Layered Double Hydroxide/Nanocarbon Composites as Heterogeneous Catalysts: A Review
Abstract
:1. Introduction
2. LDHs and Carbon Materials
2.1. LDHs
2.2. Carbon Materials
3. Preparation Methods
3.1. Self-Assembly Method
3.2. Coprecipitation Method
4. Applications of LDH/Nanocarbon Composites in Heterogeneous Catalysis
4.1. Base and Multi-Step Reactions
4.1.1. Self-Condensation of Acetone and Single-Stage Synthesis of MIBK
4.1.2. Claisen–Schmidt Reaction (Synthesis of Chalcone)
4.1.3. Knoevenagel and One-Pot Oxidative Knoevenagel Reactions
4.1.4. Transesterification of Glycerol
4.1.5. Ullman, Sonogashira, and Heck Reactions
4.1.6. One-Pot and Cascade Reactions
4.2. Oxidation Reactions
4.2.1. Oxidation of Primary Alcohols
4.2.2. Oxidation of Alkylaromatics
4.3. Hydrogenation Reactions
4.3.1. Hydrogenation of Organic Dyes and Nitroarenes
4.3.2. Hydrogenation of Nitro Compounds and α-β-Unsaturated Aldehydes
4.3.3. Hydrogenolysis of Glycerol
4.4. HAS and Direct Synthesis of Isobutanol from Syngas
5. Concluding Remarks and Perspectives
- Those based on N-doped nanocarbons (N-GO, N-CD, N-graphene quantum dots) would lead to hierarchical structures exhibiting original basic properties. They will efficiently perform a larger range of base-catalyzed reactions, particularly those requiring strong basic strength (e.g., isomerization of olefines).
- The ability to introduce basic sites by different routes (LDH and/or carbon compound) and metal NPs through transition metal cations in the LDH or by impregnation offers unlimited possibilities to design multifunctional catalysts. This will allow large implementation of one-pot and cascade reactions. It is perhaps the most promising application.
- LDHs intercalated with catalytically active anionic species by direct exchange or reconstruction have not been yet exploited in LDH/carbon compounds. This would be a new, original route to synthesize multifunctional catalysts.
- There is a great need to optimize the interface between the nanocarbons and the LDHs, determining to a large extent the charge transfer and cyclability of the obtained catalysts. This will result from control of the synthesis conditions. Because direct growth of LDH on the nanocarbon by coprecipitation appears the most convenient and largely used method, great effort must be devoted to control the supersaturation level during synthesis. Moreover, coprecipitation of LDH through separated nucleation and aging steps will be more extensively exploited and, when large LDH particle size is needed, the urea synthesis method will be preferred. Furthermore, exfoliation of LDH could be more largely developed, particularly using organic solvents, leading to exceptional results.
- CD-based LDH/nanocarbons offer possibilities to improve the electron transfer and to decorate the metal NPs. These composites have been scarcely studied, although they are potential multifunctional catalysts for cascade reactions.
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Varadwaj, G.B.B.; Nyamori, V.O. Layered double hydroxide- and graphene-based hierarchical nanocomposites: Synthetic strategies and promising applications in energy conversion and conservation. Nano Res. 2016, 9, 3598–3621. [Google Scholar] [CrossRef]
