Dibasic Magnesium Hypochlorite as an Oxidant to Tune Pasting Properties of Potato Starch in One Step
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Considerations and Materials Used
2.2. Oxidation of Starch by DMH
2.3. Metal Cation Exchange of Oxidised Starch
2.3.1. NaOCl Oxidised—Mg Exchange
2.3.2. DMH Oxidised—Na Exchange
2.4. DSC Analysis
2.5. ICP-OES Analysis
3. Results and Discussion
3.1. Properties of Starch after Oxidation with Dibasic Magnesium Hypochlorite
3.1.1. Initial Screening of the Oxidation Potential of Dibasic Magnesium Hypochlorite
3.1.2. Pasting Properties of Starches after Oxidation with DMH
3.2. Exchange of Magnesium and Sodium of Oxidised Starch
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tharanathan, R.N. Starch—Value Addition by Modification. Crit. Rev. Food Sci. Nutr. 2005, 45, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Al Alawi, A.M.; Majoni, S.W.; Falhammar, H. Magnesium and Human Health: Perspectives and Research Directions. Int. J. Endocrinol. 2018, 2018, 9041694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamaker, B.R. Current and Future Challenges in Starch Research. Curr. Opin. Food Sci. 2021, 40, 46–50. [Google Scholar] [CrossRef]
- DeMartino, P.; Cockburn, D.W. Resistant Starch: Impact on the Gut Microbiome and Health. Curr. Opin. Biotechnol. 2020, 61, 66–71. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, C.; Shi, L.; Chang, T.; Yang, H.; Cui, M. Effects of Salts on Physicochemical, Microstructural and Thermal Properties of Potato Starch. Food Chem. 2014, 156, 137–143. [Google Scholar] [CrossRef]
- Kunz, W.; Henle, J.; Ninham, B.W. ‘Zur Lehre von Der Wirkung Der Salze’ (about the Science of the Effect of Salts): Franz Hofmeister’s Historical Papers. Curr. Opin. Colloid Interface Sci. 2004, 9, 19–37. [Google Scholar] [CrossRef]
- Hofmeister, F. Zur Lehre von der Wirkung der Salze. Arch. Exp. Pathol. U. Pharmakol. 1888, 24, 247–260. [Google Scholar] [CrossRef] [Green Version]
- Noda, T.; Takigawa, S.; Matsuura-Endo, C.; Ishiguro, K.; Nagasawa, K.; Jinno, M. Preparation of Calcium- and Magnesium-Fortified Potato Starches with Altered Pasting Properties. Molecules 2014, 19, 14556–14566. [Google Scholar] [CrossRef]
- Zaidul, I.S.M.; Norulaini, N.; Omar, A.K.M.; Yamauchi, H.; Noda, T. Correlations of the Composition, Minerals, and RVA Pasting Properties of Various Potato Starches. Starch—Stärke 2007, 59, 269–276. [Google Scholar] [CrossRef]
- Bergthaller, W.; Witt, W.; Goldau, H.-P. Potato Starch Technology. Starch—Stärke 1999, 51, 235–242. [Google Scholar] [CrossRef]
- Vamadevan, V.; Bertoft, E. Structure-Function Relationships of Starch Components. Starch—Stärke 2015, 67, 55–68. [Google Scholar] [CrossRef]
- Noda, T.; Takigawa, S.; Matsuura-Endo, C.; Ishiguro, K.; Nagasawa, K.; Jinno, M. Properties of Calcium-Fortified Potato Starch Prepared by Immersion in Natural Mineral Water and Its Food Application. J. Appl. Glycosci. 2015, 62, 159–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martiniakova, M.; Babikova, M.; Mondockova, V.; Blahova, J.; Kovacova, V.; Omelka, R. The Role of Macronutrients, Micronutrients and Flavonoid Polyphenols in the Prevention and Treatment of Osteoporosis. Nutrients 2022, 14, 523. [Google Scholar] [CrossRef] [PubMed]
- Razzaque, M.S. Magnesium: Are We Consuming Enough? Nutrients 2018, 10, 1863. [Google Scholar] [CrossRef] [Green Version]
