholar] [CrossRef]
- Wang, S.; Lu, A.; Zhong, C.-J. Hydrogen production from water electrolysis: Role of catalysts. Nano Converg. 2021, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.; Choi, W.; Cho, H.-S.; Cho, W.C.; Kim, C.H.; Kang, S. Numerical modeling and analysis of the temperature effect on the performance of an alkaline water electrolysis system. J. Power Sources 2021, 506, 230106. [Google Scholar] [CrossRef]
- Ďurovič, M.; Hnát, J.; Strečková, M.; Bouzek, K. Efficient cathode for the hydrogen evolution reaction in alkaline membrane water electrolysis based on NiCoP embedded in carbon fibres. J. Power Sources 2023, 556, 232506. [Google Scholar] [CrossRef]
- Jang, D.; Cho, H.-S.; Kang, S. Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system. Appl. Energy 2021, 287, 116554. [Google Scholar] [CrossRef]
- Zhang, B.; Fan, L.; Ambre, R.B.; Liu, T.; Meng, Q.; Timmer, B.J.; Sun, L. Advancing proton exchange membrane electrolyzers with molecular catalysts. Joule 2020, 4, 1408–1444. [Google Scholar] [CrossRef]
- Hayashi, T.; Bonnet-Mercier, N.; Yamaguchi, A.; Suetsugu, K.; Nakamura, R. Electrochemical characterization of manganese oxides as a water oxidation catalyst in proton exchange membrane electrolysers. R. Soc. Open Sci. 2019, 6, 190122. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Shao, Z.; Yu, H.; Li, G.; Yi, B. Investigations on degradation of the long-term proton exchange membrane water electrolysis stack. J. Power Sources 2014, 267, 515–520. [Google Scholar] [CrossRef]
- Ayers, K.E.; Renner, J.N.; Danilovic, N.; Wang, J.X.; Zhang, Y.; Maric, R.; Yu, H. Pathways to ultra-low platinum group metal catalyst loading in proton exchange membrane electrolyzers. Catal. Today 2016, 262, 121–132. [Google Scholar] [CrossRef]
- Rakousky, C.; Reimer, U.; Wippermann, K.; Carmo, M.; Lueke, W.; Stolten, D. An analysis of degradation phenomena in polymer electrolyte membrane water electrolysis. J. Power Sources 2016, 326, 120–128. [Google Scholar] [CrossRef]
- Böhm, D.; Beetz, M.; Gebauer, C.; Bernt, M.; Schroeter, J.; Kornherr, M.; Zoller, F.; Bein, T.; Fattakhova-Rohlfing, D. Highly conductive titania supported iridium oxide nanoparticles with low overall iridium density as OER catalyst for large-scale PEM electrolysis. Appl. Mater. Today 2021, 24, 101134. [Google Scholar] [CrossRef]
- Hernández-Gómez, Á.; Ramirez, V.; Guilbert, D. Investigation of PEM electrolyzer modeling: Electrical domain, efficiency, and specific energy consumption. Int. J. Hydrogen Energy 2020, 45, 14625–14639. [Google Scholar] [CrossRef]
- Diéguez, P.; Ursúa, A.; Sanchis, P.; Sopena, C.; Guelbenzu, E.; Gandía, L. Thermal performance of a commercial alkaline water electrolyzer: Experimental study and mathematical modeling. Int. J. Hydrogen Energy 2008, 33, 7338–7354. [Google Scholar] [CrossRef]
- Zahid, M.; Schefold, J.; Brisse, A. High-Temperature Water Electrolysis Using Planar Solid Oxide Fuel Cell Technology: A Review. In Hydrogen and Fuel Cells, Fundamentals, Technologies and Applications; Wiley-VCH: Weinheim, Germany, 2010; pp. 227–242. [Google Scholar]
- Seitz, M.; von Storch, H.; Nechache, A.; Bauer, D. Techno economic design of a solid oxide electrolysis system with solar thermal steam supply and thermal energy storage for the generation of renewable hydrogen. Int. J. Hydrogen Energy 2017, 42, 26192–26202. [Google Scholar] [CrossRef]
- O’brien, J.; McKellar, M.; Harvego, E.; Stoots, C. High-temperature electrolysis for large-scale hydrogen and syngas production from nuclear energy–summary of system simulation and economic analyses. Int. J. Hydrogen Energy 2010, 35, 4808–4819. [Google Scholar] [CrossRef]
- Eguchi, K.; Hatagishi, T.; Arai, H. Power generation and steam electrolysis characteristics of an electrochemical cell with a zirconia-or ceria-based electrolyte. Solid State Ion. 1996, 86, 1245–1249. [Google Scholar] [CrossRef]
- Arsie, I.; Di Filippi, A.; Marra, D.; Pianese, C.; Sorrentino, M. Fault Tree Analysis Aimed to Design and Implement on-Field Fault Detection and Isolation Schemes for SOFC Systems. In Proceedings of the International Conference on Fuel Cell Science, Engineering and Technology, Brooklyn, NY, USA, 14–16 June 2010; pp. 389–399. [Google Scholar]
- Zhou, Z.; Zholobko, O.; Wu, X.-F.; Aulich, T.; Thakare, J.; Hurley, J. Polybenzimidazole-Based Polymer Electrolyte Membranes for High-Temperature Fuel Cells: Current Status and Prospects. Energies 2020, 14, 135. [Google Scholar] [CrossRef]
- Li, C.; Baek, J.-B. The promise of hydrogen production from alkaline anion exchange membrane electrolyzers. Nano Energy 2021, 87, 106162. [Google Scholar] [CrossRef]
- Vincent, I.; Kruger, A.; Bessarabov, D. Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis. Int. J. Hydrogen Energy 2017, 42, 10752–10761. [Google Scholar] [CrossRef]
- Wang, L.; Weissbach, T.; Reissner, R.; Ansar, A.; Gago, A.S.; Holdcroft, S.; Friedrich, K.A. High performance anion exchange membrane electrolysis using plasma-sprayed, non-precious-metal electrodes. ACS Appl. Energy Mater. 2019, 2, 7903–7912. [Google Scholar] [CrossRef]
- Joe, J.D.; Kumar, D.S.; Sivakumar, P. Production of hydrogen by anion exchange membrane using AWE. Int. J. Sci. Technol. Res 2014, 3, 38–42. [Google Scholar]