- Zhao, M.; Zhao, Q.; Li, B.; Xue, H.; Pang, H.; Chen, C. Recent progress in layered double hydroxide based materials for electrochemical capacitors: Design, synthesis and performance. Nanoscale 2017, 9, 15206–15225. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.Q.; Zhang, Q.; Huang, J.Q.; Wei, F. Hierarchical Nanocomposites Derived from Nanocarbons and Layered Double Hydroxides–Properties, Synthesis, and Applications. Adv. Func. Mater. 2012, 22, 675. [Google Scholar] [CrossRef]
- Kulandaivalu, S.; Azman, N.H.N.; Sulaiman, Y. Advances in Layered Double Hydroxide/Carbon Nanocomposites Containing Ni2+ and Co2+/3+ for Supercapacitors. Front. Mater. 2020, 7, 147. [Google Scholar] [CrossRef]
- Tang, C.; Titirici, M.M.; Zhang, Q. A review of nanocarbons in energy electrocatalysis: Multifunctional substrates and highly active sites. J. Energy Chem. 2017, 26, 1077–1093. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.; Wang, H.F.; Zhu, X.L.; Li, B.Q.; Zhang, Q. Advances in Hybrid Electrocatalysts for Oxygen Evolution Reactions: Rational Integration of NiFe Layered Double Hydroxides and Nanocarbon. Part. Part. Syst. Charact. 2016, 33, 473–486. [Google Scholar] [CrossRef]
- Song, B.; Zeng, Z.; Zeng, G.; Gong, J.; Xiao, R.; Ye, S.; Chen, M.; Lai, C.; Xu, P.; Tang, X. Powerful combination of g-C3N4 and LDHs for enhanced photocatalytic performance: A review of strategy, synthesis, and applications. Adv. Colloid Interface Sci. 2019, 272, 101999. [Google Scholar] [CrossRef]
- Daud, M.; Kamal, M.S.; Shehzad, F.; Al Harthi, M. Graphene/Layered Double Hydroxides Nanocomposites: A Review of Recent Progress in Synthesis and Applications. Carbon 2016, 104, 241–252. [Google Scholar] [CrossRef]
- Gu, P.; Zhang, S.; Li, X.; Wang, X.; Wen, T.; Jehan, R.; Alsaedi, A.; Hayat, T.; Wang, X. Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ. Pollut. 2018, 240, 493–505. [Google Scholar] [CrossRef]
- Pang, H.; Wu, Y.; Wang, X.; Hu, B.; Wang, X. Recent Advances in Composites of Graphene and Layered Double Hydroxides for Water Remediation: A Review. Chem. Asian J. 2019, 14, 2542–2552. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, G.; Li, X. Graphene/layered double hydroxide nanocomposite: Properties, synthesis, and applications. Chem. Eng. J. 2016, 292, 207–223. [Google Scholar] [CrossRef]
- Fan, G.; Li, F.; Evans, D.G.; Duan, X. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chem. Soc. Rev. 2014, 43, 7040–7066. [Google Scholar] [CrossRef] [PubMed]
- Winter, F.; Van Dillen, A.J.; de Jong, K.P. Supported hydrotalcites as highly active solid base catalysts. Chem. Commun. 2005, 31, 3977–3979. [Google Scholar] [CrossRef] [PubMed]
- Winter, F.; Koot, V.; van Dillen, A.J.; Geus, J.W.; de Jong, K.P. Hydrotalcites supported on carbon nanofibers as solid base catalysts for the synthesis of MIBK. J. Catal. 2005, 236, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.N.; Oh, W.D.; Li, Y.; Hu, X. Nanocarbons as platforms for developing novel catalytic composites: Overview and prospects. Appl. Catal. A Gen. 2018, 562, 94–105. [Google Scholar] [CrossRef]
- Bhuyan, M.S.A.; Uddin, M.N.M.; Islam, M.; Bipasha, F.A.; Hossain, S.S. Synthesis of graphene. Int. Nano Lett. 2016, 6, 65–83. [Google Scholar] [CrossRef] [Green Version]
- Mallakpour, S.; Khadem, E. Carbon nanotube–metal oxide nanocomposites: Fabrication, properties and applications. Chem. Eng. J. 2016, 302, 344–367. [Google Scholar] [CrossRef]
- Sousa, H.B.A.; Martins, C.S.M.; Prior, J.A.V. You Don’t Learn That in School: An Updated Practical Guide to Carbon Quantum Dots. Nanomaterials 2021, 11, 611. [Google Scholar] [CrossRef]
