Using the Response Surface Methodology to Treat Tannery Wastewater with the Bicarbonate-Peroxide System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tannery Wastewater
2.2. Physicochemical Characterization of the Tannery Effluents
2.3. Experimental Analysis
2.4. Analytical Methods
2.4.1. TOC Determination
2.4.2. COD Determination
- B = mL FAS used for sample;
- A = mL FAS used for blank;
- M = molarity of FAS;
- 8000 = milliequivalent weight of oxygen ∗ 1000 mL/L.
2.4.3. Nitrate Quantification
2.4.4. Hydrogen Peroxide Determination
2.5. Data Analysis
3. Results and Discussion
3.1. Physicochemical Characterization of Tannery Wastewater
3.2. Experimental Design
3.2.1. COD
3.2.2. Nitrification
3.3. Process Optimization
3.4. Treatment Costs Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Urbina-suarez, N.A.; Machuca-martínez, F.; Barajas-solano, A.F. Advanced Oxidation Processes and Biotechnological Alternatives for the Treatment of Tannery Wastewater. Molecules 2021, 26, 3222. [Google Scholar] [CrossRef]
- Sivagami, K.; Sakthivel, K.P.; Nambi, I.M. Advanced Oxidation Processes for the Treatment of Tannery Wastewater. J. Environ. Chem. Eng. 2018, 6, 3656–3663. [Google Scholar] [CrossRef]
- Bharagava, R.N.; Mishra, S. Hexavalent Chromium Reduction Potential of Cellulosimicrobium Sp. Isolated from Common Effluent Treatment Plant of Tannery Industries. Ecotoxicol. Environ. Saf. 2018, 147, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Hansen, É.; Monteiro de Aquim, P.; Hansen, A.W.; Cardoso, J.K.; Ziulkoski, A.L.; Gutterres, M. Impact of Post-Tanning Chemicals on the Pollution Load of Tannery Wastewater. J. Environ. Manag. 2020, 269, 110787. [Google Scholar] [CrossRef] [PubMed]
- Chhikara, S.; Hooda, A.; Rana, L.; Dhankhar, R. Chromium (VI) Biosorption by Immobilized Aspergillus Niger in Continuous Flow System with Special Reference to FTIR Analysis. J. Environ. Biol. 2010, 31, 561–566. [Google Scholar] [PubMed]
- Daneshvar, E.; Zarrinmehr, M.J.; Kousha, M.; Hashtjin, A.M.; Saratale, G.D.; Maiti, A.; Vithanage, M.; Bhatnagar, A. Hexavalent Chromium Removal from Water by Microalgal-Based Materials: Adsorption, Desorption and Recovery Studies. Bioresour. Technol. 2019, 293, 122064. [Google Scholar] [CrossRef]
- Rezgui, S.; Ghazouani, M.; Bousselmi, L.; Akrout, H. Efficient Treatment for Tannery Wastewater through Sequential Electro-Fenton and Electrocoagulation Processes. J. Environ. Chem. Eng. 2022, 10, 107424. [Google Scholar] [CrossRef]
- Garrido-Cardenas, J.A.; Esteban-García, B.; Agüera, A.; Sánchez-Pérez, J.A.; Manzano-Agugliaro, F. Wastewater Treatment by Advanced Oxidation Process and Their Worldwide Research Trends. Int. J. Environ. Res. Public Heal. 2019, 17, 170. [Google Scholar] [CrossRef] [Green Version]
- Su, R.; Xie, C.; Alhassan, S.I.; Huang, S.; Chen, R.; Xiang, S.; Wang, Z.; Huang, L. Oxygen Reduction Reaction in the Field of Water Environment for Application of Nanomaterials. Nanomater 2020, 10, 1719. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, Q.; Tang, Y.; Zhou, J.; Guo, H. Tannery Wastewater Treatment: Conventional and Promising Processes, an Updated 20-Year Review. J. Leather Sci. Eng. 2022, 4, 10. [Google Scholar] [CrossRef]