- Varcoe, J.R.; Slade, R.C. Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 2005, 5, 187–200. [Google Scholar] [CrossRef]
- Edson, J.B.; Macomber, C.S.; Pivovar, B.S.; Boncella, J.M. Hydroxide based decomposition pathways of alkyltrimethylammonium cations. J. Membr. Sci. 2012, 399, 49–59. [Google Scholar] [CrossRef]
- Li, D.; Matanovic, I.; Lee, A.S.; Park, E.J.; Fujimoto, C.; Chung, H.T.; Kim, Y.S. Phenyl oxidation impacts the durability of alkaline membrane water electrolyzer. ACS Appl. Mater. Interfaces 2019, 11, 9696–9701. [Google Scholar] [CrossRef]
- Saksono, N.; Batubara, T.; Bismo, S. Hydrogen Production by Plasma Electrolysis Reactor of KOH-Ethanol Solution. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Bandung, Indonesia, 26–27 October 2016; p. 012010. [Google Scholar]
- Saksono, N.; Ariawan, B.; Bismo, S. Hydrogen Productions System Using Non-Thermal Plasma Electrolysis in Glycerol-KOH Solution. Int. J. Technol. 2012, 1, 8–15. [Google Scholar]
- Saksono, N.; Faishal, M.; Merisa, B.; Setidjo, B. Hydrogen Production System with Plasma Electrolysis Method in Natrium Carbonate-Acetate Acid Solution. In Proceedings of the Proceeding the Regional on Chemical Engineering, Yogyakarta, Indonesia, 2–3 December 2014. [Google Scholar]
- Yan, Z.C.; Li, C.; Lin, W.H. Hydrogen generation by glow discharge plasma electrolysis of methanol solutions. Int. J. Hydrogen Energy 2009, 34, 48–55. [Google Scholar] [CrossRef]
- Yan, Z.-C.; Li, C.; Lin, W. Experimental study of plasma under-liquid electrolysis in hydrogen generation. Chin. J. Process Eng. 2006, 6, 396–401. [Google Scholar]
- Zhou, G.; Guo, Z.; Shan, Y.; Wu, S.; Zhang, J.; Yan, K.; Liu, L.; Chu, P.K.; Wu, X. High-efficiency hydrogen evolution from seawater using hetero-structured T/Td phase ReS2 nanosheets with cationic vacancies. Nano Energy 2019, 55, 42–48. [Google Scholar] [CrossRef]
- Pukrushpan, J.T.; Stefanopoulou, A.G.; Varigonda, S.; Pedersen, L.M.; Ghosh, S.; Peng, H. Control of natural gas catalytic partial oxidation for hydrogen generation in fuel cell applications. IEEE Trans. Control. Syst. Technol. 2004, 13, 3–14. [Google Scholar] [CrossRef]
- Kuznetsov, V.V.; Podlovchenko, B.I.; Frolov, K.V.; Volkov, M.A.; Khanin, D.A. A new promising Pt (Mo2C) catalyst for hydrogen evolution reaction prepared by galvanic displacement reaction. J. Solid State Electrochem. 2022, 26, 2183–2193. [Google Scholar] [CrossRef]
- Winkler, M.; Hemschemeier, A.; Gotor, C.; Melis, A.; Happe, T. [Fe]-hydrogenases in green algae: Photo-fermentation and hydrogen evolution under sulfur deprivation. Int. J. Hydrogen Energy 2002, 27, 1431–1439. [Google Scholar] [CrossRef]
- Chaubey, R.; Sahu, S.; James, O.O.; Maity, S. A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renew. Sustain. Energy Rev. 2013, 23, 443–462. [Google Scholar] [CrossRef]
- Jim, J.; Ramı, M. Sustainable Biohydrogen Production by Chlorella sp. Microalgae: A Review. Int. J. Hydrogen Energy 2020, 45, 8310–8328. [Google Scholar]
- Yu, J.; Takahashi, P. Biophotolysis-based hydrogen production by cyanobacteria and green microalgae. Commun. Curr. Res. Educ. Top. Trends Appl. Microbiol. 2007, 1, 79–89. [Google Scholar]
- Oncel, S.S. Biohydrogen from Microalgae, Uniting Energy, Life, and Green Future. In Handbook of Marine Microalgae; Elsevier: Amsterdam, The Netherlands, 2015; pp. 159–196. [Google Scholar]
- Xie, G.-J.; Liu, B.-F.; Xing, D.-F.; Ding, J.; Nan, J.; Ren, H.-Y.; Guo, W.-Q.; Ren, N.-Q. The kinetic characterization of photofermentative bacterium Rhodopseudomonas faecalis RLD-53 and its application for enhancing continuous hydrogen production. Int. J. Hydrogen Energy 2012, 37, 13718–13724. [Google Scholar] [CrossRef]
- Levin, D.B.; Pitt, L.; Love, M. Biohydrogen production: Prospects and limitations to practical application. Int. J. Hydrogen Energy 2004, 29, 173–185. [Google Scholar] [CrossRef]
- Hallenbeck, P.C.; Ghosh, D. Advances in fermentative biohydrogen production: The way forward? Trends Biotechnol. 2009, 27, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, A.; Frunzo, L.; Pirozzi, F.; Trably, E.; Escudie, R.; Lens, P.N.; Esposito, G. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Appl. Energy 2015, 144, 73–95. [Google Scholar] [CrossRef]
- Bharathiraja, B.; Sudharsanaa, T.; Bharghavi, A.; Jayamuthunagai, J.; Praveenkumar, R. Biohydrogen and Biogas—An overview on feedstocks and enhancement process. Fuel 2016, 185, 810–828. [Google Scholar] [CrossRef]
- Lo, Y.-C.; Chen, C.-Y.; Lee, C.-M.; Chang, J.-S. Sequential dark–photo fermentation and autotrophic microalgal growth for high-yield and CO2-free biohydrogen production. Int. J. Hydrogen Energy 2010, 35, 10944–10953. [Google Scholar] [CrossRef]
- Rittmann, S.; Seifert, A.; Herwig, C. Quantitative analysis of media dilution rate effects on Methanothermobacter marburgensis grown in continuous culture on H2 and CO2. Biomass Bioenergy 2012, 36, 293–301. [Google Scholar] [CrossRef]