- Feng, L.; Xie, N.; Zhong, J. Carbon Nanofibers and Their Composites: A Review of Synthesizing, Properties and Applications. Materials 2014, 7, 3919–3945. [Google Scholar] [CrossRef]
- Álvarez, M.G.; Tichit, D.; Medina, F.; Llorca, J. Role of the synthesis route on the properties of hybrid LDH-graphene as basic catalysts. Appl. Surf. Sci. 2017, 396, 821–831. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, N.S.; Menzel, R.; Wang, Y.; Garcia-Gallastegui, A.; Bawaked, S.M.; Obaid, A.Y.; Basahel, S.N.; Mokhtar, M. Graphene-oxide-supported CuAl and CoAl layered double hydroxides as enhanced catalysts for carbon-carbon coupling via Ullmann reaction. J. Solid State Chem. 2017, 246, 130–137. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, W.; Cui, D.; Lü, C. Mussel-inspired preparation of temperature-responsive polymer brushes modified layered double hydroxides@Pd/carbon dots hybrid for catalytic applications. Appl. Clay Sci. 2021, 200, 105958. [Google Scholar] [CrossRef]
- Tichit, D.; Coq, B. Catalysis by Hydrotalcites and Related Materials. Cattech 2003, 7, 206–217. [Google Scholar] [CrossRef]
- Takehira, K. Recent development of layered double hydroxide-derived catalysts − Rehydration, reconstitution, and supporting, aiming at commercial application. Appl. Clay Sci. 2017, 136, 112–141. [Google Scholar] [CrossRef]
- Debecker, D.P.; Gaigneaux, E.M.; Busca, G. Exploring, Tuning, and Exploiting the Basicity of Hydrotalcites for Applications in Heterogeneous Catalysis. Chem. Eur. J. 2009, 15, 3920–3935. [Google Scholar] [CrossRef]
- Li, C.; Wei, M.; Evans, D.G.; Duan, X. Layered Double Hydroxide-based Nanomaterials as Highly Efficient Catalysts and Adsorbents. Small 2014, 10, 4469. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Lim, S.Y.; Shen, W.; Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–391. [Google Scholar] [CrossRef]
- Inagaki, M.; Tsumura, T.; Kinumoto, T.; Toyoda, M. Graphitic carbon nitrides (g-C3N4) with comparative discussion to carbon materials. Carbon 2019, 141, 580–607. [Google Scholar] [CrossRef]
- Álvarez, M.G.; Marcu, I.C.; Tichit, D. Progress in Layered Double Hydroxides—From Synthesis to New Applications; Nocchetti, M., Costantino, U., Eds.; World Scientific Publishing Ltd.: Singapore, 2022; pp. 189–362. [Google Scholar]
- Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S.Z. Graphitic Carbon Nitride Materials: Controllable Synthesis and Applications in Fuel Cells and Photocatalysis. Energy Environ. Sci. 2012, 5, 6717–6731. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, L.; Guan, S.; Zhang, X.; Wang, B.; Cao, X.; Yu, Z.; He, Y.; Evans, D.G.; Feng, J.; et al. Ultrathin and Vacancy-Rich CoAl-Layered Double Hydroxide/Graphite Oxide Catalysts: Promotional Effect of Cobalt Vacancies and Oxygen Vacancies in Alcohol Oxidation. ACS Catal. 2018, 8, 3104–3115. [Google Scholar] [CrossRef]
- Zeynizadeh, B.; Gilanizadeh, M. Synthesis and characterization of a magnetic graphene oxide/Zn–Ni–Fe layered double hydroxide nanocomposite: An efficient mesoporous catalyst for the green preparation of biscoumarins. New J. Chem. 2019, 43, 18794–18804. [Google Scholar] [CrossRef]
- Iqbal, K.; Iqbal, A.; Kirillov, A.M.; Shan, C.; Liu, W.; Tang, Y. A new multicomponent CDs/Ag@Mg–Al–Ce-LDH nanocatalyst for highly efficient degradation of organic water pollutants. J. Mater Chem. A 2018, 6, 4515–4524. [Google Scholar] [CrossRef]