- Muruganandham, M.; Suri, R.P.S.; Jafari, S.; Sillanpää, M.; Lee, G.J.; Wu, J.J.; Swaminathan, M. Recent Developments in Homogeneous Advanced Oxidation Processes for Water and Wastewater Treatment. Int. J. Photoenergy 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Su, R.; Chai, L.; Tang, C.; Li, B.; Yang, Z. Comparison of the Degradation of Molecular and Ionic Ibuprofen in a UV/H2O2 System. Water Sci. Technol. 2018, 77, 2174–2183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrank, S.G.; José, H.J.; Moreira, R.F.P.M.; Schröder, H.F. Comparison of Different Advanced Oxidation Process to Reduce Toxicity and Mineralisation of Tannery Wastewater. Water Sci. Technol. 2004, 50, 329–334. [Google Scholar] [CrossRef]
- Shokri, A.; Fard, M.S. A Critical Review in Fenton-like Approach for the Removal of Pollutants in the Aqueous Environment. Environ. Chall. 2022, 7, 100534. [Google Scholar] [CrossRef]
- Jessieleena, A.A.; Priyanka, M.; Saravanakumar, M.P. Comparative Study of Fenton, Fe2+/NaOCl and Fe2+/(NH4)2S2O8 on Tannery Sludge Dewaterability, Degradability of Organics and Leachability of Chromium. J. Hazard. Mater. 2021, 402, 123495. [Google Scholar] [CrossRef]
- Houshyar, Z.; Khoshfetrat, A.B.; Fatehifar, E. Influence of Ozonation Process on Characteristics of Pre-Alkalized Tannery Effluents. Chem. Eng. J. 2012, 191, 59–65. [Google Scholar] [CrossRef]
- Korpe, S.; Rao, P.V. Application of Advanced Oxidation Processes and Cavitation Techniques for Treatment of Tannery Wastewater—A Review. J. Environ. Chem. Eng. 2021, 9, 105234. [Google Scholar] [CrossRef]
- Urbina-Suarez, N.A.; Rivera-Caicedo, C.; González-Delgado, Á.D.; Barajas-Solano, A.F.; Machuca-Martínez, F. Bicarbonate-Hydrogen Peroxide System for Treating Dyeing Wastewater: Degradation of Organic Pollutants and Color Removal. Toxics 2023, 11, 366. [Google Scholar] [CrossRef]
- Pan, H.; Gao, Y.; Li, N.; Zhou, Y.; Lin, Q.; Jiang, J. Recent Advances in Bicarbonate-Activated Hydrogen Peroxide System for Water Treatment. Chem. Eng. J. 2021, 408, 127332. [Google Scholar] [CrossRef]
- Kan, H.; Soklun, H.; Yang, Z.; Wu, R.; Shen, J.; Qu, G.; Wang, T. Purification of Dye Wastewater Using Bicarbonate Activated Hydrogen Peroxide: Reaction Process and Mechanisms. Sep. Purif. Technol. 2020, 232, 115974. [Google Scholar] [CrossRef]
- Liu, X.; He, S.; Yang, Y.; Yao, B.; Tang, Y.; Luo, L.; Zhi, D.; Wan, Z.; Wang, L.; Zhou, Y. A Review on Percarbonate-Based Advanced Oxidation Processes for Remediation of Organic Compounds in Water. Environ. Res. 2021, 200, 111371. [Google Scholar] [CrossRef] [PubMed]
