Innovations in Modern Nanotechnology for the Sustainable Production of Agriculture
Abstract
:1. Introduction
2. The Application of Nanotechnology in Agriculture
3. Nanoproducts
3.1. Nanofertilizer
3.2. Nanopesticides and Nanofungicide
3.3. Nanoinsecticide
3.4. Nanoherbicide
4. Nanogrowth Promoter
5. Nanobarcode Technology
5.1. Nanosensors in Agriculture
5.1.1. Nutrient Deficiency Detection Using Nanosensors
5.1.2. Nanosensors for the Detection of Heavy Metals
5.1.3. Nanosensors for the Detection of Pathogens
5.1.4. Nanosensors for the Detection of Pesticide Residue
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, R.P.; Shukla, V.K.; Yadav, R.S.; Sharma, P.K.; Singh, P.K.; Pandey, A.C. Biological approach of zinc oxide nanoparticles formation and its characterization. Adv. Mater. Lett. 2011, 2, 313–317. [Google Scholar] [CrossRef]
- Junk, A.; Riess, F. From an idea to a vision: There’s plenty of room at the bottom. Am. J. Phys. 2006, 74, 825–830. [Google Scholar] [CrossRef]
- Jones, P. A Nanotech Revolution in Agriculture and the Food Industry. Inf. Syst. Biotechnol. 2006. Available online: https://library.wur.nl/WebQuery/file/cogem/cogem_t4513ea90_001.pdf (accessed on 9 July 2023).
- Matsukevich, I.; Lipai, Y.; Romanovski, V. Cu/MgO and Ni/MgO composite nanoparticles for fast, high-efficiency adsorption of aqueous lead(II) and chromium(III) ions. J. Mater. Sci. 2021, 56, 5031–5040. [Google Scholar] [CrossRef]
- Cao, A.; Zhang, M.; Su, X.; Romanovski, V.; Chu, S. In Situ Fabrication of NiS2-Decorated Graphitic Carbon Nitride/Metal-Organic Framework Nanostructures for Photocatalytic H2 Evolution. ACS Appl. Nano Mater. 2022, 5, 5416–5424. [Google Scholar] [CrossRef]
- Bakhsh, E.M.; Khan, S.B.; Akhtar, K.; Danish, E.Y.; Fagieh, T.M.; Qiu, C.; Sun, Y.; Romanovski, V.; Su, X. Simultaneous Preparation of Humic Acid and Mesoporous Silica from Municipal Sludge and Their Adsorption Properties for U(VI). Colloids Surf. A Physicochem. Eng. Asp. 2022, 647, 129060. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Liu, Z.; Luo, S.; Romanovski, V.; Huang, X.; Czech, B.; Sun, H.; Li, T. Rational construction of micron-sized zero-valent iron/graphene composite for enhanced Cr(VI) removal from aqueous solution. J. Environ. Chem. Eng. 2022, 10, 109004. [Google Scholar] [CrossRef]
- Wu, R.; Ma, Z.; Gu, Z.; Yang, Y. Preparation and characterization of CuO nanoparticles with different morphology through a simple quick-precipitation method in DMAC–water mixed solvent. J. Alloys Compd. 2010, 504, 45–49. [Google Scholar] [CrossRef]
- Romanovski, V.I.; Kolosov, A.Y.; Khort, A.A.; Myasnichenko, V.S.; Podbolotov, K.B.; Savina, K.G.; Sokolov, D.N.; Romanovskaia, E.V.; Sdobnyakov, N.Y. Features of Cu-Ni nanoparticle synthesis: Experiment and computer simulation. Phys. Chem. Asp. Study Clust. Nanostruct. Nanomater. 2020, 12, 293–309. [Google Scholar] [CrossRef]
- Khort, A.; Romanovski, V.; Lapitskaya, V.; Kuznetsova, T.; Yusupov, K.; Moskovskikh, D.; Podbolotov, K. Graphene@metal nanocomposites by solution combustion synthesis. Inorg. Chem. 2020, 59, 6550–6565. [Google Scholar] [CrossRef]
- Khort, A.; Romanovski, V.; Leybo, D.; Moskovskikh, D. CO oxidation and organic dyes degradation over graphene-Cu and graphene-CuNi catalysts obtained by solution combustion synthesis. Sci. Rep. 2020, 10, 16104. [Google Scholar] [CrossRef]
- Sdobnyakov, N.; Khort, A.; Myasnichenko, V.; Podbolotov, K.; Romanovskaia, E.; Kolosov, A.; Sokolov, D.; Romanovski, V. Solution combustion synthesis and Monte Carlo simulation of the formation of CuNi integrated nanoparticles. Comput. Mater. Sci. 2020, 184, 109936. [Google Scholar] [CrossRef]
- Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological synthesis of metallic nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 257–262. [Google Scholar] [CrossRef]
- Tripathi, R.M.; Chung, S.J. Biogenic nanomaterials: Synthesis, characterization, growth mechanism, and biomedical applications. J. Microbiol. Methods 2019, 157, 65–80. [Google Scholar] [CrossRef]
- Chellamuthu, P.; Tran, F.; Silva, K.P.T.; Chavez, M.S.; El-Naggar, M.Y.; Boedicker, J.Q. Engineering bacteria for biogenic synthesis of chalcogenide nanomaterials. Microb. Biotechnol. 2019, 12, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Ghorbanpour, M.; Bhargava, P.; Varma, A.; Choudhary, D.K. Biogenic Nano-Particles and Their Use in Agro-Ecosystems; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Faramarzi, M.A.; Sadighi, A. Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv. Colloid Interface Sci. 2013, 189, 1–20. [Google Scholar] [CrossRef]
- Pouratashi, M.; Iravani, H. Farmers’ knowledge of integrated pest management and learning style preferences: Implications for information delivery. Int. J. Pest Manag. 2012, 58, 347–353. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Umar, K.; Ibrahim, M.N.M. Silver nanoparticles: Various methods of synthesis, size affecting factors and their potential applications—A review. Appl. Nanosci. 2020, 10, 1369–1378. [Google Scholar] [CrossRef]