- Tian, Q.-Q.; Liang, L.; Zhu, M.-J. Enhanced biohydrogen production from sugarcane bagasse by Clostridium thermocellum supplemented with CaCO3. Bioresour. Technol. 2015, 197, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Dada, O.; Yusoff, W.M.W.; Kalil, M.S. Biohydrogen production from ricebran using Clostridium saccharoperbutylacetonicum N1-4. Int. J. Hydrogen Energy 2013, 38, 15063–15073. [Google Scholar] [CrossRef]
- Ulhiza, T.A.; Puad, N.I.M.; Azmi, A.S. Optimization of culture conditions for biohydrogen production from sago wastewater by Enterobacter aerogenes using Response Surface Methodology. Int. J. Hydrogen Energy 2018, 43, 22148–22158. [Google Scholar] [CrossRef]
- Asadi, N.; Zilouei, H. Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes. Bioresour. Technol. 2017, 227, 335–344. [Google Scholar] [CrossRef]
- Saleem, A.; Umar, H.; Shah, T.A.; Tabassum, R. Fermentation of simple and complex substrates to biohydrogen using pure Bacillus cereus RTUA and RTUB strains. Environ. Technol. Innov. 2020, 18, 100704. [Google Scholar] [CrossRef]
- Xu, J.-F.; Mi, Y.-T.; Ren, N.-Q. Buffering action of acetate on hydrogen production by Ethanoligenens harbinense B49. Electron. J. Biotechnol. 2016, 23, 7–11. [Google Scholar] [CrossRef]
- Azman, N.F.; Abdeshahian, P.; Kadier, A.; Al-Shorgani, N.K.N.; Salih, N.K.; Lananan, I.; Hamid, A.A.; Kalil, M.S. Biohydrogen production from de-oiled rice bran as sustainable feedstock in fermentative process. Int. J. Hydrogen Energy 2016, 41, 145–156. [Google Scholar] [CrossRef]
- Rambabu, K.; Show, P.-L.; Bharath, G.; Banat, F.; Naushad, M.; Chang, J.-S. Enhanced biohydrogen production from date seeds by Clostridium thermocellum ATCC 27405. Int. J. Hydrogen Energy 2020, 45, 22271–22280. [Google Scholar] [CrossRef]
- Kanchanasuta, S.; Prommeenate, P.; Boonapatcharone, N.; Pisutpaisal, N. Stability of Clostridium butyricum in biohydrogen production from non-sterile food waste. Int. J. Hydrogen Energy 2017, 42, 3454–3465. [Google Scholar] [CrossRef]
- Noparat, P.; Prasertsan, P.; Sompong, O. Potential for using enriched cultures and thermotolerant bacterial isolates for production of biohydrogen from oil palm sap and microbial community analysis. Int. J. Hydrogen Energy 2012, 37, 16412–16420. [Google Scholar] [CrossRef]
- He, D.; Bultel, Y.; Magnin, J.-P.; Roux, C.; Willison, J.C. Hydrogen photosynthesis by Rhodobacter capsulatus and its coupling to a PEM fuel cell. J. Power Sources 2005, 141, 19–23. [Google Scholar] [CrossRef]
- Argun, H.; Kargi, F. Bio-hydrogen production by different operational modes of dark and photo-fermentation: An overview. Int. J. Hydrogen Energy 2011, 36, 7443–7459. [Google Scholar] [CrossRef]
- Chen, J.; Toth, J.; Kasap, M. Nitrogen-fixation genes and nitrogenase activity in Clostridium acetobutylicum and Clostridium beijerinckii. J. Ind. Microbiol. Biotechnol. 2001, 27, 281–286. [Google Scholar] [CrossRef]
- Trchounian, K.; Sawers, R.G.; Trchounian, A. Improving biohydrogen productivity by microbial dark-and photo-fermentations: Novel data and future approaches. Renew. Sustain. Energy Rev. 2017, 80, 1201–1216. [Google Scholar] [CrossRef]
- Zhang, T.; Jiang, D.; Zhang, H.; Jing, Y.; Tahir, N.; Zhang, Y.; Zhang, Q. Comparative study on bio-hydrogen production from corn stover: Photo-fermentation, dark-fermentation and dark-photo co-fermentation. Int. J. Hydrogen Energy 2020, 45, 3807–3814. [Google Scholar] [CrossRef]
- Rousseau, R.; Etcheverry, L.; Roubaud, E.; Basséguy, R.; Délia, M.-L.; Bergel, A. Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint. Appl. Energy 2020, 257, 113938. [Google Scholar] [CrossRef]
- Kitching, M.; Butler, R.; Marsili, E. Microbial bioelectrosynthesis of hydrogen: Current challenges and scale-up. Enzym. Microb. Technol. 2017, 96, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Pant, D.; Singh, A.; Van Bogaert, G.; Olsen, S.I.; Nigam, P.S.; Diels, L.; Vanbroekhoven, K. Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv. 2012, 2, 1248–1263. [Google Scholar] [CrossRef]
- Feng, H.; Liang, Y.; Guo, K.; Li, N.; Shen, D.; Cong, Y.; Zhou, Y.; Wang, Y.; Wang, M.; Long, Y. Hybridization of photoanode and bioanode to enhance the current production of bioelectrochemical systems. Water Res. 2016, 102, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Pophali, A.; Singh, S.; Verma, N. Simultaneous hydrogen generation and COD reduction in a photoanode-based microbial electrolysis cell. Int. J. Hydrogen Energy 2020, 45, 25985–25995. [Google Scholar] [CrossRef]
- Kanhere, P.; Chen, Z. A review on visible light active perovskite-based photocatalysts. Molecules 2014, 19, 19995–20022. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, Z.; Yang, X.; Qian, X.; Liu, C.; Zhou, D.; Sun, T.; Zhang, M.; Wei, G.; Dissanayake, P.D. Recent advances in photocatalytic hydrogen evolution with high-performance catalysts without precious metals. Renew. Sustain. Energy Rev. 2020, 132, 110040. [Google Scholar] [CrossRef]
- Meng, A.; Zhu, B.; Zhong, B.; Zhang, L.; Cheng, B. Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl. Surf. Sci. 2017, 422, 518–527. [Google Scholar] [CrossRef]
- Aouad, S.; Labaki, M.; Ojala, S.; Seelam, P.; Turpeinen, E.; Gennequin, C.; Estephane, J.; Abi Aad, E. A review on the dry reforming processes for hydrogen production: Catalytic materials and technologies. Catal. Mater. Hydrog. Prod. Electro Oxid. React. Front. Ceram. Sci. 2018, 2, 60–128. [Google Scholar]