- Wei, Z.; Li, Y.; Dou, L.; Ahmad, M.; Zhang, H. Cu3–xNixAl-Layered Double Hydroxide-Reduced Graphene Oxide Nanosheet Array for the Reduction of 4-Nitrophenol. ACS Appl. Nano Mater. 2019, 2, 2383. [Google Scholar] [CrossRef]
- Rohani, S.; Ziarani, G.M.; Ziarati, A.; Badiei, A. Designer 3D CoAl-layered double hydroxide@N, S doped graphene hollow architecture decorated with Pd nanoparticles for Sonogashira couplings. Appl. Surf. Sci. 2019, 496, 143599. [Google Scholar] [CrossRef]
- Álvarez, M.G.; Crivoi, D.G.; Medina, F.; Tichit, D. Synthesis of Chalcone Using LDH/Graphene Nanocatalysts of Different Compositions. ChemEngineering 2019, 3, 29. [Google Scholar] [CrossRef] [Green Version]
- Xie, R.; Fan, G.; Yang, L.; Li, F. Highly Efficient Hybrid Cobalt–Copper–Aluminum Layered Double Hydroxide/Graphene Nanocomposites as Catalysts for the Oxidation of Alkylaromatics. ChemCatChem 2016, 8, 363–371. [Google Scholar] [CrossRef]
- Dou, L.; Zhang, H. Facile assembly of nanosheet array-like CuMgAl-layered double hydroxide/rGO nanohybrids for highly efficient reduction of 4-nitrophenol. J. Mater. Chem. A 2016, 4, 18990–19002. [Google Scholar] [CrossRef]
- Miao, M.Y.; Feng, J.T.; Jin, Q.; He, Y.F.; Liu, Y.N.; Du, Y.Y.; Zhang, N.; Li, D.Q. Hybrid Ni–Al layered double hydroxide/graphene composite supported gold nanoparticles for aerobic selective oxidation of benzyl alcohol. RSC Adv. 2015, 5, 36066–36074. [Google Scholar] [CrossRef]
- Dou, L.; Wang, Y.; Li, Y.; Zhang, H. Novel core–shell-like nanocomposites xCu@Cu2O/MgAlO-rGO through an in situ self-reduction strategy for highly efficient reduction of 4-nitrophenol. Dalton Trans. 2017, 46, 15836–15847. [Google Scholar] [CrossRef]
- Shan, Y.; Yu, C.; Yang, J.; Dong, Q.; Fan, X.; Qiu, J. Thermodynamically Stable Pickering Emulsion Configured with Carbon-Nanotube-Bridged Nanosheet-Shaped Layered Double Hydroxide for Selective Oxidation of Benzyl Alcohol. ACS Appl. Mater. Interfaces 2015, 7, 12203–12209. [Google Scholar] [CrossRef] [PubMed]
- Cao, A.; Liu, G.; Wang, L.; Liu, J.; Yue, Y.; Zhang, L.; Liu, Y. Growing layered double hydroxides on CNTs and their catalytic performance for higher alcohol synthesis from syngas. J. Mater. Sci. 2016, 51, 5216–5231. [Google Scholar] [CrossRef]
- Celaya-Sanfiz, A.; Morales-Vega, N.; De Marco, M.; Iruretagoyena, D.; Mokhtar, M.; Bawaked, S.M.; Basahel, S.N.; Al Thabaiti, S.A.; Alyoubi, A.O.; Shaffer, M.S.P. Self-condensation of acetone over Mg–Al layered double hydroxide supported on multi-walled carbon nanotube catalysts. J. Mol. Catal. A Chem. 2015, 398, 50–57. [Google Scholar] [CrossRef]
- Lan, M.; Fan, G.; Sun, W.; Li, F. Synthesis of hybrid Zn–Al–In mixed metal oxides/carbon nanotubes composite and enhanced visible-light-induced photocatalytic performance. Appl. Surf. Sci. 2013, 282, 937–946. [Google Scholar] [CrossRef]
- Wang, H.; Xiang, X.; Li, F. Hybrid ZnAl-LDH/CNTs nanocomposites: Noncovalent assembly and enhanced photodegradation performance. AIChE J. 2010, 56, 768–778. [Google Scholar] [CrossRef]
- Wang, J.; Fan, G.; Li, F. A hybrid nanocomposite precursor route to synthesize dispersion-enhanced Ni catalysts for the selective hydrogenation of o-chloronitrobenzene. Catal. Sci. Technol. 2013, 3, 982–991. [Google Scholar] [CrossRef]