- Usman, M.; Farooq, M.; Wakeel, A.; Nawaz, A.; Alam Cheema, S.A.; Rehman, H.U.; Ashraf, I.; Sanaullah, M. Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci. Total. Environ. 2020, 721, 137778. [Google Scholar] [CrossRef]
- Fraceto, L.F.; Grillo, R.; de Medeiros, G.A.; Scognamiglio, V.; Rea, G.; Bartolucci, C. Nanotechnology in Agriculture: Which Innovation Potential Does It Have? Front. Environ. Sci. 2016, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Benzon, H.R.L.; Rubenecia, M.R.U.; Ultra, V.U., Jr.; Lee, S.C. Nano-fertilizer affects the growth, development, and chemical properties of rice. Int. J. Agron. Agric. Res. 2015, 7, 105–117. [Google Scholar]
- Kolenčík, M.; Ernst, D.; Komár, M.; Urík, M.; Šebesta, M.; Dobročka, E.; Černý, I.; Illa, R.; Kanike, R.; Qian, Y.; et al. Effect of foliar spray application of zinc oxide nanoparticles on quantitative, nutritional, and physiological parameters of foxtail millet (Setaria italica L.) under field conditions. Nanomaterials 2019, 9, 1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabir, S.; Arshad, M.; Chaudhari, S.K. Zinc oxide nanoparticles for revolutionizing agriculture: Synthesis and applications. Sci. World J. 2014, 2014, 925494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srilatha, B. Nanotechnology in agriculture. J. Nanomed. Nanotechnol. 2011, 2, 7. [Google Scholar]
- Alfei, S.; Schito, A.M.; Zuccari, G. Nanotechnological Manipulation of Nutraceuticals and Phytochemicals for Healthy Purposes: Established Advantages vs. Still Undefined Risks. Polymers 2021, 13, 2262. [Google Scholar] [CrossRef]
- Liu, P.; Yang, M.; Hermanowicz, S.W.; Huang, Y. Efficacy-Associated Cost Analysis of Copper-Based Nanopesticides for Tomato Disease Control. ACS Agric. Sci. Technol. 2022, 2, 796–804. [Google Scholar] [CrossRef]
- Zhao, L.; Hu, Q.; Huang, Y.; Fulton, A.N.; Hannah-Bick, C.; Adeleye, A.S.; Keller, A.A. Activation of antioxidant and detoxification gene expression in cucumber plants exposed to a Cu(OH)2 nanopesticide. Environ. Sci. Nano 2017, 4, 1750–1760. [Google Scholar] [CrossRef] [Green Version]
- Zulfiqar, F.; Navarro, M.; Ashraf, M.; Akram, N.A.; Munné-Bosch, S. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Sci. 2019, 289, 110270. [Google Scholar] [CrossRef]
- Bala, R.; Kalia, A.; Dhaliwal, S.S. Evaluation of Efficacy of ZnO Nanoparticles as Remedial Zinc Nanofertilizer for Rice. J. Soil Sci. Plant Nutr. 2019, 19, 379–389. [Google Scholar] [CrossRef]
- Balah, M.A.; Pudake, R.N. Use nanotools for weed control and exploration of weed plants in nanotechnology. In Nanoscience for Sustainable Agriculture; Springer Nature: Basel, Switzerland, 2019; pp. 207–231. [Google Scholar]
- Ali, S.; Mehmood, A.; Khan, N. Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. J. Nanomater. 2021, 2021, 6677616. [Google Scholar] [CrossRef]
- Shaker, A.M.; Zaki, A.H.; Abdel-Rahim, E.; Khedr, M.H. TiO2 nanoparticles as an effective nanopesticide for cotton leaf worm. Agric. Eng. Int. CIGR J. Spec. 2017, 61–68. [Google Scholar]
- Romanovski, V.; Su, X.; Zhang, L.; Paspelau, A.; Smorokov, A.; Sehat, A.A.; Akinwande, A.A.; Korob, N.; Kamarou, M. Approaches for filtrate utilization from synthetic gypsum production. Environ. Sci. Pollut. Res. 2023, 30, 33243–33252. [Google Scholar] [CrossRef]
- Ghafariyan, M.H.; Malakouti, M.J.; Dadpour, M.R.; Stroeve, P.; Mahmoudi, M. Effects of Magnetite Nanoparticles on Soybean Chlorophyll. Environ. Sci. Technol. 2013, 47, 10645–10652. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Nehra, M.; Dilbaghi, N.; Marrazza, G.; Hassan, A.A.; Kim, K.-H. Nano-based smart pesticide formulations: Emerging opportunities for agriculture. J. Control. Release 2019, 294, 131–153. [Google Scholar] [CrossRef]
- Komarek, A.M.; De Pinto, A.; Smith, V.H. A review of types of risks in agriculture: What we know and what we need to know. Agric. Syst. 2020, 178, 102738. [Google Scholar] [CrossRef]
- Harwood, R.R. A history of sustainable agriculture. In Sustainable Agricultural Systems; CRC Press: Boca Raton, FL, USA, 2020; pp. 3–19. [Google Scholar]
- Wildemeersch, J.C.; Garba, M.; Sabiou, M.; Fatondji, D.; Cornelis, W.M. Agricultural drought trends and mitigation in Tillaberí, Niger. Soil Sci. Plant Nutr. 2015, 6, 414–425. [Google Scholar] [CrossRef] [Green Version]
- Gondal, A.H.; Tayyiba, L. Prospects of Using Nanotechnology in Agricultural Growth, Environment and Industrial Food Products. Rev. Agric. Sci. 2022, 10, 68–81. [Google Scholar] [CrossRef]