- Dong, Z.; Wu, Y.; Thirugnanam, N.; Li, G. Double Z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production. Appl. Surf. Sci. 2018, 430, 293–300. [Google Scholar] [CrossRef]
- Han, H.; Kim, K.M.; Lee, C.-W.; Lee, C.S.; Pawar, R.C.; Jones, J.L.; Hong, Y.-R.; Ryu, J.H.; Song, T.; Kang, S.H. Few-layered metallic 1T-MoS2/TiO2 with exposed (001) facets: Two-dimensional nanocomposites for enhanced photocatalytic activities. Phys. Chem. Chem. Phys. 2017, 19, 28207–28215. [Google Scholar] [CrossRef] [PubMed]
- Reddy, N.L.; Rao, V.N.; Kumari, M.M.; Sathish, M.; Venkatakrishnan, S.M. Development of high quantum efficiency CdS/ZnS core/shell structured photocatalyst for the enhanced solar hydrogen evolution. Int. J. Hydrogen Energy 2018, 43, 22315–22328. [Google Scholar] [CrossRef]
- Jia, G.; Wang, Y.; Cui, X.; Zheng, W. Highly carbon-doped TiO2 derived from MXene boosting the photocatalytic hydrogen evolution. ACS Sustain. Chem. Eng. 2018, 6, 13480–13486. [Google Scholar] [CrossRef]
- Ma, D.; Shi, J.-W.; Zou, Y.; Fan, Z.; Ji, X.; Niu, C. Highly efficient photocatalyst based on a CdS quantum dots/ZnO nanosheets 0D/2D heterojunction for hydrogen evolution from water splitting. ACS Appl. Mater. Interfaces 2017, 9, 25377–25386. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, H.; Chen, F.; Cao, F.; Zhao, X.; Meng, S.; Cui, Y. Facile synthesis of oxygen doped carbon nitride hollow microsphere for photocatalysis. Appl. Catal. B Environ. 2017, 206, 417–425. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, H.; Yang, C.; Li, M.; Zhao, Y.; Chen, F. Post-activation of in situ BF codoped g-C3N4 for enhanced photocatalytic H2 evolution. Appl. Surf. Sci. 2018, 441, 621–630. [Google Scholar] [CrossRef]
- Man, H.-W.; Tsang, C.-S.; Li, M.M.-J.; Mo, J.; Huang, B.; Lee, L.Y.S.; Leung, Y.-C.; Wong, K.-Y.; Tsang, S.C.E. Transition metal-doped nickel phosphide nanoparticles as electro-and photocatalysts for hydrogen generation reactions. Appl. Catal. B Environ. 2019, 242, 186–193. [Google Scholar] [CrossRef]
- Li, S.; Tan, J.; Jiang, Z.; Wang, J.; Li, Z. MOF-derived bimetallic Fe-Ni-P nanotubes with tunable compositions for dye-sensitized photocatalytic H2 and O2 production. Chem. Eng. J. 2020, 384, 123354. [Google Scholar] [CrossRef]
- Mirabal, S.T. An Economic Analysis of Hydrogen Production Technologies Using Renewable Energy Resources; University of Florida: Gainesville, FL, USA, 2003. [Google Scholar]
- Onozaki, M.; Watanabe, K.; Hashimoto, T.; Saegusa, H.; Katayama, Y. Hydrogen production by the partial oxidation and steam reforming of tar from hot coke oven gas. Fuel 2006, 85, 143–149. [Google Scholar] [CrossRef]
- Iulianelli, A.; Ribeirinha, P.; Mendes, A.; Basile, A. Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review. Renew. Sustain. Energy Rev. 2014, 29, 355–368. [Google Scholar] [CrossRef]
- LeValley, T.L.; Richard, A.R.; Fan, M. The progress in water gas shift and steam reforming hydrogen production technologies—A review. Int. J. Hydrogen Energy 2014, 39, 16983–17000. [Google Scholar] [CrossRef]
- Parthasarathy, P.; Narayanan, K.S. Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield—A review. Renew. Energy 2014, 66, 570–579. [Google Scholar] [CrossRef]
- Angeli, S.D.; Monteleone, G.; Giaconia, A.; Lemonidou, A.A. State-of-the-art catalysts for CH4 steam reforming at low temperature. Int. J. Hydrogen Energy 2014, 39, 1979–1997. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, Z.; Hu, Y.H. Steam reforming of methane: Current states of catalyst design and process upgrading. Renew. Sustain. Energy Rev. 2021, 149, 111330. [Google Scholar] [CrossRef]
- Christofoletti, T.; Assaf, J.; Assaf, E.M. Methane steam reforming on supported and non-supported molybdenum carbides. Chem. Eng. J. 2005, 106, 97–103. [Google Scholar] [CrossRef]
- Angeli, S.D.; Turchetti, L.; Monteleone, G.; Lemonidou, A.A. Catalyst development for steam reforming of methane and model biogas at low temperature. Appl. Catal. B Environ. 2016, 181, 34–46. [Google Scholar] [CrossRef]
- Hernandez-Aldave, S.; Enrico, A. Oxygen depolarised cathode as a learning platform for CO2 gas diffusion electrodes. Catal. Sci. Technol. 2022, 12, 3412–3420. [Google Scholar] [CrossRef]
- Han, B.; Wei, W.; Li, M.; Sun, K.; Hu, Y.H. A thermo-photo hybrid process for steam reforming of methane: Highly efficient visible light photocatalysis. Chem. Commun. 2019, 55, 7816–7819. [Google Scholar] [CrossRef]
- Rocha, K.; Santos, J.; Meira, D.; Pizani, P.; Marques, C.; Zanchet, D.; Bueno, J. Catalytic partial oxidation and steam reforming of methane on La2O3–Al2O3 supported Pt catalysts as observed by X-ray absorption spectroscopy. Appl. Catal. A Gen. 2012, 431, 79–87. [Google Scholar] [CrossRef]
- Wang, H.; Kong, H.; Pu, Z.; Li, Y.; Hu, X. Feasibility of high efficient solar hydrogen generation system integrating photovoltaic cell/photon-enhanced thermionic emission and high-temperature electrolysis cell. Energy Convers. Manag. 2020, 210, 112699. [Google Scholar] [CrossRef]