- Bokare, A.D.; Choi, W. Bicarbonate-Induced Activation of H2O2 for Metal-Free Oxidative Desulfurization. J. Hazard. Mater. 2016, 304, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Jawad, A.; Lu, X.; Chen, Z.; Yin, G. Degradation of Chlorophenols by Supported Co-Mg-Al Layered Double Hydrotalcite with Bicarbonate Activated Hydrogen Peroxide. J. Phys. Chem. A 2014, 118, 10028–10035. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Li, H.; Zhao, S. Fast Degradation of Acid Orange II by Bicarbonate-Activated Hydrogen Peroxide with a Magnetic S-Modified CoFe2O4 Catalyst. J. Taiwan Inst. Chem. Eng. 2015, 55, 90–100. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Q.; Soklun, H.; Qu, G.; Xia, T.; Guo, X.; Jia, H.; Zhu, L. A Green Strategy for Simultaneous Cu(II)-EDTA Decomplexation and Cu Precipitation from Water by Bicarbonate-Activated Hydrogen Peroxide/Chemical Precipitation. Chem. Eng. J. 2019, 370, 1298–1309. [Google Scholar] [CrossRef]
- Lipps, W.C.; Braun-Howland, E.B.; Baxter, T.E. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017; ISBN 0875532993. [Google Scholar]
- Nogueira, R.F.P.; Oliveira, M.C.; Paterlini, W.C. Simple and Fast Spectrophotometric Determination of H2O2 in Photo-Fenton Reactions Using Metavanadate. Talanta 2005, 66, 86–91. [Google Scholar] [CrossRef]
- Appiah-Brempong, M.; Essandoh, H.M.K.; Asiedu, N.Y.; Dadzie, S.K.; Momade, F.W.Y. Artisanal Tannery Wastewater: Quantity and Characteristics. Heliyon 2022, 8, e08680. [Google Scholar] [CrossRef]
- Genawi, N.M.; Ibrahim, M.H.; El-Naas, M.H.; Alshaik, A.E. Chromium Removal from Tannery Wastewater by Electrocoagulation: Optimization and Sludge Characterization. Water 2020, 12, 1374. [Google Scholar] [CrossRef]
- Tamil Selvan, S.; Velramar, B.; Ramamurthy, D.; Balasundaram, S.; Sivamani, K. Pilot Scale Wastewater Treatment, CO2 Sequestration and Lipid Production Using Microalga, Neochloris Aquatica RDS02. Int. J. Phytoremediation 2020, 22, 1462–1479. [Google Scholar] [CrossRef]
- Monira, U.; Sattar, G.S.; Mostafa, M.G. Characterization of Tannery Effluent and Efficiency Assessment of Central Effluent Treatment Plant (CETP) at Savar in Bangladesh. Asian J. Sci. Appl. Technol. 2023, 12, 48–53. [Google Scholar] [CrossRef]
- Lofrano, G.; Meriç, S.; Zengin, G.E.; Orhon, D. Chemical and Biological Treatment Technologies for Leather Tannery Chemicals and Wastewaters: A Review. Sci. Total Environ. 2013, 461–462, 265–281. [Google Scholar] [CrossRef]
- Akan, J.C.; Abdulrahman, F.I.; Ayodele, J.T.; Ogugbuaja, V.O. Impact of Tannery and Textile Effluent on the Chemical Characteristics of Challawa River, Kano State, Nigeria. Aust. J. Basic Appl. Sci. 2009, 3, 1933–1947. [Google Scholar]
- Khanh Tran, T.; Jyh Leu, H.; Quyet Vu, T.; Tam Nguyen, M.; Anh Pham, T.; Kiefer, R. Hydrogen Production from the Tannery Wastewater Treatment by Using Agriculture Supports Membrane/Adsorbents Electrochemical System. Int. J. Hydrogen Energy 2020, 45, 3699–3711. [Google Scholar] [CrossRef]
- Reyes-Serrano, A.; López-Alejo, J.E.; Hernández-Cortázar, M.A.; Elizalde, I. Removing Contaminants from Tannery Wastewater by Chemical Precipitation Using CaO and Ca(OH)2. Chin. J. Chem. Eng. 2020, 28, 1107–1111. [Google Scholar] [CrossRef]
- Saranya, D.; Shanthakumar, S. An Integrated Approach for Tannery Effluent Treatment with Ozonation and Phycoremediation: A Feasibility Study. Environ. Res. 2020, 183, 109163. [Google Scholar] [CrossRef]