- Romanovski, V.; Periakaruppan, R. Why metal oxide nanoparticles are superior to other nanomaterials for agricultural application? In Nanometal Oxides in Horticulture and Agronomy; Li, X., Rajiv, P., Remya, M., Sugapriya, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 7–18. [Google Scholar]
- Bala, R.; Mittal, S.; Sharma, R.K.; Wangoo, N. A supersensitive silver nanoprobe based aptasensor for low cost detection of malathion residues in water and food samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 196, 268–273. [Google Scholar] [CrossRef]
- Bhamore, J.R.; Ganguly, P.; Kailasa, S.K. Molecular assembly of 3-mercaptopropinonic acid and guanidine acetic acid on silver nanoparticles for selective colorimetric detection of triazophos in water and food samples. Sensors Actuators B Chem. 2016, 233, 486–495. [Google Scholar] [CrossRef]
- Sulaiman, I.S.C.; Chieng, B.W.; Osman, M.J.; Ong, K.K.; Rashid, J.I.A.; Yunus, W.M.Z.W.; Noor, S.A.M.; Kasim, N.A.M.; Halim, N.A.; Mohamad, A. A review on colorimetric methods for determination of organophosphate pesticides using gold and silver nanoparticles. Microchim. Acta 2020, 187, 131. [Google Scholar] [CrossRef]
- Ghasemi, Z.; Mohammadi, A. Sensitive and selective colorimetric detection of Cu (II) in water samples by thiazolylazopyrimidine-functionalized TiO2 nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 239, 118554. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, D.; Mandal, A.; Mitra, T.; Chakraborty, K.; Bardhan, M.; Dasgupta, A.K. Nanosensing of pesticides by zinc oxide quantum dot: An optical and electrochemical approach for the detection of pesticides in water. J. Agric. Food Chem. 2018, 66, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.; Jadav, A.; Panda, N.; Mohapatra, S. A novel carbon quantum dot-based fluorescent nanosensor for selective detection of flumioxazin in real samples. New J. Chem. 2018, 42, 2074–2080. [Google Scholar] [CrossRef]
- Ashrafi Tafreshi, F.; Fatahi, Z.; Ghasemi, S.F.; Taherian, A.; Esfandiari, N. Ultrasensitive fluorescent detection of pesticides in real sample by using green carbon dots. PLoS ONE 2020, 15, e0230646. [Google Scholar] [CrossRef] [Green Version]
- Malode, S.J.; Shetti, N.P.; Reddy, K.R. Highly sensitive electrochemical assay for selective detection of Aminotriazole based on TiO2/poly (CTAB) modified sensor. Environ. Technol. Innov. 2021, 21, 101222. [Google Scholar] [CrossRef]
- Pham, X.-H.; Hahm, E.; Huynh, K.-H.; Son, B.S.; Kim, H.-M.; Jeong, D.H.; Jun, B.-H. 4-Mercaptobenzoic Acid Labeled Gold-Silver-Alloy-Embedded Silica Nanoparticles as an Internal Standard Containing Nanostructures for Sensitive Quantitative Thiram Detection. Int. J. Mol. Sci. 2019, 20, 4841. [Google Scholar] [CrossRef] [Green Version]
- Kumaravel, J.; Lalitha, K.; Arunthirumeni, M.; Shivakumar, M.S. Mycosynthesis of bimetallic zinc oxide and titanium dioxide nanoparticles for control of Spodoptera frugiperda. Pestic. Biochem. Physiol. 2021, 178, 104910. [Google Scholar] [CrossRef]
- Sharma, V.; Tiwari, P.; Kaur, N.; Mobin, S.M. Optical nanosensors based on fluorescent carbon dots for the detection of water contaminants: A review. Environ. Chem. Lett. 2021, 19, 3229–3241. [Google Scholar] [CrossRef]
- Tian, X.; Liu, L.; Li, Y.; Yang, C.; Zhou, Z.; Nie, Y.; Wang, Y. Nonenzymatic electrochemical sensor based on CuO-TiO2 for sensitive and selective detection of methyl parathion pesticide in ground water. Sens. Actuators B Chem. 2018, 256, 135–142. [Google Scholar] [CrossRef]
- Shirani, M.P.; Rezaei, B.; Ensafi, A.A.; Ramezani, M. Development of an eco-friendly fluorescence nanosensor based on molecularly imprinted polymer on silica-carbon quantum dot for the rapid indoxacarb detection. Food Chem. 2021, 339, 127920. [Google Scholar] [CrossRef]
- Jeevanandam, J.; Danquah, M.K. Nanosensors for better diagnosis of health. In Nanofabrication for Smart Nanosensor Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 187–228. [Google Scholar]
- Killedar, L.; Ilager, D.; Malode, S.J.; Shetti, N.P. Fast and facile electrochemical detection and determination of fungicide carbendazim at titanium dioxide designed carbon-based sensor. Mater. Chem. Phys. 2022, 285, 126131. [Google Scholar] [CrossRef]
- Mukhopadhyay, S. Nanotechnology in agriculture: Prospects and constraints. Nanotechnol. Sci. Appl. 2014, 7, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, S.R.; Rezaei, M. Nanotechnology in agriculture and food production. J. Appl. Environ. Biol. Sci. 2011, 1, 414–419. [Google Scholar]
- Chalupowicz, D.; Veltman, B.; Droby, S.; Eltzov, E. Evaluating the use of biosensors for monitoring of Penicillium digitatum infection in citrus fruit. Sensors Actuators B Chem. 2020, 311, 127896. [Google Scholar] [CrossRef]
- Pirzadah, B.; Pirzadah, T.B.; Jan, A.; Hakeem, K.R. Nanofertilizers: A way forward for green economy. In Nanobiotechnology in Agriculture; Springer: Cham, Switzerland, 2020; pp. 99–112. [Google Scholar]