- Pickering, G.; Mazur, A.; Trousselard, M.; Bienkowski, P.; Yaltsewa, N.; Amessou, M.; Noah, L.; Pouteau, E. Magnesium Status and Stress: The Vicious Circle Concept Revisited. Nutrients 2020, 12, 3672. [Google Scholar] [CrossRef]
- Castiglioni, S. Editorial of Special Issue “Magnesium in Human Health and Disease”. Nutrients 2021, 13, 2490. [Google Scholar] [CrossRef]
- Maniglia, B.C.; Castanha, N.; Le-Bail, P.; Le-Bail, A.; Augusto, P.E.D. Starch Modification through Environmentally Friendly Alternatives: A Review. Crit. Rev. Food Sci. Nutr. 2021, 61, 2482–2505. [Google Scholar] [CrossRef]
- Sangseethong, K.; Termvejsayanon, N.; Sriroth, K. Characterization of Physicochemical Properties of Hypochlorite- and Peroxide-Oxidized Cassava Starches. Carbohydr. Polym. 2010, 82, 446–453. [Google Scholar] [CrossRef]
- Vogt, H.; Balej, J.; Bennett, J.E.; Wintzer, P.; Sheikh, S.A.; Gallone, P.; Vasudevan, S.; Pelin, K. Chlorine Oxides and Chlorine Oxygen Acids. In Ullmann’s Encyclopedia of Industrial Chemistry; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2010; Volume 8, pp. 624–677. ISBN 978-3-527-30673-2. [Google Scholar]
- Ashogbon, A.O.; Akintayo, E.T. Recent Trend in the Physical and Chemical Modification of Starches from Different Botanical Sources: A Review. Starch—Stärke 2014, 66, 41–57. [Google Scholar] [CrossRef]
- Kuakpetoon, D.; Wang, Y.-J. Characterization of Different Starches Oxidized by Hypochlorite. Starch—Stärke 2001, 53, 211–218. [Google Scholar] [CrossRef]
- Kuakpetoon, D.; Wang, Y.J. Structural Characteristics and Physicochemical Properties of Oxidized Corn Starches Varying in Amylose Content. Carbohydr. Res. 2006, 341, 1896–1915. [Google Scholar] [CrossRef]
- Pietrzyk, S.; Fortuna, T.; Krolikowska, K.; Rogozińska, E.; Łabanowska, M.; Kurdziel, M. Effect of Mineral Elements on Physicochemical Properties of Oxidised Starches and Generation of Free Radicals. Carbohydr. Polym. 2013, 97, 343–351. [Google Scholar] [CrossRef]
- Reddy, S.R.; Chadha, A. A Simple and Efficient Method for Mild and Selective Oxidation of Propargylic Alcohols Using TEMPO and Calcium Hypochlorite. RSC Adv. 2013, 3, 14929–14933. [Google Scholar] [CrossRef]
- Eisenbraun, A.A.; Purves, C.B. Oxidation of Wheat Starch with Alkaline Hypochlorite. Can. J. Chem. 1961, 39, 61–72. [Google Scholar] [CrossRef]
- Nwaukwa, S.O.; Keehn, P.M. The Oxidation of Alcohols and Ethers Using Calcium Hypochlorite [Ca(OCl)2]. Tetrahedron Lett. 1982, 23, 35–38. [Google Scholar] [CrossRef]
- Scardera, M.; Schifilliti, G. Process for Textile Bleaching with Dibasic Magnesium Hypochlorite. US4236891A, 12 February 1980. [Google Scholar]
- Davey, C.R.; Buckley, P.J. Particulate Detergent Composition Containing Dibasic Magnesium Hypochlorite. US4123377A, 25 August 1977. [Google Scholar]
- Bragd, P.L.; Besemer, A.C.; Van Bekkum, H. Bromide-Free TEMPO-Mediated Oxidation of Primary Alcohol Groups in Starch and Methyl α-D-Glucopyranoside. Carbohydr. Res. 2000, 328, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Broekman, J.O.P.; Genuino, H.C.; Heeres, H.J.; Brinksma, J.; Wielema, T.; Deuss, P.J. Benign Catalytic Oxidation of Potato Starch Using a Homogeneous Binuclear Manganese Catalyst and Hydrogen Peroxide. Catal. Sci. Technol. 2023, 13, 1233–1243. [Google Scholar] [CrossRef]
- Kuakpetoon, D.; Wang, Y.J. Locations of Hypochlorite Oxidation in Corn Starches Varying in Amylose Content. Carbohydr. Res. 2008, 343, 90–100. [Google Scholar] [CrossRef] [PubMed]