- Meenachi, S.; Kandasamy, S. Pre-Treatment of Tannery Chrome Wastewater by Green Synthesised Iron Oxide Nanocatalyst. Int. J. Environ. Anal. Chem. 2019, 101, 2087–2099. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Chen, Z.X.; Zhang, J.; Gong, L.; Wang, Y.X.; Zhao, H.Q.; Mu, Y. Carbonate-Activated Hydrogen Peroxide Oxidation Process for Azo Dye Decolorization: Process, Kinetics, and Mechanisms. Chemosphere 2018, 192, 372–378. [Google Scholar] [CrossRef]
- Urbina-Suarez, N.A.; Barajas-Solano, A.F.; Zuorro, A.; Machuca, F. Advanced Oxidation Processes with Uv-H2o2 for Nitrification and Decolorization of Dyehouse Wastewater. Chem. Eng. Trans. 2022, 95, 235–240. [Google Scholar] [CrossRef]
- Jawad, A.; Chen, Z.; Yin, G. Bicarbonate Activation of Hydrogen Peroxide: A New Emerging Technology for Wastewater Treatment. Chin. J. Catal. 2016, 37, 810–825. [Google Scholar] [CrossRef]
- Mergeay, M. Heavy Metal Resistances in Microbial Ecosystems. In Molecular Microbial Ecology Manual; Springer: Dordrecht, The Netherlands, 1995; pp. 439–455. [Google Scholar] [CrossRef]
- Li, X.; Xiong, Z.; Ruan, X.; Xia, D.; Zeng, Q.; Xu, A. Kinetics and Mechanism of Organic Pollutants Degradation with Cobalt–Bicarbonate–Hydrogen Peroxide System: Investigation of the Role of Substrates. Appl. Catal. A Gen. 2012, 411–412, 24–30. [Google Scholar] [CrossRef]
- Balagam, B.; Richardson, D.E. The Mechanism of Carbon Dioxide Catalysis in the Hydrogen Peroxide N-Oxidation of Amines. Inorg. Chem. 2008, 47, 1173–1178. [Google Scholar] [CrossRef]
- Sforza, E.; Kumkum, P.; Barbera, E.; Kumar, S. Bioremediation of Industrial Effluents: How a Biochar Pretreatment May Increase the Microalgal Growth in Tannery Wastewater. J. Water Process Eng. 2020, 37, 101431. [Google Scholar] [CrossRef]
- Wang, J.; Song, M.; Chen, B.; Wang, L.; Zhu, R. Effects of PH and H2O2 on Ammonia, Nitrite, and Nitrate Transformations during UV254nm Irradiation: Implications to Nitrogen Removal and Analysis. Chemosphere 2017, 184, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Ruffino, B.; Zanetti, M. Orthophosphate vs. Bicarbonate Used as a Buffering Substance for Optimizing the Bromide-Enhanced Ozonation Process for Ammonia Nitrogen Removal. Sci. Total Environ. 2019, 692, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Korpe, S.A.; Landge, V.; Hakke, V.S.; Rao, P.V.; Sonawane, S.H.; Sonawane, S.S. Advanced Oxidation Processes for Tannery Industry Wastewater Treatment. In Novel Approaches towards Wastewater Treatment and Resource Recovery Technologies; Elsevier: Amsterdam, The Netherlands, 2022; pp. 253–276. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Nunes, O.C.; Pereira, M.F.R.; Silva, A.M.T. An Overview on the Advanced Oxidation Processes Applied for the Treatment of Water Pollutants Defined in the Recently Launched Directive 2013/39/EU. Environ. Int. 2015, 75, 33–51. [Google Scholar] [CrossRef] [Green Version]