- Butt, B.Z.; Naseer, I. Nanofertilizers. In Nanoagronomy; Springer: Cham, Switzerland, 2020; pp. 125–152. [Google Scholar]
- Tarafdar, J.C.; Sharma, S.; Raliya, R. Nanotechnology: Interdisciplinary science of applications. Afr. J. Biotechnol. 2013, 12, 219–226. [Google Scholar]
- Ranjith, M.; Sridevi, S. Smart Fertilizers as the Best Option for Ecofriendly Agriculture. Yigyan Varta 2021, 2, 51–55. [Google Scholar]
- Gomaa, M.A.; Radwan, F.I.; Kandil, E.E.; Al-Msari, M.A.F. Response of some Egyptian and Iraqi wheat cultivars to mineral and nanofertilization. Acad. J. Biol. Sci. 2018, 9, 19–26. [Google Scholar]
- Yomso, J.; Menon, S. Impact of nanofertilizers on growth and yield parameters of rice crop; A Review. J. Pharm. Innov. 2021, 10, 249–253. [Google Scholar]
- Sangeetha, J.; Thangadurai, D.; Hospet, R.; Harish, E.R.; Purushotham, P.; Mujeeb, M.A.; Shrinivas, J.; David, M.; Mundaragi, A.C.; Thimmappa, S.C.; et al. Nanoagrotechnology for soil quality, crop performance and environmental management. In Nanotechnology; Springer: Singapore, 2017; pp. 73–97. [Google Scholar]
- Husen, A.; Iqbal, M. Nanomaterials and Plant Potential: An Overview. In Nanomaterials and Plant Potential; Springer: Cham, Switzerland, 2019; pp. 3–29. [Google Scholar]
- DeRosa, M.C.; Monreal, C.; Schnitzer, M.; Walsh, R.; Sultan, Y. Nanotechnology in fertilizers. Nat. Nanotechnol. 2010, 5, 91. [Google Scholar] [CrossRef]
- Preetha, P.S.; Balakrishnan, N. A Review of Nano Fertilizers and Their Use and Functions in Soil. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 3117–3133. [Google Scholar] [CrossRef]
- Singh, M.D. Nano-fertilizers is a new way to increase nutrients use efficiency in crop production. Int. J. Agric. Sci. 2017, 9, 975–3710. [Google Scholar]
- Javeed, Z.; Riaz, U.; Murtaza, G.; Mehdi, S.M.; Idrees, M.; Zaman, Q.U.; Khalid, W. Nanofertilizers and Nanopesticides: Application and Impact on Agriculture. In Diverse Applications of Nanotechnology in the Biological Sciences; Apple Academic Press: Cambridge, MA, USA, 2022; pp. 199–212. [Google Scholar]
- Yruela, I. Copper in plants. Braz. J. Plant Physiol. 2005, 17, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Shikanai, T.; Müller-Moulé, P.; Munekage, Y.; Niyogi, K.K.; Pilon, M. PAA1, a P-Type ATPase of Arabidopsis, Functions in Copper Transport in Chloroplasts. Plant Cell 2003, 15, 1333–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adhikari, T.; Sarkar, D.; Mashayekhi, H.; Xing, B. Growth and enzymatic activity of maize (Zea mays L.) plant: Solution culture test for copper dioxide nano particles. J. Plant Nutr. 2016, 39, 99–115. [Google Scholar] [CrossRef]
- Zhang, L.; Webster, T.J. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today 2009, 4, 66–80. [Google Scholar] [CrossRef]
- Romanovski, V.; Roslyakov, S.; Trusov, G.; Periakaruppan, R.; Romanovskaia, E.; Chan, H.L.; Moskovskikh, D. Synthesis and effect of CoCuFeNi high entropy alloy nanoparticles on seed germination, plant growth, and microorganisms inactivation activity. Environ. Sci. Pollut. Res. 2023, 30, 23363–23371. [Google Scholar] [CrossRef]
- Agrawal, S.; Rathore, P. Nanotechnology pros and cons to agriculture: A review. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 43–55. [Google Scholar]
- Jasrotia, P.; Kashyap, P.L.; Bhardwaj, A.K.; Kumar, S.; Singh, G.P. Scope and applications of nanotechnology for wheat production: A review of recent advances. Wheat Barley Res. 2018, 10, 1–14. [Google Scholar]
- Chhipa, H. Nanofertilizers and nanopesticides for agriculture. Environ. Chem. Lett. 2017, 15, 15–22. [Google Scholar] [CrossRef]
- Chaud, M.; Souto, E.B.; Zielinska, A.; Severino, P.; Batain, F.; Oliveira, J., Jr.; Alves, T. Nanopesticides in Agriculture: Benefits and Challenge in Agricultural Productivity, Toxicological Risks to Human Health and Environment. Toxics 2021, 9, 131. [Google Scholar] [CrossRef]
- Shaker, A.M.; Zaki, A.H.; Abdel-Rahim, E.F.; Khedr, M.H. Novel CuO nanoparticles for pest management and pesticides photodegradation. Adv. Environ. Biol. 2016, 10, 274–283. [Google Scholar]
- Sarwar, M. Biopesticides: An effective and environmental friendly insect-pests inhibitor line of action. Int. J. Eng. Adv. Res. Technol. 2015, 1, 10–15. [Google Scholar]
- Stevenson, P.C.; Arnold, S.E.; Belmain, S.R. Pesticidal plants for stored product pests on small-holder farms in Africa. In Advances in Plant Biopesticides; Springer: New Delhi, India, 2014; pp. 149–172. [Google Scholar]
- Tefera, T.; Kanampiu, F.; De Groote, H.; Hellin, J.; Mugo, S.; Kimenju, S.; Beyene, Y.; Boddupalli, P.M.; Shiferaw, B.; Banziger, M. The metal silo: An effective grain storage technology for reducing post-harvest insect and pathogen losses in maize while improving smallholder farmers’ food security in developing countries. Crop Prot. 2011, 30, 240–245. [Google Scholar] [CrossRef]
