Nanoparticle Black Ceramic Pigment Obtained by Hydrotalcite-like Compound Microwave Treatment
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. HTLC Preparation
3.2. Thermal Treatment
3.3. Colour Measurement
4. Conclusions
- Pigments made by non-conventional routes, namely using hydrotalcite as a precursor, have better/higher colour performance than pigments made by ceramic route, when similar firing conditions are compared. In all cases, using hydrotalcite as a precursor (except crude hydrotalcite), colour performance is better than when commercial black pigment is used.
- The use of microwave treatment reduces the final size of the primary particles due to high energy and low time firing process. When hydrotalcite precursor is used, it is enough applying 800 W for 15 min to obtain the spinel phase with the best black colour performance.
- For samples obtained by the non-conventional synthesis route, the development of the spinel phase begins at 700 °C, while in the conventional route it is necessary to reach 1000 °C to be able to observe the development of the spinel, showing the higher reactivity of hydrotalcite precursor in front of the traditional synthesis route.
- The developed method allows obtaining nanoparticulate ceramic pigments with a spinel structure under very favourable synthesis conditions for their industrial development.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nebot-Díaz, I. Estudio y Caracterización de Compuestos Tipo Espinela MIIAl2O4 Mediante Rutas de Síntesis no Convencionales. Ph.D. Thesis, University Jaume I, Castellón, Spain, 2001. [Google Scholar]
- Monrós, G.; Badenes, J.A.; García, A.; Tena, M.A. El Color en los Materiales Cerámicos. In El Color de la Cerámica; Publicacions de la Universitat: Valencia, Spain, 2003; pp. 82–89. [Google Scholar]
- Hohemberger, J.M.; Todorova, I.; Marchal, M. Pigmentos cerámicos. In Esmaltes y Pigmentos Cerámicos; Escribano, P., Carda, J.B., Cordoncillo, E., Eds.; Faenza Editrice Ibérica: Castellón, Spain, 2001; pp. 189–242. [Google Scholar]
- Monrós, G.; Tena, M.A.; Escribano, P.; Cantavella, V.; Carda, J.B. Classical ceramic colours through coloidal and from alkoxides gels. J. Sol.-Gel. Sci. Tech. 1994, 2, 377–380. [Google Scholar] [CrossRef]
- Chavarriaga, E.A.; Jaramillo, L.J.; Restrepo, O.J. Ceramic pigments with spinel structure obtained by low temperature methods. In Characterization of Minerals, Metals and Materials; Wiley (John Wiley & Sons, Inc: Hoboken, NJ, USA, 2012; pp. 155–162. [Google Scholar]
- Ma, P.; Geng, Q.; Gao, X.; Yang, S.; Liu, G. CuCr2O4 spinel ceramic pigments synthesized by sol-gel self-combustion method for solar absorber coatings. J. Mater. Eng. Perf. 2016, 25, 2814–2823. [Google Scholar] [CrossRef]
- Betancour-Granados, N.; Restrepo-Baena, O.J. Flame spray pyrolysis of ceramic nanopigments CoCr2O4: The effect of key variables. J. Eur. Cer. Soc. 2017, 37, 5051–5056. [Google Scholar] [CrossRef]
- El Jabbar, Y.; Lakhlifi, H.; El Ouatib, R.; Er-Rakho, L.; Guillemet-Fritsch, S.; Durand, B. Preparation and characterization of green nano-sized cramic pigmens with the spinel structure AB2O4 (A=Co, Ni and B=Cr, Al). Solid State Commu. 2021, 334, 114394. [Google Scholar] [CrossRef]
- Paborji, F.; Afarini, M.S.; Arabi, A.M.; Ghahari, M. Solution combustion synthesis of FeCr2O4 powders for pigment applications: Effect of fuel type. Int. J. Appl. Cer. Tech. 2022; in press. [Google Scholar] [CrossRef]
- Nebot-Díaz, I.; Rives, V.; Rocha, J.; Carda, J.B. Thermal decomposition study of hydrotalcite-like compounds. Bol. Soc. Esp. Cer. Vidr. 2002, 41, 411–414. [Google Scholar] [CrossRef]
- Rives, V.; Pérez-Bernal, M.E.; Ruano-Casero, R.J.; Nebot-Díaz, I. Development of a black pigment form non stoichiometric hydrotalcites. J. Eur. Cer. Soc. 2012, 32, 975–987. [Google Scholar] [CrossRef]
- Nebot-Díaz, I.; Dal Corso, P.L. Digital Ceramic Decoration, an Introduction; ATC: Castellón, Spain, 2017. [Google Scholar]
- Li, X.; Wang, Q.K.; Wang, C.; Zhang, W.J.; Yang, Y.L.; Liu, K.; Wankg, Y.Q.; Chang, Q.B. Ultrafine Z-ZrSiO4 pigment prepared by a bottom-up approach: Particle size evolution and chromatic properties. Adv. Powder Technol. 2021, 32, 3934–3942. [Google Scholar] [CrossRef]
- Molinari, C.; Conte, S.; Zanelli, C.; Ardite, M.; Cruciani, G.; Dondi, M. Ceramic pigments and dyes beyond the inkjet revolution: From technological requirements to constraints in colorant design. Ceram. Int. 2020, 46, 21839–21872. [Google Scholar] [CrossRef]