- Yu, T.; Yuan, Q.; Lu, J.; Ding, J.; Lu, Y. Thermochemical storage performances of methane reforming with carbon dioxide in tubular and semi-cavity reactors heated by a solar dish system. Appl. Energy 2017, 185, 1994–2004. [Google Scholar] [CrossRef]
- Chen, X.; Wang, F.; Han, Y.; Yu, R.; Cheng, Z. Thermochemical storage analysis of the dry reforming of methane in foam solar reactor. Energy Convers. Manag. 2018, 158, 489–498. [Google Scholar] [CrossRef]
- Hou, Z.; Chen, P.; Fang, H.; Zheng, X.; Yashima, T. Production of synthesis gas via methane reforming with CO2 on noble metals and small amount of noble-(Rh-) promoted Ni catalysts. Int. J. Hydrogen Energy 2006, 31, 555–561. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S.; Patel, N.; Fakeeha, A.H.; Alotibi, M.F.; Alreshaidan, S.B.; Kumar, R. Reforming of methane: Effects of active metals, supports, and promoters. Catal. Rev. 2023, 65, 1–99. [Google Scholar] [CrossRef]
- Omoregbe, O.; Danh, H.T.; Nguyen-Huy, C.; Setiabudi, H.; Abidin, S.; Truong, Q.D.; Vo, D.-V.N. Syngas production from methane dry reforming over Ni/SBA-15 catalyst: Effect of operating parameters. Int. J. Hydrogen Energy 2017, 42, 11283–11294. [Google Scholar] [CrossRef]
- Charisiou, N.; Baklavaridis, A.; Papadakis, V.; Goula, M. Synthesis gas production via the biogas reforming reaction over Ni/MgO–Al2O3 and Ni/CaO–Al2 O3 catalysts. Waste Biomass Valorization 2016, 7, 725–736. [Google Scholar] [CrossRef]
- Akbari, E.; Alavi, S.M.; Rezaei, M. Synthesis gas production over highly active and stable nanostructured NiMgOAl2O3 catalysts in dry reforming of methane: Effects of Ni contents. Fuel 2017, 194, 171–179. [Google Scholar] [CrossRef]
- Cruz-Hernández, A.; Mendoza-Nieto, J.A.; Pfeiffer, H. NiOCaO materials as promising catalysts for hydrogen production through carbon dioxide capture and subsequent dry methane reforming. J. Energy Chem. 2017, 26, 942–947. [Google Scholar] [CrossRef]
- Cheng, H.; Feng, S.; Tao, W.; Lu, X.; Yao, W.; Li, G.; Zhou, Z. Effects of noble metal-doping on Ni/La2O3–ZrO2 catalysts for dry reforming of coke oven gas. Int. J. Hydrogen Energy 2014, 39, 12604–12612. [Google Scholar] [CrossRef]
- Wang, H.; Hao, Y.; Kong, H. Thermodynamic study on solar thermochemical fuel production with oxygen permeation membrane reactors. Int. J. Energy Res. 2015, 39, 1790–1799. [Google Scholar] [CrossRef]
- Najari, S.; Gróf, G.; Saeidi, S.; Bihari, P.; Chen, W.-H. Modeling and statistical analysis of the three-side membrane reactor for the optimization of hydrocarbon production from CO2 hydrogenation. Energy Convers. Manag. 2020, 207, 112481. [Google Scholar] [CrossRef]
- Byun, M.; Kim, H.; Choe, C.; Lim, H. Conceptual feasibility studies for cost-efficient and bi-functional methylcyclohexane dehydrogenation in a membrane reactor for H2 storage and production. Energy Convers. Manag. 2021, 227, 113576. [Google Scholar] [CrossRef]
- Arku, P.; Regmi, B.; Dutta, A. A review of catalytic partial oxidation of fossil fuels and biofuels: Recent advances in catalyst development and kinetic modelling. Chem. Eng. Res. Des. 2018, 136, 385–402. [Google Scholar] [CrossRef]
- Beretta, A.; Bruno, T.; Groppi, G.; Tavazzi, I.; Forzatti, P. Conditioning of Rh/α-Al2O3 catalysts for H2 production via CH4 partial oxidation at high space velocity. Appl. Catal. B Environ. 2007, 70, 515–524. [Google Scholar] [CrossRef]
- Meng, B.; Zhang, H.; Zhao, Z.; Wang, X.; Jin, Y.; Liu, S. A novel LaGa0.65Mg0.15Ni0.20O3–δ perovskite catalyst with high performance for the partial oxidation of methane to syngas. Catal. Today 2016, 259, 388–392. [Google Scholar] [CrossRef]
- Carotenuto, G.; Kumar, A.; Miller, J.; Mukasyan, A.; Santacesaria, E.; Wolf, E. Hydrogen production by ethanol decomposition and partial oxidation over copper/copper-chromite based catalysts prepared by combustion synthesis. Catal. Today 2013, 203, 163–175. [Google Scholar] [CrossRef]
- Jahromi, A.F.; Ruiz-López, E.; Dorado, F.; Baranova, E.A.; de Lucas-Consuegra, A. Electrochemical promotion of ethanol partial oxidation and reforming reactions for hydrogen production. Renew. Energy 2022, 183, 515–523. [Google Scholar] [CrossRef]
- Toledo, M.; Bubnovich, V.; Saveliev, A.; Kennedy, L. Hydrogen production in ultrarich combustion of hydrocarbon fuels in porous media. Int. J. Hydrogen Energy 2009, 34, 1818–1827. [Google Scholar] [CrossRef]
- Dhamrat, R.S.; Ellzey, J.L. Numerical and experimental study of the conversion of methane to hydrogen in a porous media reactor. Combust. Flame 2006, 144, 698–709. [Google Scholar] [CrossRef]
- Wang, Z.; Dai, H.; Wang, Z. Experimental study on improving the efficiency of hydrogen production by partial oxidation of ethanol. Int. J. Hydrogen Energy 2022, 47, 18619–18628. [Google Scholar] [CrossRef]
- Chen, W.-H.; Guo, Y.-Z. Hydrogen production characteristics of methanol partial oxidation under sprays with ultra-low Pt and Pd contents in catalysts. Fuel 2018, 222, 599–609. [Google Scholar] [CrossRef]
- Lamb, J.J.; Hillestad, M.; Rytter, E.; Bock, R.; Nordgård, A.S.; Lien, K.M.; Burheim, O.S.; Pollet, B.G. Traditional Routes for Hydrogen Production and Carbon Conversion. In Hydrogen, Biomass and Bioenergy; Elsevier: Amsterdam, The Netherlands, 2020; pp. 21–53. [Google Scholar] [CrossRef]