- BeMiller, J.N. Starches: Conversions, Modifications, and Uses. In Carbohydrate Chemistry for Food Scientists; BeMiller, J.N., Ed.; AACC International Press: Duxford, UK, 2019; pp. 191–221. ISBN 978-0-12-812069-9. [Google Scholar]
- Semeijn, C.; Buwalda, P.L. Chapter 9—Potato Starch. In Starch in Food, 2nd ed.; Sjöö, M., Nilsson, L., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2018; pp. 353–372. ISBN 978-0-08-100868-3. [Google Scholar]
- Karim, A.A.; Toon, L.C.; Lee, V.P.L.; Ong, W.Y.; Fazilah, A.; Noda, T. Effects of Phosphorus Contents on the Gelatinization and Retrogradation of Potato Starch. J. Food Sci. 2007, 72, C132–C138. [Google Scholar] [CrossRef] [PubMed]
Entry | Sample a | Temp. (°C) b | DSCOOH (mol/mol) e | Ca (ppm) | K (ppm) | Mg (ppm) | Na (ppm) | Mg/COOH (mol/mol) |
---|---|---|---|---|---|---|---|---|
1 | Native potato starch c | − | 0.004 | 155 ± 0.2 | 701 ± 1.3 | 43 ± 0.0 | 85 ± 0.8 | 0.07 |
2 | NaOCl (8.5) | 35 | 0.029 | 82 ± 0.0 | 119 ± 0.9 | 11 ± 0.1 | 3896 ± 16 | 0.003 d |
3 | NaOCl (5.5) | 35 | 0.022 | 83 ± 0.2 | 111 ± 0.3 | 17 ± 0.3 | 3287 ± 10 | 0.005 d |
4 | Entry 3—Mg exchanged | 35 | ‘’ | 19 ± 0.3 | 12 ± 1.2 | 873 ± 0.2 | 69 ± 0.9 | 0.26 |
5 | NaOCl (5.5)—Mg(OH)2 added (8.5) | 45 | 0.022 | 69 ± 0.0 | 48 ± 0.4 | 862 ± 1.1 | 1352 ± 2.4 | 0.26 |
6 | DMH (4.2) | 35 | 0.020 | 124 ± 0.5 | 19 ± 0.5 | 1732 ± 4.4 | 354 ± 0.6 | 0.57 |
7 | DMH (4.2) | 45 | 0.018 | 113 ± 0.0 | 11 ± 0.5 | 1597 ± 2.3 | 308 ± 0.8 | 0.61 |
8 | Entry 7—Na exchanged | 45 | ‘’ | 23 ± 0.0 | 7 ± 0.7 | 65 ± 0.3 | 2804 ± 4.3 | 0.02 d |
9 | DMH (8.5) | 45 | 0.033 | 82 ± 0.0 | 16 ± 0.7 | 2406 ± 0.2 | 681 ± 1.2 | 0.49 |
Entry | Sample a | Temp. (°C) b | TO (°C) | TP (°C) | TE (°C) | ΔH (J/g) |
---|---|---|---|---|---|---|
1 | Native potato starch | − | 61.3 | 65.2 | 71.5 | 18.6 |
2 | NaOCl (8.5) | 35 | 55.8 | 60.4 | 66.7 | 15.8 |
3 | NaOCl (5.5) | 35 | 59.9 | 63.1 | 69.0 | 20.8 |
4 | Entry 3—Mg exchanged | − | 63.0 | 66.9 | 73.8 | 20.3 |
5 | NaOCl (5.5)—Mg(OH)2 added (8.5) | 45 | 63.1 | 66.9 | 74.6 | 18.2 |
6 | DMH (4.2) | 35 | 62.5 ± 0.06 | 66.2 ± 0.1 | 72.6 ± 0.7 | 19.3 ± 2.3 |
7 | DMH (4.2) | 45 | 64.5 | 68.0 | 74.6 | 19.9 |
8 | Entry 7—Na exchanged | − | 60.6 | 65.0 | 73.4 | 20.4 |
9 | DMH (8.5) | 45 | 61.7 | 66.4 | 74.1 | 17.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Broekman, J.O.P.; Dijkhuis, B.W.; Thomann, J.A.; Heeres, A.; Heeres, H.J.; Deuss, P.J. Dibasic Magnesium Hypochlorite as an Oxidant to Tune Pasting Properties of Potato Starch in One Step. ChemEngineering 2023, 7, 24. https://doi.org/10.3390/chemengineering7020024
Broekman JOP, Dijkhuis BW, Thomann JA, Heeres A, Heeres HJ, Deuss PJ. Dibasic Magnesium Hypochlorite as an Oxidant to Tune Pasting Properties of Potato Starch in One Step. ChemEngineering. 2023; 7(2):24. https://doi.org/10.3390/chemengineering7020024
Chicago/Turabian StyleBroekman, J. O. P., Brian W. Dijkhuis, Johanna A. Thomann, André Heeres, Hero J. Heeres, and Peter J. Deuss. 2023. "Dibasic Magnesium Hypochlorite as an Oxidant to Tune Pasting Properties of Potato Starch in One Step" ChemEngineering 7, no. 2: 24. https://doi.org/10.3390/chemengineering7020024
APA StyleBroekman, J. O. P., Dijkhuis, B. W., Thomann, J. A., Heeres, A., Heeres, H. J., & Deuss, P. J. (2023). Dibasic Magnesium Hypochlorite as an Oxidant to Tune Pasting Properties of Potato Starch in One Step. ChemEngineering, 7(2), 24. https://doi.org/10.3390/chemengineering7020024