- Wang, L.; Cao, A.; Liu, G.; Zhang, L.; Liu, Y. Bimetallic CuCo nanoparticles derived from hydrotalcite supported on carbon fibers for higher alcohols synthesis from syngas. Appl. Surf. Sci. 2016, 360, 77–85. [Google Scholar] [CrossRef]
- Guo, Y.; Fan, L.; Liu, M.; Yang, L.; Fan, G.; Li, F. Nitrogen-Doped Carbon Quantum Dots-Decorated Mg-Al Layered Double Hydroxide-Supported Gold Nanocatalysts for Efficient Base-Free Oxidation of Benzyl Alcohol. Ind. Eng. Chem. Res. 2020, 59, 636–646. [Google Scholar] [CrossRef]
- Roelofs, J.C.A.A.; Lensveld, D.J.; van Dillen, A.J.; de Jong, K.P. On the Structure of Activated Hydrotalcites as Solid Base Catalysts for Liquid-Phase Aldol Condensation. J. Catal. 2001, 203, 184–191. [Google Scholar] [CrossRef]
- Roelofs, J.C.A.A.; van Dillen, A.J.; de Jong, K.P. Base-catalyzed condensation of citral and acetone at low temperature using modified hydrotalcite catalysts. Catal. Today 2000, 60, 297–303. [Google Scholar] [CrossRef]
- Roelofs, J.C.A.A.; van Dillen, A.J.; de Jong, K.P. Condensation of citral and ketones using activated hydrotalcite catalysts. Catal. Lett. 2001, 74, 91–94. [Google Scholar] [CrossRef]
- Wang, Y.; Dou, L.; Zhang, H. Nanosheet Array-Like Palladium-Catalysts Pdx/rGO@CoAl-LDH via Lattice Atomic-Confined in Situ Reduction for Highly Efficient Heck Coupling Reaction. ACS Appl. Mater. Interfaces 2017, 9, 38784–38795. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, Z.; Zhao, Y.; Miras, H.N.; Song, Y.F. Precise Control of the Oriented Layered Double Hydroxide Nanosheets Growth on Graphene Oxides Leading to Efficient Catalysts for Cascade Reactions. ChemCatChem 2019, 11, 5466–5474. [Google Scholar] [CrossRef]
- Huang, P.; Liu, J.; Wei, F.; Zhu, Y.; Wang, X.; Cao, C.; Song, W. Size-selective adsorption of anionic dyes induced by the layer space in layered double hydroxide hollow microspheres. Mater. Chem. Front. 2017, 1, 1550–1555. [Google Scholar] [CrossRef]
- Costantino, U.; Marmottini, F.; Nocchetti, M.; Vivani, R. New Synthetic Routes to Hydrotalcite-Like Compounds—Characterisation and Properties of the Obtained Materials. Eur. J. Inorg. Chem. 1998, 10, 1439–1446. [Google Scholar] [CrossRef]
- Adachi-Pagano, M.; Forano, C.; Besse, J.P. Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction—control of size and morphology. J. Mater. Chem. 2003, 13, 1988–1993. [Google Scholar] [CrossRef]
- Ogawa, M.; Kaiho, H. Homogeneous Precipitation of Uniform Hydrotalcite Particles. Langmuir 2002, 18, 4240–4242. [Google Scholar] [CrossRef]
- Modesto-Lopez, L.B.; Chimentao, R.J.; Álvarez, M.G.; Rosell-Llompart, J.; Medina, F.; Llorca, J. Direct growth of hydrotalcite nanolayers on carbon fibers by electrospinning. Appl. Clay Sci. 2014, 101, 461–467. [Google Scholar] [CrossRef]
- Álvarez, M.G.; Frey, A.M.; Bitter, J.H.; Segarra, A.M.; de Jong, K.P.; Medina, F. On the role of the activation procedure of supported hydrotalcites for base catalyzed reactions: Glycerol to glycerol carbonate and self-condensation of acetone. Appl. Catal. B Environ. 2013, 134, 231–237. [Google Scholar] [CrossRef]
- Stamate, A.E.; Pavel, O.D.; Zavoianu, R.; Brezestean, I.; Ciorita, A.; Birjega, R.; Neubauer, K.; Koeckritz, A.; Marcu, I.C. Ce-Containing MgAl-Layered Double Hydroxide-Graphene Oxide Hybrid Materials as Multifunctional Catalysts for Organic Transformations. Materials 2021, 14, 7457. [Google Scholar] [CrossRef]