- Nahar, G.; Dupont, V. Hydrogen production from simple alkanes and oxygenated hydrocarbons over ceria–zirconia supported catalysts. Renew. Sustain. Energy Rev. 2014, 32, 777–796. [Google Scholar] [CrossRef]
- Hagh, B.F. Optimization of autothermal reactor for maximum hydrogen production. Int. J. Hydrogen Energy 2003, 28, 1369–1377. [Google Scholar] [CrossRef]
- Salge, J.R. Autothermal Hydrogen from Renewable Fuels in Millisecond Reactors; University of Minnesota: Minneapolis, MN, USA, 2006. [Google Scholar]
- Sánchez-Sánchez, M.; Navarro, R.; Fierro, J. Ethanol steam reforming over Ni/MxOy–Al2O3 (M= Ce, La, Zr and Mg) catalysts: Influence of support on the hydrogen production. Int. J. Hydrogen Energy 2007, 32, 1462–1471. [Google Scholar] [CrossRef]
- Youn, M.H.; Seo, J.G.; Kim, P.; Song, I.K. Role and effect of molybdenum on the performance of Ni-Mo/γ-Al2O3 catalysts in the hydrogen production by auto-thermal reforming of ethanol. J. Mol. Catal. A Chem. 2007, 261, 276–281. [Google Scholar] [CrossRef]
- Júnior, I.L.; Millet, J.-M.M.; Aouine, M.; do Carmo Rangel, M. The role of vanadium on the properties of iron based catalysts for the water gas shift reaction. Appl. Catal. A Gen. 2005, 283, 91–98. [Google Scholar] [CrossRef]
- Chiuta, S.; Bessarabov, D.G. Design and operation of an ammonia-fueled microchannel reactor for autothermal hydrogen production. Catal. Today 2018, 310, 187–194. [Google Scholar] [CrossRef]
- Fridman, A. Plasma Chemistry; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Hrabovsky, M.; Hlina, M.; Kopecky, V.; Maslani, A.; Krenek, P.; Serov, A.; Hurba, O. Steam plasma methane reforming for hydrogen production. Plasma Chem. Plasma Process. 2018, 38, 743–758. [Google Scholar] [CrossRef]
- Huang, D.-Y.; Jang, J.-H.; Tsai, W.-R.; Wu, W.-Y. Improvement in hydrogen production with plasma reformer system. Energy Procedia 2016, 88, 505–509. [Google Scholar] [CrossRef]
- Cohn, D.R.; Bromberg, L.; Hadidi, K. Onboard Plasmatron Hydrogen Production for Improved Vehicles; Massachusetts Institute of Technology (MIT): Cambridge, MA, USA, 2005. [Google Scholar]
- Fridman, A.; Nester, S.; Kennedy, L.A.; Saveliev, A.; Mutaf-Yardimci, O. Gliding arc gas discharge. Prog. Energy Combust. Sci. 1999, 25, 211–231. [Google Scholar] [CrossRef]
- Petitpas, G.; Rollier, J.-D.; Darmon, A.; Gonzalez-Aguilar, J.; Metkemeijer, R.; Fulcheri, L. A comparative study of non-thermal plasma assisted reforming technologies. Int. J. Hydrogen Energy 2007, 32, 2848–2867. [Google Scholar] [CrossRef]
- Lee, D.H.; Kim, T. Plasma-catalyst hybrid methanol-steam reforming for hydrogen production. Int. J. Hydrogen Energy 2013, 38, 6039–6043. [Google Scholar] [CrossRef]
- Huber, G.W.; Iborra, S.; Corma, A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev. 2006, 106, 4044–4098. [Google Scholar] [CrossRef] [PubMed]
- Demirbas, A.; Arin, G. Hydrogen from biomass via pyrolysis: Relationships between yield of hydrogen and temperature. Energy Sources 2004, 26, 1061–1069. [Google Scholar] [CrossRef]
- Moud, P.H.; Kantarelis, E.; Andersson, K.J.; Engvall, K. Biomass pyrolysis gas conditioning over an iron-based catalyst for mild deoxygenation and hydrogen production. Fuel 2018, 211, 149–158. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, X.; Chen, L.; Sun, L.; Xie, X.; Zhao, B. Production of syngas from pyrolysis of biomass using Fe/CaO catalysts: Effect of operating conditions on the process. J. Anal. Appl. Pyrolysis 2017, 125, 1–8. [Google Scholar] [CrossRef]
- Bridgwater, A. Principles and practice of biomass fast pyrolysis processes for liquids. J. Anal. Appl. Pyrolysis 1999, 51, 3–22. [Google Scholar] [CrossRef]
- Demirbaş, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manag. 2001, 42, 1357–1378. [Google Scholar] [CrossRef]
- Bakhtyari, A.; Makarem, M.A.; Rahimpour, M.R. Hydrogen Production through Pyrolysis. In Fuel Cells and Hydrogen Production; Springer: Berlin/Heidelberg, Germany, 2019; pp. 947–973. [Google Scholar]
- Li, X.; Grace, J.; Watkinson, A.; Lim, C.; Ergüdenler, A. Equilibrium modeling of gasification: A free energy minimization approach and its application to a circulating fluidized bed coal gasifier. Fuel 2001, 80, 195–207. [Google Scholar] [CrossRef]
- Salam, M.A.; Sufian, S.; Murugesan, T. Catalytic hydrogen adsorption of nano-crystalline hydrotalcite derived mixed oxides. Chem. Eng. Res. Des. 2013, 91, 2639–2647. [Google Scholar] [CrossRef]
- Bocci, E.; Di Carlo, A.; Vecchione, L.; Villarini, M.; De Falco, M.; Dell’Era, A. Technical-Economic Analysis of an Innovative Cogenerative Small Scale Biomass Gasification Power Plant. In Proceedings of the International Conference on Computational Science and Its Applications, Ho Chi Minh City, Vietnam, 24–27 July 2013; pp. 256–270. [Google Scholar]
- El-Shafie, M.; Kambara, S.; Hayakawa, Y. Hydrogen production technologies overview. J. Power Energy Eng. 2019, 7, 107. [Google Scholar] [CrossRef]
- Loisel, R.; Baranger, L.; Chemouri, N.; Spinu, S.; Pardo, S. Economic evaluation of hybrid off-shore wind power and hydrogen storage system. Int. J. Hydrogen Energy 2015, 40, 6727–6739. [Google Scholar] [CrossRef]