- Rai, M.; Ingle, A. Role of nanotechnology in agriculture with special reference to management of insect pests. Appl. Microbiol. Biotechnol. 2012, 94, 287–293. [Google Scholar] [CrossRef]
- Pscheidt, J.W.; Ocamb, C.M. Copper-based Bactericides and Fungicides. In Pacific Northwest Pest Management Handbooks; Oregon State University: Corvallis, OR, USA, 2022. [Google Scholar]
- El-Saadony, M.T.; Abd El-Hack, M.E.; Taha, A.E.; Fouda, M.M.; Ajarem, J.S.; Maodaa, S.; Allam, A.A.; Elshaer, N. Ecofriendly synthesis and insecticidal application of copper nanoparticles against the storage pest Triboliumcastaneum. Nanomaterials 2020, 10, 587. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Liang, J.; Tang, L.; Li, H.; Zhu, Y.; Jiang, D.; Song, B.; Chen, M.; Zeng, G. Nano-pesticides: A great challenge for biodiversity? Nano Today 2019, 28, 100757. [Google Scholar] [CrossRef]
- Chaudhary, S.; Kanwar, R.K.; Sharma, T.; Singh, B.; Kanwar, J.R. 8 Phytoconstituents from Neem. In Nano Agroceuticals Nano Phyto Chemicals; CRC Press: Boca Raton, FL, USA, 2018; p. 173. [Google Scholar]
- Kaur, S.; Sharma, K.; Singh, R.; Kumar, N. Advancement in Crops and Agriculture by Nanomaterials. In Synthesis and Applications of Nanoparticles; Springer: Singapore, 2022; pp. 319–335. [Google Scholar]
- Nuruzzaman, M.; Rahman, M.M.; Liu, Y.; Naidu, R. Nanoencapsulation, Nano-guard for Pesticides: A New Window for Safe Application. J. Agric. Food Chem. 2016, 64, 1447–1483. [Google Scholar] [CrossRef]
- Knowd, I.; Mason, D.; Docking, A. Urban agriculture: The new frontier. In Proceedings of the 2nd State of Australian Cities National Conference, Brisbane, QLD, Australia, 30 November–2 December 2005; Volume 21. [Google Scholar]
- Kumar, N.; Balamurugan, A.; Mohiraa Shafreen, M.; Rahim, A.; Vats, S.; Vishwakarma, K. Nanomaterials: Emerging trends and future prospects for economical agricultural system. In Biogenic Nano-Particles and Their Use in Agro-Ecosystems; Springer: Berlin/Heidelberg, Germany, 2020; pp. 281–305. [Google Scholar]
- Santaella, C.; Plancot, B. Interactions of Nanoenabled Agrochemicals with Soil Microbiome. In Nanopesticides; Springer: Cham, Switzerland, 2020; pp. 137–163. [Google Scholar]
- Li, Z.; Su, L.; Wang, H.; An, S.; Yin, X. Physicochemical and biological properties of nanochitin-abamectin conjugate for Noctuidae insect pest control. J. Nanopart. Res. 2020, 22, 286. [Google Scholar] [CrossRef]
- Itodo, H.U.; Nnamonu, L.A.; Wuana, R.A. Green Synthesis of Copper Chitosan Nanoparticles for Controlled Release of Pendimethalin. Asian J. Chem. Sci. 2017, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Refaie, A.; Ghazal, M.; Barakat, S.; Morsy, W.; Meshreky, S.A.; Younan, G.; Eisa, W. Nano-copper as a new growth promoter in the diet of growing new zealand white rabbits. Egypt. J. Rabbit Sci. 2015, 25, 39–57. [Google Scholar] [CrossRef]
- Rana, T. Prospects and future perspectives of selenium nanoparticles: An insight of growth promoter, antioxidant and anti-bacterial potentials in productivity of poultry. J. Trace Elements Med. Biol. 2021, 68, 126862. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Kalia, S.; Mathur, A. Effect of Biogenic Silica Nano-Composites as Vegetative Growth Promoter and Pesticidal Agent on Cotton Crop. Int. J. Mod. Agric. 2021, 10, 3515–3520. [Google Scholar]
- Wang, J.; Jiang, C.; Wang, X.; Wang, L.; Chen, A.; Hu, J.; Luo, Z. Fabrication of an “ion-imprinting” dual-emission quantum dot nanohybrid for selective fluorescence turn-on and ratiometric detection of cadmium ions. Analyst 2016, 141, 5886–5892. [Google Scholar] [CrossRef] [PubMed]
- Giannousi, K.; Avramidis, I.; Dendrinou-Samara, C. Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv. 2013, 3, 21743–21752. [Google Scholar] [CrossRef]
- Bramhanwade, K.; Shende, S.; Bonde, S.; Gade, A.; Rai, M. Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases. Environ. Chem. Lett. 2016, 14, 229–235. [Google Scholar] [CrossRef]
- Mondal, K.K.; Mani, C. Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodispv. punicae, the incitant of pomegranate bacterial blight. Ann. Microbiol. 2012, 62, 889–893. [Google Scholar] [CrossRef]
- Hafeez, A.; Razzaq, A.; Mahmood, T.; Jhanzab, H.M. Potential of copper nanoparticles to increase growth and yield of wheat. J. Nanosci. Adv. Nanotechnol. 2015, 1, 6–11. [Google Scholar]
- Wang, Y.; Lin, Y.; Xu, Y.; Yin, Y.; Guo, H.; Du, W. Divergence in response of lettuce (var. ramosa Hort.) to copper oxide nanoparticles/microparticles as potential agricultural fertilizer. Environ. Pollut. Bioavailab. 2019, 31, 80–84. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Choi, J.R.; Lee, K.J.; Stott, N.E.; Kim, D. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology 2008, 19, 415604. [Google Scholar] [CrossRef]