- Zhao, Y.; Xie, R.; Lin, Y.; Fan, G.; Li, F. Highly efficient solvent-free aerobic oxidation of ethylbenzene over hybrid Zn–Cr layered double hydroxide/carbon nanotubes nanocomposite. Catal. Commun. 2018, 114, 65–69. [Google Scholar] [CrossRef]
- Shen, J.; Ye, S.; Xu, X.; Liang, J.; He, G.; Chen, H. Reduced graphene oxide based NiCo layered double hydroxide nanocomposites: An efficient catalyst for epoxidation of styrene. Inorg. Chem. Commun. 2019, 104, 219–222. [Google Scholar] [CrossRef] [Green Version]
- Akbarzadeh, E.; Gholami, M.R. Pt–NiO–Al2O3/G derived from graphene-supported layered double hydroxide as efficient catalyst for p-nitrophenol reduction. Res. Chem. Intermed. 2017, 43, 5829–5839. [Google Scholar] [CrossRef]
- Xie, R.; Fan, G.; Ma, Q.; Yang, L.; Li, F. Facile synthesis and enhanced catalytic performance of graphene-supported Ni nanocatalyst from a layered double hydroxide-based composite precursor. J. Mater. Chem. A 2014, 2, 7880–7889. [Google Scholar] [CrossRef]
- Xia, S.; Zheng, L.; Ning, W.; Wang, L.; Chen, P.; Hou, Z. Multiwall carbon nanotube-pillared layered Cu0.4/Mg5.6Al2O8.6: An efficient catalyst for hydrogenolysis of glycerol. J. Mater. Chem. A 2013, 1, 11548–11552. [Google Scholar] [CrossRef]
- Cao, A.; Yang, Q.; Wei, Y.; Zhang, L.; Liu, Y. Synthesis of higher alcohols from syngas over CuFeMg-LDHs/CFs composites. Int. J. Hydrogen Energy 2017, 42, 17425–17434. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Gao, Z.H.; Kou, W.; Liu, Y.; Huang, W. Direct Synthesis of Isobutanol from Syngas over Nanosized Cu/ZnO/Al2O3 Catalysts Derived from Hydrotalcite-like Materials Supported on Carbon Fibers. Energy Fuels 2017, 31, 8572–8579. [Google Scholar] [CrossRef]
- Kou, J.W.; Cheng, S.Y.; Gao, Z.H.; Cheng, F.Q.; Huang, H. Synergistic effects of potassium promoter and carbon fibers on direct synthesis of isobutanol from syngas over Cu/ZnO/Al2O3 catalysts obtained from hydrotalcite-like compounds. Solid State Sci. 2019, 87, 138–145. [Google Scholar] [CrossRef]
- Tichit, D.; Naciri Bennani, M.; Figueras, F.; Tessier, R.; Kervennal, J. Aldol condensation of acetone over layered double hydroxides of the meixnerite type. Appl. Clay Sci. 1998, 13, 401–415. [Google Scholar] [CrossRef]
- Abello, S.; Medina, F.; Tichit, D.; Perez Ramirez, J.; Cesteros, Y.; Salagre, P.; Sueiras, J.E. Nanoplatelet-based reconstructed hydrotalcites: Towards more efficient solid base catalysts in aldol condensations. Chem. Commun. 2005, 11, 1453–1455. [Google Scholar] [CrossRef]
- Abello, S.; Medina, F.; Tichit, D.; Perez Ramirez, J.; Groen, J.C.; Sueiras, S.E.; Salagre, P.; Cesteros, Y. Aldol Condensations over Reconstructed Mg–Al Hydrotalcites: Structure–Activity Relationships Related to the Rehydration Method. Chem. Eur. J.— Eur. J. 2005, 11, 728–739. [Google Scholar] [CrossRef]
- Evranos Aksoz, B.; Ertan, R. Chemical and Structural Properties of Chalcones. IFABAD J. Pharm. Sci. 2011, 36, 223–242. [Google Scholar]
- Chimenti, F.; Fioravanti, R.; Bolasco, A.; Chimenti, P.; Secci, D.; Rossi, F.; Yáñez, M.; Orallo, F.; Ortuso, F.; Alcaro, S. Chalcones: A Valid Scaffold for Monoamine Oxidases Inhibitors. J. Med. Chem. 2009, 52, 2818–2824. [Google Scholar] [CrossRef]
- Mahapatra, D.K.; Bharti, S.K.; Asati, V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur. J. Med. Chem. 2015, 98, 69–114. [Google Scholar] [CrossRef]
- Hargrove-Leak, S.C.; Amiridis, M.D. Substitution effects in the heterogeneous catalytic synthesis of flavanones over MgO. Catal. Commun. 2002, 3, 557–563. [Google Scholar] [CrossRef]