- Rezaei, M.; Naghdi-Khozani, N.; Jafari, N. Wind energy utilization for hydrogen production in an underdeveloped country: An economic investigation. Renew. Energy 2020, 147, 1044–1057. [Google Scholar] [CrossRef]
- Gökçek, M. Hydrogen generation from small-scale wind-powered electrolysis system in different power matching modes. Int. J. Hydrogen Energy 2010, 35, 10050–10059. [Google Scholar] [CrossRef]
- Iqbal, W.; Yumei, H.; Abbas, Q.; Hafeez, M.; Mohsin, M.; Fatima, A.; Jamali, M.A.; Jamali, M.; Siyal, A.; Sohail, N. Assessment of wind energy potential for the production of renewable hydrogen in Sindh Province of Pakistan. Processes 2019, 7, 196. [Google Scholar] [CrossRef]
- Barot, N.S.; Bagla, H.K. Eco-friendly waste water treatment by cow dung powder (Adsorption studies of CrIII, CrVI and CdII using tracer technique). Desalination Water Treat. 2012, 38, 104–113. [Google Scholar] [CrossRef]
- Schucan, T. International Energy Agency Hydrogen Implementing Agreement Task 11. In Systems: Final Report of Subtask A: Case Studies of Integrated Hydrogen Energy Systems; International Energy Agency Hydrogen Implementing Agreement: Golden, CO, USA, 2002. [Google Scholar]
- Gibson, T.L.; Kelly, N.A. Optimization of solar powered hydrogen production using photovoltaic electrolysis devices. Int. J. Hydrogen Energy 2008, 33, 5931–5940. [Google Scholar] [CrossRef]
- Khaselev, O.; Bansal, A.; Turner, J. High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int. J. Hydrogen Energy 2001, 26, 127–132. [Google Scholar] [CrossRef]
- Dahbi, S.; Aboutni, R.; Aziz, A.; Benazzi, N.; Elhafyani, M.; Kassmi, K. Optimised hydrogen production by a photovoltaic-electrolysis system DC/DC converter and water flow controller. Int. J. Hydrogen Energy 2016, 41, 20858–20866. [Google Scholar] [CrossRef]
- Gagnon, L.; Belanger, C.; Uchiyama, Y. Life-cycle assessment of electricity generation options: The status of research in year 2001. Energy Policy 2002, 30, 1267–1278. [Google Scholar] [CrossRef]
- Yildiz, B.; Kazimi, M.S. Efficiency of hydrogen production systems using alternative nuclear energy technologies. Int. J. Hydrogen Energy 2006, 31, 77–92. [Google Scholar] [CrossRef]
- Yamawaki, M.; Nishihara, T.; Inagaki, Y.; Minato, K.; Oigawa, H.; Onuki, K.; Hino, R.; Ogawa, M. Application of nuclear energy for environmentally friendly hydrogen generation. Int. J. Hydrogen Energy 2007, 32, 2719–2725. [Google Scholar] [CrossRef]
- Das, D.; Veziroǧlu, T.N. Hydrogen production by biological processes: A survey of literature. Int. J. Hydrogen Energy 2001, 26, 13–28. [Google Scholar] [CrossRef]
- Pandiyan, A.; Uthayakumar, A.; Subrayan, R.; Cha, S.W.; Krishna Moorthy, S.B. Review of solid oxide electrolysis cells: A clean energy strategy for hydrogen generation. Nanomater. Energy 2019, 8, 2–22. [Google Scholar] [CrossRef]
- Chaffin, J.H.; Bobbio, S.M.; Inyang, H.I.; Kaanagbara, L. Hydrogen production by plasma electrolysis. J. Energy Eng. 2006, 132, 104–108. [Google Scholar] [CrossRef]
- Abdel-Aal, H.; Zohdy, K.; Kareem, M.A. Hydrogen production using sea water electrolysis. Open Fuel Cells J. 2010, 3, 1–7. [Google Scholar] [CrossRef]
- Preethi, V.; Kanmani, S. Photocatalytic hydrogen production. Mater. Sci. Semicond. Process. 2013, 16, 561–575. [Google Scholar] [CrossRef]
- Łukajtis, R.; Hołowacz, I.; Kucharska, K.; Glinka, M.; Rybarczyk, P.; Przyjazny, A.; Kamiński, M. Hydrogen production from biomass using dark fermentation. Renew. Sustain. Energy Rev. 2018, 91, 665–694. [Google Scholar] [CrossRef]
- Hay, J.X.W.; Wu, T.Y.; Juan, J.C.; Md. Jahim, J. Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: Overview, economics, and future prospects of hydrogen usage. Biofuels Bioprod. Biorefining 2013, 7, 334–352. [Google Scholar] [CrossRef]
- Hu, H.; Fan, Y.; Liu, H. Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res. 2008, 42, 4172–4178. [Google Scholar] [CrossRef] [PubMed]
- Palo, D.R.; Dagle, R.A.; Holladay, J.D. Methanol steam reforming for hydrogen production. Chem. Rev. 2007, 107, 3992–4021. [Google Scholar] [CrossRef] [PubMed]
- Sengodan, S.; Lan, R.; Humphreys, J.; Du, D.; Xu, W.; Wang, H.; Tao, S. Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications. Renew. Sustain. Energy Rev. 2018, 82, 761–780. [Google Scholar] [CrossRef]
- Nahar, G.; Dupont, V. Recent advances in hydrogen production via autothermal reforming process (ATR): A review of patents and research articles. Recent Pat. Chem. Eng. 2013, 6, 8–42. [Google Scholar] [CrossRef]
- Cao, L.; Iris, K.; Xiong, X.; Tsang, D.C.; Zhang, S.; Clark, J.H.; Hu, C.; Ng, Y.H.; Shang, J.; Ok, Y.S. Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environ. Res. 2020, 186, 109547. [Google Scholar] [CrossRef] [PubMed]
- Lopez, G.; Santamaria, L.; Lemonidou, A.; Zhang, S.; Wu, C.; Sipra, A.T.; Gao, N. Hydrogen generation from biomass by pyrolysis. Nat. Rev. Methods Primers 2022, 2, 1–13. [Google Scholar] [CrossRef]
- Zhang, C.; Greenblatt, J.B.; Wei, M.; Eichman, J.; Saxena, S.; Muratori, M.; Guerra, O.J. Flexible grid-based electrolysis hydrogen production for fuel cell vehicles reduces costs and greenhouse gas emissions. Appl. Energy 2020, 278, 115651. [Google Scholar] [CrossRef]