- Musante, C.; White, J.C. Toxicity of silver and copper to Cucurbita pepo: Differential effects of nano and bulk-size particles. Environ. Toxicol. 2012, 27, 510–517. [Google Scholar] [CrossRef]
- Nekrasova, G.F.; Ushakova, O.S.; Ermakov, A.E.; Uimin, M.A.; Byzov, I.V. Effects of copper(II) ions and copper oxide nanoparticles on Elodea densa Planch. Russ. J. Ecol. 2011, 42, 458–463. [Google Scholar] [CrossRef]
- Atha, D.H.; Wang, H.; Petersen, E.J.; Cleveland, D.; Holbrook, R.D.; Jaruga, P.; Dizdaroglu, M.; Xing, B.; Nelson, B.C. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ. Sci. Technol. 2012, 46, 1819–1827. [Google Scholar] [CrossRef]
- Mosa, K.A.; El-Naggar, M.; Ramamoorthy, K.; Alawadhi, H.; Elnaggar, A.; Wartanian, S.; Ibrahim, E.; Hani, H. Copper nanoparticles induced genotoxicty, oxidative stress, and changes in superoxide dismutase (SOD) gene expression in cucumber (Cucumis sativus) plants. Front. Plant Sci. 2018, 9, 872. [Google Scholar] [CrossRef] [Green Version]
- López-Vargas, E.R.; Ortega-Ortíz, H.; Cadenas-Pliego, G.; de Alba Romenus, K.; Cabrera de la Fuente, M.; Benavides-Mendoza, A.; Juárez-Maldonado, A. Foliar application of copper nanoparticles increases the fruit quality and the content of bioactive compounds in tomatoes. Appl. Sci. 2018, 8, 1020. [Google Scholar] [CrossRef] [Green Version]
- Shaw, A.K.; Ghosh, S.; Kalaji, H.M.; Bosa, K.; Brestic, M.; Zivcak, M.; Hossain, Z. Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ. Exp. Bot. 2014, 102, 37–47. [Google Scholar] [CrossRef]
- Nair, P.M.G.; Chung, I.M. Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes. Environ. Sci. Pollut. Res. 2014, 21, 12709–12722. [Google Scholar] [CrossRef]
- Vivekanandhan, P.; Kannan Swathy, A.T.; Krutmuang, P.; Eliningaya, J.K. Green Copper Nano-Pesticide Synthesized by Using Annona squamosa L., Seed and their Efficacy on Insect Pest as well as Non-Target Species. Int. J. Plant Environ. Sci. 2021, 11, 456–473. [Google Scholar] [CrossRef]
- Mathew, A.P.; Laborie, M.-P.G.; Oksman, K. Cross-Linked Chitosan/Chitin Crystal Nanocomposites with Improved Permeation Selectivity and pH Stability. Biomacromolecules 2009, 10, 1627–1632. [Google Scholar] [CrossRef]
- Branton, D.; Deamer, D.W.; Marziali, A.; Bayley, H.; Benner, S.A.; Butler, T.; Jovanovich, S.B. The potential and challenges of nanopore sequencing. In Nanoscience and Technology—A Collection of Reviews from Nature Journals; World Scientific: London, UK, 2010; p. 261. [Google Scholar]
- Fayaz, M.; Rabani, M.S.; Wani, S.A.; Thoker, S.A. Nano-agriculture: A novel approach in agriculture. In Microbiota and Biofertilizers; Springer: Cham, Switzerland, 2021; pp. 99–122. [Google Scholar]
- Eastman, P.S.; Ruan, W.; Doctolero, M.; Nuttall, R.; De Feo, G.; Park, J.S.; Chu, J.S.; Cooke, P.; Gray, J.W.; Li, S.; et al. Qdot nanobarcodes for multiplexed gene expression analysis. Nano Lett. 2006, 6, 1059–1064. [Google Scholar] [CrossRef]
- Dasgupta, N.; Ranjan, S.; Chakraborty, A.R.; Ramalingam, C.; Shanker, R.; Kumar, A. Nanoagriculture and water quality management. In Nanoscience in Food and Agriculture; Springer: Cham, Switzerland, 2016; p. 1. [Google Scholar]
- Tiede, K.; Boxall, A.B.; Tear, S.P.; Lewis, J.; David, H.; Hassellöv, M. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit. Contam. Part A 2008, 25, 795–821. [Google Scholar] [CrossRef]
- Lamsal, K.; Kim, S.-W.; Jung, J.H.; Kim, Y.S.; Kim, K.S.; Lee, Y.S. Inhibition Effects of Silver Nanoparticles against Powdery Mildews on Cucumber and Pumpkin. Mycobiology 2011, 39, 26–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Lan, X.; Zhao, W.; Li, Y.; Zhang, L.; Wang, H.; Han, M.; Tao, S. Controlled immobilization of acetylcholinesterase on improved hydrophobic gold nanoparticle/Prussian blue modified surface for ultra-trace organophosphate pesticide detection. Biosens. Bioelectron. 2011, 27, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.-T.; Zheng, X.; Li, H.-F.; Lin, J.-M. Application of carbon-based nanomaterials in sample preparation: A review. Anal. Chim. Acta 2013, 784, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Mazumdar, H.; Ahmed, G.U. Phytotoxicity effect of silver nanoparticles on Oryza sativa. Int. J. ChemTech. Res. 2011, 3, 1494–1500. [Google Scholar]
- Haes, A.J.; Duyne, R.P.V. Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics. Expert Rev. Mol. Diagn. 2004, 4, 527–537. [Google Scholar] [CrossRef]
- Chen, C.; Yuan, Z.; Chang, H.-T.; Lu, F.; Li, Z.; Lu, C. Silver nanoclusters as fluorescent nanosensors for selective and sensitive nitrite detection. Anal. Methods 2016, 8, 2628–2633. [Google Scholar] [CrossRef]
- Romanovski, V.; Matsukevich, I.; Romanovskaia, E.; Periakaruppan, R. Nano metal oxide as nanosensors in agriculture and environment. In Nanometal Oxides in Horticulture and Agronomy; Li, X., Rajiv, P., Remya, M., Sugapriya, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 321–352. [Google Scholar] [CrossRef]