- Jóźwiakowski, K.; Marzec, M.; Fiedurek, J.; Kamińska, A.; Gajewska, M.; Wojciechowska, E.; Wu, S.; Dach, J.; Marczuk, A.; Kowlaczyk-Juśko, A. Application of H2O2 to Optimize Ammonium Removal from Domestic Wastewater. Sep. Purif. Technol. 2017, 173, 357–363. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, W. A Review for Tannery Wastewater Treatment: Some Thoughts under Stricter Discharge Requirements. Environ. Sci. Pollut. Res. 2019, 26, 26102–26111. [Google Scholar] [CrossRef] [PubMed]
- Arslan, A.; Veli, S.; Bingöl, D. Use of Response Surface Methodology for Pretreatment of Hospital Wastewater by O3/UV and O3/UV/H2O2 Processes. Sep. Purif. Technol. 2014, 132, 561–567. [Google Scholar] [CrossRef]
- Pire-Sierra, M.C.; Cegarra-Badell, D.D.; Carrasquero-Ferrer, S.J.; Angulo-Cubillan, N.E.; Díaz-Montiel, A.R. Nitrogen and COD Removal from Tannery Wastewater Using Biological and Physicochemical Treatments. Rev. Fac. Ing. Univ. Antioquia 2016, 2016, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Saravanathamizhan, R.; Perarasu, V.R.; Dhandapani, B. Advanced Oxidation Process for Effluent Treatment in Textile, Pharmaceutical, and Tannery Industries. In Photocatalytic Degradation of Dyes, Current Trends and Future Perspectives; Elsevier: Amsterdam, The Netherlands, 2021; pp. 719–745. [Google Scholar] [CrossRef]
- Módenes, A.N.; Espinoza-Quiñones, F.R.; Borba, F.H.; Manenti, D.R. Performance Evaluation of an Integrated Photo-Fenton—Electrocoagulation Process Applied to Pollutant Removal from Tannery Effluent in Batch System. Chem. Eng. J. 2012, 197, 1–9. [Google Scholar] [CrossRef]
- Wardenier, N.; Liu, Z.; Nikiforov, A.; Van Hulle, S.W.H.; Leys, C. Micropollutant Elimination by O3, UV and Plasma-Based AOPs: An Evaluation of Treatment and Energy Costs. Chemosphere 2019, 234, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Cañizares, P.; Paz, R.; Sáez, C.; Rodrigo, M.A. Costs of the Electrochemical Oxidation of Wastewaters: A Comparison with Ozonation and Fenton Oxidation Processes. J. Environ. Manag. 2009, 90, 410–420. [Google Scholar] [CrossRef]
- Gomes, A.I.; Soares, T.F.; Silva, T.F.C.V.; Boaventura, R.A.R.; Vilar, V.J.P. Ozone-Driven Processes for Mature Urban Landfill Leachate Treatment: Organic Matter Degradation, Biodegradability Enhancement and Treatment Costs for Different Reactors Configuration. Sci. Total Environ. 2020, 724, 138083. [Google Scholar] [CrossRef]
- Isarain-Chávez, E.; De La Rosa, C.; Godínez, L.A.; Brillas, E.; Peralta-Hernández, J.M. Comparative Study of Electrochemical Water Treatment Processes for a Tannery Wastewater Effluent. J. Electroanal. Chem. 2014, 713, 62–69. [Google Scholar] [CrossRef]
Parameter | Units | Standard Methods | Parameter | Units | Standard Methods |
---|---|---|---|---|---|
COD | mg/L | 5220C | Phosphates | mg/L | 4500-P C |
BOD | 5210B-4500-OG | pH | pH | 4500B | |
TOC (Total organic carbon) | 5310B | Conductivity | µS/cm | 2510B | |
NO3− (Nitrates) | 4500-NO3− B | TSS (Total Suspended Solids) | mg/L | 2540D | |
NO2− (Nitrites) | 4500-NO2− B | Cr6+ | 3111D | ||