- Tang, Q.; Zhu, H.X.; Chen, C.; Wang, Y.X.; Zhu, Z.G.; Wu, J.Q.; Shis, W.H. Preparation and characterization of nanoscale cobalt blue pigment for ceramic inkjet printing by sol-gel self-propagating combustion. Mater. Res. Ibero-Am. J. Mater. 2017, 20, 1340–1344. [Google Scholar] [CrossRef] [Green Version]
- Obata, S.; Kato, M.; Yokohama, H.; Iwata, Y.; Kikumoto, M.; Sakurada, O. Synthesis of nano CoAl2O4 pigment for ink-jet printing to decorate porcelain. J. Cer. Soc. Jpn. 2011, 119, 208–213. [Google Scholar] [CrossRef] [Green Version]
- Veronesi, P.; Leonelli, C.; Bondioli, F. Energy efficiency in the microwave-assisted solid-state synthesis of cobalt-aluminate pigment. Technologies 2017, 5, 42. [Google Scholar] [CrossRef] [Green Version]
- Trujillano, R.; Nieto, D.; Rives, V. Microwave-assisted synthesis of Ni, Zn layered double hydroxysalts. Microporous Mesoporous Mater. 2017, 253, 129–136. [Google Scholar] [CrossRef]
- Trujillano, R.; González-García, I.; Morato, A.; Rives, V. Controlling the synthesis conditions for tuning the properties of hydrotalcite like materials at the nano scale. Chemengineering 2018, 2, 31. [Google Scholar] [CrossRef] [Green Version]
- Kanezaki, E. Thermal behaviour of the hydrotalcite-like layered structure of Mg and Al layered double hydroxides with interlayer carbonate by means of in situ powder HTXRD and DTA/TG. Solid State Ion. 1998, 196, 279–284. [Google Scholar] [CrossRef]
Reference | Synthesis Method | Firing | Temperature (°C) | Remaining Time at Max. T (min) |
---|---|---|---|---|
C-crude | Solid state | No firing | - | - |
C-M1 | Solid state | Normal kiln | 500 | 30 |
C-M2 | Solid state | Normal kiln | 700 | 30 |
C-M3 | Solid state | Normal kiln | 1000 | 30 |
C-M4 | Solid state | Normal kiln | 500 | 120 |
C-M5 | Solid state | Normal kiln | 700 | 120 |
C-M6 | Solid state | Normal kiln | 1000 | 120 |
C-MW1 | Solid state | Microwave | <850 | 5 |
C-MW2 | Solid state | Microwave | <850 | 15 |
C-MW3 | Solid state | Microwave | 1038 | 30 |
H-crude | HTLC | No firing | -------------- | -------------- |
H-M1 | HTLC | Normal kiln | 300 | 30 |
H-M2 | HTLC | Normal kiln | 400 | 30 |
H-M3 | HTLC | Normal kiln | 500 | 30 |
H-M4 | HTLC | Normal kiln | 700 | 30 |
H-M5 | HTLC | Normal kiln | 1000 | 30 |
H-M6 | HTLC | Normal kiln | 500 | 120 |
H-M7 | HTLC | Normal kiln | 700 | 120 |
H-M8 | HTLC | Normal kiln | 1000 | 120 |
H-MW1 | HTLC | Microwave | <850 | 5 |
H-MW2 | HTLC | Microwave | <850 | 15 |
H-MW3 | HTLC | Microwave | 1038 | 30 |
Reference | L | a | b |
---|---|---|---|
C-crude | 44.47 | −2.72 | 7.6 |
C-M1 | 42.85 | −1.88 | 6.74 |
C-M2 | 38.99 | −0.84 | 4.91 |
C-M3 | 36.36 | 0.14 | 3.01 |
C-M4 | 42.78 | −1.97 | 6.51 |
C-M5 | 41.02 | −1.79 | 5.44 |
C-M6 | 37.19 | 1.13 | 3.70 |
C-MW1 | 43.74 | −2.47 | 6.98 |
C-MW2 | 36.72 | 1.85 | 3.03 |
C-MW3 | 36.74 | 1.65 | 1.71 |
H-crude | 36.62 | 1.12 | 1.47 |
H-M1 | 33.37 | 0.93 | 0.76 |
H-M2 | 35.75 | 0.55 | −0.18 |
H-M3 | 35.36 | 0.54 | −0.16 |
H-M4 | 32.29 | 0.93 | 0.72 |
H-M5 | 31.30 | 1.38 | −0.03 |
H-M6 | 36.65 | 0.76 | 1.12 |
H-M7 | 35.17 | 0.98 | 0.94 |
H-M8 | 29.40 | 1.15 | 0.04 |
H-MW1 | 39.09 | 1.04 | 0.61 |
H-MW2 | 32.12 | 1.12 | 0.32 |
H-MW3 | 32.25 | 1.00 | −2.32 |
Commercial | 36.04 | 1.36 | −1.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oset, M.; Moya, A.; Paulo-Redondo, G.; Nebot-Díaz, I. Nanoparticle Black Ceramic Pigment Obtained by Hydrotalcite-like Compound Microwave Treatment. ChemEngineering 2022, 6, 54. https://doi.org/10.3390/chemengineering6040054
Oset M, Moya A, Paulo-Redondo G, Nebot-Díaz I. Nanoparticle Black Ceramic Pigment Obtained by Hydrotalcite-like Compound Microwave Treatment. ChemEngineering. 2022; 6(4):54. https://doi.org/10.3390/chemengineering6040054
Chicago/Turabian StyleOset, María, Alejandro Moya, Guillermo Paulo-Redondo, and Isaac Nebot-Díaz. 2022. "Nanoparticle Black Ceramic Pigment Obtained by Hydrotalcite-like Compound Microwave Treatment" ChemEngineering 6, no. 4: 54. https://doi.org/10.3390/chemengineering6040054
APA StyleOset, M., Moya, A., Paulo-Redondo, G., & Nebot-Díaz, I. (2022). Nanoparticle Black Ceramic Pigment Obtained by Hydrotalcite-like Compound Microwave Treatment. ChemEngineering, 6(4), 54. https://doi.org/10.3390/chemengineering6040054