- Heller, H.; Atkinson, B. Agricultural Nanotechnology: Nanotech Interventions in Agricultural Sciences and Their Technical Implications; Knut, H.H., Bill, A.D., Eds.; Dominant Publishers and Distributors: New Delhi, Indian, 2007; p. 260. [Google Scholar]
- Xing, C.; Liu, L.; Zhang, X.; Kuang, H.; Xu, C. Colorimetric detection of mercury based on a strip sensor. Anal. Methods 2014, 6, 6247–6253. [Google Scholar] [CrossRef]
- Jimenez-Falcao, S.; Villalonga, A.; Parra-Nieto, J.; Llopis-Lorente, A.; Martinez-Ruiz, P.; Martinez-Mañez, R.; Villalonga, R. Dithioacetal-mechanized mesoporous nanosensor for Hg(II) determination. Microporous Mesoporous Mater. 2020, 297, 110054. [Google Scholar] [CrossRef]
- Anwar, A.; Minhaz, A.; Khan, N.A.; Kalantari, K.; Afifi, A.B.M.; Shah, M.R. Synthesis of gold nanoparticles stabilized by a pyrazinium thioacetate ligand: A new colorimetric nanosensor for detection of heavy metal Pd (II). Sens. Actuators B Chem. 2018, 257, 875–881. [Google Scholar] [CrossRef]
- Satapathi, S.; Kumar, V.; Chini, M.K.; Bera, R.; Halder, K.K.; Patra, A. Highly sensitive detection and removal of mercury ion using a multimodal nanosensor. Nano-Struct. Nano-Objects 2018, 16, 120–126. [Google Scholar] [CrossRef]
- Ikram, F.; Qayoom, A.; Aslam, Z.; Shah, M.R. Epicatechin coated silver nanoparticles as highly selective nanosensor for the detection of Pb2+ in environmental samples. J. Mol. Liq. 2019, 277, 649–655. [Google Scholar] [CrossRef]
- Wang, X.; Qi, Y.; Shen, Y.; Yuan, Y.; Zhang, L.; Zhang, C.; Sun, Y. A ratiometric electrochemical sensor for simultaneous detection of multiple heavy metal ions based on ferrocene-functionalized metal-organic framework. Sensors Actuators B Chem. 2020, 310, 127756. [Google Scholar] [CrossRef]
- Yang, C.; Ding, Y.; Qian, J. Design of magnetic-fluorescent based nanosensor for highly sensitive determination and removal of HG2+. Ceram. Int. 2018, 44, 9746–9752. [Google Scholar] [CrossRef]
- Isha, A.; Akanbi, F.S.; Yusof, N.A.; Osman, R.; Mui-Yun, W.; Abdullah, S.N.A. An NMR Metabolomics Approach and Detection of Ganoderma boninense-Infected Oil Palm Leaves Using MWCNT-Based Electrochemical Sensor. J. Nanomater. 2019, 2019, 4729706. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Umasankar, Y.; Ramasamy, R.P. Electrochemical detection of p-ethylguaiacol, a fungi infected fruit volatile using metal oxide nanoparticles. Analyst 2014, 139, 3804–3810. [Google Scholar] [CrossRef]
- Lau, H.Y.; Wu, H.; Wee, E.J.H.; Trau, M.; Wang, Y.; Botella, J.R. Specific and Sensitive Isothermal Electrochemical Biosensor for Plant Pathogen DNA Detection with Colloidal Gold Nanoparticles as Probes. Sci. Rep. 2017, 7, 38896. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Sachdeva, S.; Chaudhary, S.; Chaudhary, G.R. Assessing the potential application of bio-compatibly tuned nanosensor of Yb2O3 for selective detection of imazapyr in real samples. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 593, 124612. [Google Scholar] [CrossRef]
- Yılmaz, E.; Özgür, E.; Bereli, N.; Türkmen, D.; Denizli, A. Plastic antibody based surface plasmon resonance nanosensors for selective atrazine detection. Mater. Sci. Eng. C 2017, 73, 603–610. [Google Scholar] [CrossRef]
- Kant, R. Surface plasmon resonance based fiber–optic nanosensor for the pesticide fenitrothion utilizing Ta2O5 nanostructures sequestered onto a reduced graphene oxide matrix. Microchim. Acta 2020, 187, 8. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Lin, Y.-S.; Xiao, G.-T.; Chiu, T.-C.; Hu, C.-C. A highly selective and sensitive nanosensor for the detection of glyphosate. Talanta 2016, 161, 94–98. [Google Scholar] [CrossRef]
- Liu, H.; Chen, P.; Liu, Z.; Liu, J.; Yi, J.; Xia, F.; Zhou, C. Electrochemical luminescence sensor based on double suppression for highly sensitive detection of glyphosate. Sens. Actuators B Chem. 2020, 304, 127364. [Google Scholar] [CrossRef]
- Prabhakar, N.; Thakur, H.; Bharti, A.; Kaur, N. Chitosan-iron oxide nanocomposite based electrochemical aptasensor for determination of malathion. Anal. Chim. Acta 2016, 939, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Yu, Y.; Lu, L.; Ma, X.; Gong, L.; Huang, X.; Liu, G.; Yu, Y. CuO nanoparticles decorated 3D graphene nanocomposite as non-enzymatic electrochemical sensing platform for malathion detection. J. Electroanal. Chem. 2018, 812, 82–89. [Google Scholar] [CrossRef]
- Saleh, S.M.; Alminderej, F.M.; Ali, R.; Abdallah, O.I. Optical sensor film for metribuzin pesticide detection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 229, 117971. [Google Scholar] [CrossRef]
Name of Nanoparticle for Sensor Fabrication | Applications | References |