NH3 (Ammonia nitrogen) | 4500-NH3 F | Chlorides | 4500-ClB |
Factor | Unit | Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
H2O2 | mol/L | 0.1 | 0.3 | 0.5 |
Bicarbonate | mol/L | 0.1 | 0.3 | 0.5 |
pH | pH units | 4 | 5 | 6 |
Temperature | °C | 50 | 65 | 80 |
Parameter | Units | This Research | [13] | [23] | [24] | [25] | [26] |
---|---|---|---|---|---|---|---|
COD | (m/L) | 6535.66 ± 15.33 | 6720 ± 5.34 | 5250–9600 | 4500 ± 329 | 6970 ± 72.10 | 1646 |
BOD | 1245.52 ± 7.45 | 4368 ± 2.34 | n.r. | 400 ± 36 | 2068.8 ± 91.41 | 572 | |
TOC | 1683.23 ± 15.87 | n.r. | 2060–2710 | 74.69 ± 4.85 | n.r. | n.r. | |
Nitrites | 1.46 ± 0.087 | 0.15 ± 0.0035 | n.r. | n.r. | n.r. | n.r | |
Nitrates | 42.44 ± 0.82 | 641 ± 4.34 | n.r. | 215.46 ± 10.11 | n.r | 4.1 | |
Ammonia nitrogen | 157.36 ± 1.29 | 180 ± 2.4 | 115–136 | 129.65 ± 7.75 | 40.10 ± 36.77 | n.r | |
Phosphates | 26.44 ± 0.55 | 31.05± | n.r. | 194.61 ± 9.8 | n.r. | 7.2 | |
pH | pH | 5.45 ± 0.1 | 4.5 ± 0.1 | 3.5–3.7 | 8.9 ± 0.1 | 5.75 ± 0.74 | 7.5 |
Conductivity | µS/cm | 1083 ± 2.11 | n.r. | 4400–5500 | n.r. | 6930 ± 1.32 | 10,415 |
Total Suspended Solids | (m/L) | 1038 ± 3.44 | 4960.56 ± 2.3 | 256–289 | 60 ± 2.8 | 2820 ± 165.82 | 1756 |
Cr | 1.23 ± 0.01 | 0.17 ± 0.002 | 2705–3800 | n.r. | n.r. | 79.2 | |
Chlorides | 1600.45 ± 7.36 | n.r. | 26,513–31,103 | 237.97 ± 10.29 | 643.30 ± 76.55 | 2417 |
Response | Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|---|
COD removal | Model | 283.07 | 7 | 40.44 | 22.57 | <0.0001 * |
A-Peroxide | 9.58 | 1 | 9.58 | 5.34 | 0.0336 * | |
B-Bicarbonate | 67.89 | 1 | 67.89 | 37.89 | <0.0001 * | |
C-Ph | 0.6720 | 1 | 0.6720 | 0.3750 | 0.5484 ** | |
D-Temperature | 46.31 | 1 | 46.31 | 25.84 | <0.0001 * | |
AC | 8.24 | 1 | 8.24 | 4.60 | 0.0467 * | |
C2 | 26.64 | 1 | 26.64 | 14.86 | 0.0013 * | |
D2 | 98.58 | 1 | 98.58 | 55.02 | <0.0001 * | |
Residual | 30.46 | 17 | 1.79 | |||
Lack of Fit | 15.44 | 12 | 1.29 | 0.4282 | 0.8938 ** | |
Pure Error | 15.02 | 5 | 3.00 | |||
Cor Total | 313.53 | 24 |
Response | Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|---|
Ammonia nitrogen removal | Model | 3481.02 | 7 | 497.29 | 34.37 | <0.0001 * |
A-Peroxide | 289.65 | 1 | 289.65 | 20.02 | 0.0003 * | |
B-Bicarbonate | 725.70 | 1 | 725.70 | 50.16 | <0.0001 * | |
C-pH | 431.42 | 1 | 431.42 | 29.82 | <0.0001 * | |
D-Temperature | 237.69 | 1 | 237.69 | 16.43 | 0.0008 * | |
AD | 322.22 | 1 | 322.22 | 22.27 | 0.0002 * | |
C2 | 112.57 | 1 | 112.57 | 7.78 | 0.0126 * | |
D2 | 1084.14 | 1 | 1084.14 | 74.94 | <0.0001 * | |
Residual | 245.93 | 17 | 14.47 | |||
Lack of Fit | 179.51 | 12 | 14.96 | 1.13 | 0.4814 ** | |
Pure Error | 66.42 | 5 | 13.28 | |||
Cor Total | 3726.96 | 24 | ||||
Nitrate generated | Model | 26,673.60 | 7 | 3810.51 | 22.05 | <0.0001 * |
A-Peroxide | 229.36 | 1 | 229.36 | 1.33 | 0.2652 ** | |
B-Bicarbonate | 3307.45 | 1 | 3307.45 | 19.14 | 0.0004 * | |
C-pH | 10.23 | 1 | 10.23 | 0.0592 | 0.8107 ** | |
D-Temperature | 6392.97 | 1 | 6392.97 | 37.00 | <0.0001 * | |
AC | 2476.85 | 1 | 2476.85 | 14.33 | 0.0015 * | |
C2 | 1383.59 | 1 | 1383.59 | 8.01 | 0.0116 * | |