- Climent, M.J.; Corma, A.; Iborra, S.; Velty, A. Activated hydrotalcites as catalysts for the synthesis of chalcones of pharmaceutical interest. J. Catal. 2004, 221, 474–482. [Google Scholar] [CrossRef]
- Solhy, A.; Tahir, R.; Sebti, S.; Skouta, R.; Bousmina, M.; Zahouily, M.; Lazrek, M. Efficient synthesis of chalcone derivatives catalyzed by re-usable hydroxyapatite. Appl. Catal. A Gen. 2010, 374, 189–193. [Google Scholar] [CrossRef]
- Jioui, I.; Danoun, K.; Solhy, A.; Jouiad, M.; Zahouily, M.; Essaid, B.; Len, C.; Fihri, A. Modified fluorapatite as highly efficient catalyst for the synthesis of chalcones via Claisen–Schmidt condensation reaction. J. Ind. Eng. Chem. 2016, 39, 218–225. [Google Scholar] [CrossRef]
- Álvarez, M.G.; Segarra, A.M.; Contreras, S.; Sueiras, J.E.; Medina, F.; Figueras, F. Enhanced use of renewable resources: Transesterification of glycerol catalyzed by hydrotalcite-like compounds. Chem. Eng. J. 2010, 161, 340–345. [Google Scholar] [CrossRef]
- Álvarez, M.G.; Chimentão, R.J.; Figueras, F.; Medina, F. Tunable basic and textural properties of hydrotalcite derived materials for transesterification of glycerol. Appl. Clay Sci. 2012, 58, 16–24. [Google Scholar] [CrossRef]
- Albadi, J.; Mansournezhad, A.; Salehnasab, S. Green synthesis of biscoumarin derivatives catalyzed by recyclable CuO–CeO2 nanocomposite catalyst in water. Res. Chem. Intermed. 2015, 41, 5713–5721. [Google Scholar] [CrossRef]
- Sadeghi, B.; Tayebe, Z. A Fast, Highly Efficient, and Green Protocol for Synthesis of Biscoumarins Catalyzed by Silica Sulfuric Acid Nanoparticles as a Reusable Catalyst. J. Chem. 2013, 2013, 179013. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, P.; Katyal, A.; Kalra, R.; Dass, S.K.; Prakash, S.; Chandra, R. Phosphotungstic Acid: An Efficient Catalyst for the Aqueous Phase Synthesis of Bis-(4-hydroxycoumarin-3-yl)methanes. Catal. Lett. 2010, 134, 303–308. [Google Scholar] [CrossRef]
- Jo, J.W.K.; Kumar, S.; Tonda, S. N-doped C dot/CoAl-layered double hydroxide/g-C3N4 hybrid composites for efficient and selective solar-driven conversion of CO2 into CH4. Compos. Part B 2019, 176, 107212. [Google Scholar] [CrossRef]
- Nava Andrade, K.; Knauth, P.; López, Z.; Hirata, G.A.; Guevara Martinez, S.J.; Carbajal Arízaga, G.G. Assembly of folate-carbon dots in GdDy-doped layered double hydroxides for targeted delivery of doxorubicin. Appl. Clay Sci. 2020, 192, 105661. [Google Scholar] [CrossRef]
- Liu, W.; Liang, R.; Lin, Y. Confined synthesis of carbon dots with tunable long-wavelength emission in a 2-dimensional layered double hydroxide matrix. Nanoscale 2020, 12, 7888–7894. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Antonietti, M. Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. Angew. Chem. Int. Ed. 2012, 51, 68–89. [Google Scholar] [CrossRef]
- Watanabe, H.; Asano, S.; Fujita, S.I.; Yoshida, H.; Arai, M. Nitrogen-Doped, Metal-Free Activated Carbon Catalysts for Aerobic Oxidation of Alcohols. ACS Catal. 2015, 5, 2886–2894. [Google Scholar] [CrossRef]
- Xie, R.; Fan, G.; Yang, L.; Li, F. Solvent-free oxidation of ethylbenzene over hierarchical flower-like core–shell structured Co-based mixed metal oxides with significantly enhanced catalytic performance. Catal. Sci. Technol. 2015, 5, 540–548. [Google Scholar] [CrossRef]