- Apostolaki-Iosifidou, E.; Codani, P.; Kempton, W. Measurement of power loss during electric vehicle charging and discharging. Energy 2017, 127, 730–742. [Google Scholar] [CrossRef]
- Smith, K.; Saxon, A.; Keyser, M.; Lundstrom, B.; Cao, Z.; Roc, A. Life Prediction Model for Grid-Connected Li-Ion Battery Energy Storage System. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 4062–4068. [Google Scholar]
- Bossel, U.; Eliasson, B.; Taylor, G. The future of the hydrogen economy: Bright or bleak? Cogener. Distrib. Gener. J. 2003, 18, 29–70. [Google Scholar] [CrossRef]
- Cantono, S. Environmental Input-Output Analysis and Life Cycle Assessment Applied to the Case of Hydrogen and Fuel Cells Buses (May 25, 2008); Research Paper No. 5/2008-GE; University of Torino, Department of Economics: Turin, Italy, 2008. [Google Scholar]
- Konnola, T.; Del Rio, P.; Juarez, L.P.; Carrillo-Hermosilla, J.; Unruh, G.C. An empirical analysis of institutional barriers to European hydrogen RD&D cooperation. Int. J. Sustain. Dev. 2008, 11, 74–96. [Google Scholar]
- Ball, M.; Weeda, M. The hydrogen economy–vision or reality? Int. J. Hydrogen Energy 2015, 40, 7903–7919. [Google Scholar] [CrossRef]
- Longden, T.; Beck, F.J.; Jotzo, F.; Andrews, R.; Prasad, M. ‘Clean’hydrogen?—Comparing the emissions and costs of fossil fuel versus renewable electricity based hydrogen. Appl. Energy 2022, 306, 118145. [Google Scholar] [CrossRef]
- Noussan, M.; Raimondi, P.; Scita, R.; Hafner, M. The role of green and blue hydrogen in the energy transitionda technological and geopolitical perspective. Sustainability 2021, 13, 298. [Google Scholar] [CrossRef]
- IEA. The Future of Hydrogen; IEA: Paris, France, 2019; Available online: https://www.iea.org/reports/the-future-of-hydrogen (accessed on 20 August 2023).
- De León, C.M.; Ríos, C.; Brey, J. Cost of green hydrogen: Limitations of production from a stand-alone photovoltaic system. Int. J. Hydrogen Energy 2022, 48, 11885–11898. [Google Scholar] [CrossRef]
- Rosen, M.A.; Koohi-Fayegh, S. The prospects for hydrogen as an energy carrier: An overview of hydrogen energy and hydrogen energy systems. Energy Ecol. Environ. 2016, 1, 10–29. [Google Scholar] [CrossRef]
- Bartels, J.R.; Pate, M.B.; Olson, N.K. An economic survey of hydrogen production from conventional and alternative energy sources. Int. J. Hydrogen Energy 2010, 35, 8371–8384. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Poullikkas, A. A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611. [Google Scholar] [CrossRef]
- Ajanovic, A.; Sayer, M.; Haas, R. The economics and the environmental benignity of different colors of hydrogen. Int. J. Hydrogen Energy 2022, 47, 24136–24154. [Google Scholar] [CrossRef]
Microorganism | Substrate | Biohydrogen Yield | Reference |
---|---|---|---|
Clostridium thermocellum ATCC 27405 | Sugarcane bagasse | 4.89 mmol H2/g mediumadded | [70] |
Clostridium saccharoperbutylacetonicum N1–4 | Rice Bran | 3.37 mol H2/mol sugar consumed | [71] |
Enterobacter aerogenes CDC 819–56 | Sago wastewater | 7.42 mmol H2/mol glucose | [72] |
Enterobacter aerogenes PTCC 1221 | Rice straw | 19.73 mL H2/g straw | [73] |
Bacillus cereus | Wheat straw | 156.4 mL H2/g VS | [74] |
Ethanoligenens harbinense B49 | Glucose | 113.5 mmol H2/L | [75] |
Clostridium acetobutylicum YM1 | Rice bran | 117.24 mL H2/g sugarconsumed | [76] |
Clostridium thermocellum ATCC 27405 | Date seeds | 103.97 mmol H2/L | [77] |
Clostridium butyricum TISTR 1032 | Food waste | 362 mL H2/g VS | [78] |
Clostridium beijerinckii PS-3 | Oil palm | 141 mL H2/g substrate | [79] |
Class | Catalyst | Co-Catalyst | Hydrogen Evolution Rate (μmol/h.g) | Reference |
---|---|---|---|---|
Metal sulfide | CdS | Loaded Ni3CNPs, Loaded TiO2 | 1028–18,020 | [92,93] |
ZnS | Doped Cu, doped In and Cu, loaded ZnO/g.C3N4 | 301.25–973 | [94,95] | |
CdS/ZnS | - | 686 | [96] | |
Metal oxide | TiO2 | Doped high content C, coated 1 T-MoS2 | 33.04–21,500 | [95,97] |
ZnO | Loaded g-C3N4NSs, Loaded CdS QDs | 322–22,120 | [97,98] | |
Metal-free | g-C3N4 | Doped P, Doped B, and F | 348–7020 | [99,100] |
Metal phosphide | NiP, | Doped Mo, doped Co | 15,300–20,400 | [101] |
Cu3P | Hybridized MoP | 5420 | [102] |
Technology | Charging Cost (USD/kW) | Discharging Cost (USD/kW) | Storage Cost (USD/kW) |
---|---|---|---|
Battery | 196 | 60 | 218 |
Hydrogen underground | 942 | 574 | 0.08 |
Hydrogen above ground | 942 | 574 | 35 |
Alkaline Electrolysis | PEM | SMR | SMR with CCUS | |
---|---|---|---|---|
Investment cost (USD/kW) | 2836 | 3163 | 1090 | 1939 |
O&M (USD/kW) | 42.54 | 48 | 51.27 | 57.82 |
Efficiency (LHV) | 64 | 66 | 76 | 69 |
Operating hours | 3000 | 3000 | 8322 | 8322 |
Energy price (USD/kW) | 0.044 | 0.044 | 0.033 | 0.033 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlZohbi, G. An Overview of Hydrogen Energy Generation. ChemEngineering 2024, 8, 17. https://doi.org/10.3390/chemengineering8010017
AlZohbi G. An Overview of Hydrogen Energy Generation. ChemEngineering. 2024; 8(1):17. https://doi.org/10.3390/chemengineering8010017
Chicago/Turabian StyleAlZohbi, Gaydaa. 2024. "An Overview of Hydrogen Energy Generation" ChemEngineering 8, no. 1: 17. https://doi.org/10.3390/chemengineering8010017