---|---|---|
Silver Nanoprobe | Detection of malathion residues in water and food samples | [42] |
Silver NPs | Detection of triazophos in water and food samples | [43] |
Gold and silver nanoparticle | Determination of organo phosphate pesticides | [44] |
Thiazolylazopyrimidine-functionalized TiO2 Nanoparticle | Detection of Cu (II) in water samples | [45] |
Zinc oxide quantum dot | Detection of pesticide in water | [46] |
Carbon quantum dot | Detection of flumioxazin | [47] |
Green carbon dots | Ultra-sensitive fluorescent detection of pesticides | [48] |
TiO2/poly (CTAB) modified sensor | Detection of aminotriazole | [49] |
Mercaptobenzoic acid labelled gold-silver-alloy-embedded silica NPs | Detection of sensitive quantitative thiram | [50] |
Bimetallic zinc oxide and titanium dioxide nanoparticle | Control of Spodoptera frugiperda | [51] |
Fluorescent carbon dots | Detection of water contaminants | [52] |
CuO-TiO2 | Detection of methyl parathion pesticide in ground water | [53] |
Silica carbon quantum dot | Detection of indoxcarb | [54] |
Nanoparticle-Molybdenum nanocomposite | Detection of pesticide residues | [55] |
TiO2 designed carbon-based sensor | Detection and determination of fungicide carbendazim | [56] |
Organisms Name | Mode of Application | Responses | Reference |
---|---|---|---|
Spinacia oleracea | Nanofertilizers | Increased photosynthesis and growth of the crop | [100] |
Solanumly copersicum | Nanofungicides | Controls late blight disease caused by Phytophthora infestans | [101] |
Maize (Zea mays) | Nanofertilizers | Crop growth and progression | [74] |
Fungal disease | Nanofungicides | Fungal disease (Fusarium sp). treatment in plants | [102] |
Pomegranate bacterial blight | Nanobactericide | The growth of Xanthomonas axonopodispv. Punicae inhibited | [103] |
Disease in tomato | Nanobactericide | The growth of Phytophthora infestans inhibited | [101] |
Wheat | Nanofertilizers | Increases the growth and yield | [104] |
Lettuce | Nanofertilizers | Increases photosynthesis process, increases transpiration rate and increase crop production | [105] |
Phaseolus radiates and Cucurbita pepo | Nanoherbicides | Reduction in seedling development, decrease in biomass and impediment of root elongation and growth | [106] |
Cucurbita pepo and Elodea densa | Nanoherbicides | Reduced growth of the weed plant and reduction in development of weed plant | [107,108] |
Lolium perenne and Lolium rigidum | Nanoherbicides | Causes DNA damage, accumulation of oxidative stress molecules | [109] |
Fagopyrum esculentum and Cucumis sativus | Nanoherbicides | Decrease in growth of the plant induce oxidative stress, increase in SOD and CAT | [110] |
Tribolium castaneum | Nanopesticides | Controls and kills the agricultural arthropods | [87] |
Zea mays | Nanofertilizers | Decreased GPX and CAT, and succinates dehydrogenase activity. | [74] |
S. lycopersicum | Nanofertilizers | Enhanced dry weight and flavonoid production | [111] |
H. vulgare | Nanofertilizer | Increases flavonoid content in plants | [112] |
A. thaliana | Nanofertilizer | Enhanced anthocyanin content | [113] |
Anopheles stephensi and Tenebrio molitor | NanopPesticides | Good larvicidal activity present in CuO NPs | [114] |
Spodoptera littoral | Nanopesticides | Decreases the mortality and biological features of the insect | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Periakaruppan, R.; Romanovski, V.; Thirumalaisamy, S.K.; Palanimuthu, V.; Sampath, M.P.; Anilkumar, A.; Sivaraj, D.K.; Ahamed, N.A.N.; Murugesan, S.; Chandrasekar, D.; et al. Innovations in Modern Nanotechnology for the Sustainable Production of Agriculture. ChemEngineering 2023, 7, 61. https://doi.org/10.3390/chemengineering7040061
Periakaruppan R, Romanovski V, Thirumalaisamy SK, Palanimuthu V, Sampath MP, Anilkumar A, Sivaraj DK, Ahamed NAN, Murugesan S, Chandrasekar D, et al. Innovations in Modern Nanotechnology for the Sustainable Production of Agriculture. ChemEngineering. 2023; 7(4):61. https://doi.org/10.3390/chemengineering7040061
Chicago/Turabian StylePeriakaruppan, Rajiv, Valentin Romanovski, Selva Kumar Thirumalaisamy, Vanathi Palanimuthu, Manju Praveena Sampath, Abhirami Anilkumar, Dinesh Kumar Sivaraj, Nihaal Ahamed Nasheer Ahamed, Shalini Murugesan, Divya Chandrasekar, and et al. 2023. "Innovations in Modern Nanotechnology for the Sustainable Production of Agriculture" ChemEngineering 7, no. 4: 61. https://doi.org/10.3390/chemengineering7040061
APA StylePeriakaruppan, R., Romanovski, V., Thirumalaisamy, S. K., Palanimuthu, V., Sampath, M. P., Anilkumar, A., Sivaraj, D. K., Ahamed, N. A. N., Murugesan, S., Chandrasekar, D., & Selvaraj, K. S. V. (2023). Innovations in Modern Nanotechnology for the Sustainable Production of Agriculture. ChemEngineering, 7(4), 61. https://doi.org/10.3390/chemengineering7040061