D2 | 15,172.05 | 1 | 15,172.05 | 87.81 | <0.0001 * | |
Residual | 2937.41 | 17 | 172.79 | |||
Lack of Fit | 2131.32 | 12 | 177.61 | 1.10 | 0.4925 ** | |
Pure Error | 806.10 | 5 | 161.22 | |||
Cor Total | 29,611.01 | 24 |
Factor | Unit | Level | |||
---|---|---|---|---|---|
−∝ | −1 | 1 | +∝ | ||
Hidrogen Peroxide | mol/L | −0.0121 | 0.05 | 0.35 | 0.4121 |
Sodium Bicarbonate | −0.0501 | 0.01 | 0.3 | 0.3601 |
Response | Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|---|
COD removal | Block | 14.25 | 1 | 14.25 | ||
Model | 1334.02 | 4 | 333.50 | 13.54 | 0.0012 * | |
A-Peroxide | 0.3019 | 1 | 0.3019 | 0.0123 | 0.9146 ** | |
B-Bicarbonate | 48.31 | 1 | 48.31 | 1.96 | 0.1989 ** | |
A2 | 667.31 | 1 | 667.31 | 27.10 | 0.0008 * | |
B2 | 716.90 | 1 | 716.90 | 29.12 | 0.0006 * | |
Residual | 196.98 | 8 | 24.62 | |||
Lack of Fit | 67.67 | 4 | 16.92 | 0.5233 | 0.7270 ** | |
Pure Error | 129.31 | 4 | 32.33 | |||
Cor Total | 1545.25 | 13 | ||||
Nitrate generated | Block | 462.26 | 1 | 462.26 | ||
Model | 92,843.95 | 4 | 23,210.99 | 61.12 | <0.0001 * | |
A-Peroxide | 255.65 | 1 | 255.65 | 0.6731 | 0.4357 ** | |
B-Bicarbonate | 55,471.02 | 1 | 55,471.02 | 146.06 | <0.0001 * | |
A2 | 28,148.85 | 1 | 28,148.85 | 74.12 | <0.0001 * | |
B2 | 11,519.11 | 1 | 11,519.11 | 30.33 | 0.0006 * | |
Residual | 3038.29 | 8 | 379.79 | |||
Lack of Fit | 2415.56 | 4 | 603.89 | 3.88 | 0.1088 ** | |
Pure Error | 622.72 | 4 | 155.68 | |||
Cor Total | 96,344.50 | 13 |
Parameter | Units | Initial Value | Final Value |
---|---|---|---|
COD | (m/L) | 6535.66 ± 15.33 | 3136.8 ± 9.54 |
BOD | 1245.52 ± 7.45 | 336.29 ± 3.48 | |
TOC | 1683.23 ± 15.87 | 925.78 ± 8.26 | |
Nitrites | 1.46 ± 0.087 | 0.015 ± 0.0012 | |
Ammonia nitrogen | 157.36 ± 1.29 | 10.07 ± 1.55 | |
Phosphates | 26.44 ± 0.55 | 7.92 ± 0.16 | |
pH | pH | 5.45 ± 0.1 | 8.8 ± 0.15 |
Conductivity | µS/cm | 1083 ± 2.11 | 113.72 ± 1.35 |
Total Suspended Solids | (m/L) | 1038 ± 3.44 | 176.46 ± 0.95 |
Cr | 1.23 ± 0.01 | 0.086 ± 0.01 | |
Chlorides | 1600.45 ± 7.36 | 352 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbina-Suarez, N.A.; Salcedo-Pabón, C.J.; López-Barrera, G.L.; García-Martínez, J.B.; Barajas-Solano, A.F.; Machuca-Martínez, F. Using the Response Surface Methodology to Treat Tannery Wastewater with the Bicarbonate-Peroxide System. ChemEngineering 2023, 7, 62. https://doi.org/10.3390/chemengineering7040062
Urbina-Suarez NA, Salcedo-Pabón CJ, López-Barrera GL, García-Martínez JB, Barajas-Solano AF, Machuca-Martínez F. Using the Response Surface Methodology to Treat Tannery Wastewater with the Bicarbonate-Peroxide System. ChemEngineering. 2023; 7(4):62. https://doi.org/10.3390/chemengineering7040062
Chicago/Turabian StyleUrbina-Suarez, Néstor A., Cristian J. Salcedo-Pabón, German L. López-Barrera, Janet B. García-Martínez, Andrés F. Barajas-Solano, and Fiderman Machuca-Martínez. 2023. "Using the Response Surface Methodology to Treat Tannery Wastewater with the Bicarbonate-Peroxide System" ChemEngineering 7, no. 4: 62. https://doi.org/10.3390/chemengineering7040062