- Xie, R.; Fan, G.; Yang, L.; Li, F. Hierarchical flower-like Co–Cu mixed metal oxide microspheres as highly efficient catalysts for selective oxidation of ethylbenzene. Chem. Eng. J. 2016, 288, 169–178. [Google Scholar] [CrossRef]
- Yang, F.; Zhou, S.J.; Gao, S.Y.; Liu, X.F.; Long, S.F.; Kong, Y. In situ embedding of ultra-fine nickel oxide nanoparticles in HMS with enhanced catalytic activities of styrene epoxidation. Microporous Mesoporous Mater. 2017, 238, 69–77. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, T.T.; Jian, P.M.; Wang, L.X. Hierarchical 0D/2D Co3O4 hybrids rich in oxygen vacancies as catalysts towards styrene epoxidation reaction. Chin. J. Catal. 2018, 39, 1942–1950. [Google Scholar] [CrossRef]
- Huang, C.L.; Zhang, H.Y.; Sun, Z.Y.; Zhao, Y.F.; Chen, S.; Tao, R.T.; Liu, Z.M. Porous Fe3O4 nanoparticles: Synthesis and application in catalyzing epoxidation of styrene. J. Colloid Interface Sci. 2011, 364, 298–303. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, Z.; Fan, G.; Li, F. The promotional effect of ZnO addition to supported Ni nanocatalysts from layered double hydroxide precursors on selective hydrogenation of citral. Catal. Sci. Technol. 2014, 4, 1123–1131. [Google Scholar] [CrossRef]
- Ma, N.; Song, Y.; Han, F.; Waterhouse, G.I.N.; Li, Y.; Ai, S. Highly selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran at low temperature over a Co–N–C/NiAl-MMO catalyst. Catal. Sci. Technol. 2020, 10, 4010–4018. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Fan, G.; Li, F. Synthesis of a novel Ni/C catalyst derived from a composite precursor for hydrodechlorination. Catal. Commun. 2012, 19, 56–60. [Google Scholar] [CrossRef]
- Wang, J.; Fan, G.; Li, F. Carbon-supported Ni catalysts with enhanced metal dispersion and catalytic performance for hydrodechlorination of chlorobenzene. RSC Adv. 2012, 2, 9976–9985. [Google Scholar] [CrossRef]
- Jiang, J.; Lim, Y.S.; Park, S.; Kim, S.H.; Yoon, S.; Piao, L. Hollow porous Cu particles from silica-encapsulated Cu2O nanoparticle aggregates effectively catalyze 4-nitrophenol reduction. Nanoscale 2017, 9, 3873–3880. [Google Scholar] [CrossRef]
- Bai, S.; Shen, X.P.; Zhu, G.X.; Li, M.Z.; Xi, H.T.; Chen, K.M. In situ Growth of NixCo100–x Nanoparticles on Reduced Graphene Oxide Nanosheets and Their Magnetic and Catalytic Properties. ACS Appl. Mater. Interf. 2012, 4, 2378–2386. [Google Scholar] [CrossRef]
- Bordbar, M.; Negahdar, N.; Nasrollahzadeh, M.M. Melissa Officinalis L. leaf extract assisted green synthesis of CuO/ZnO nanocomposite for the reduction of 4-nitrophenol and Rhodamine B. Sep. Purif. Technol. 2018, 191, 295–300. [Google Scholar] [CrossRef]
- Pang, J.J.; Li, W.T.; Cao, Z.H.; Xu, J.J.; Li, X.; Zhang, X.K. Mesoporous Cu2O–CeO2 composite nanospheres with enhanced catalytic activity for 4-nitrophenol reduction. Appl. Surf. Sci. 2018, 439, 420–429. [Google Scholar] [CrossRef]
- Ye, W.C.; Yu, J.; Zhou, X.X.; Gao, D.Q.; Wang, D.A.; Wang, C.M.; Xue, D.S. Green synthesis of Pt–Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4-nitrophenol reduction. Appl. Catal. B 2016, 181, 371–378. [Google Scholar] [CrossRef]
- Konar, S.; Kalita, H.; Puvvada, N.; Tantubay, S.; Mahto, M.K.; Biswas, S.; Pathak, A. Shape-dependent catalytic activity of CuO nanostructures. J. Catal. 2016, 336, 11–22. [Google Scholar] [CrossRef]
- Sasmal, A.K.; Dutta, S.; Pal, T. A ternary Cu2O–Cu–CuO nanocomposite: A catalyst with intriguing activity. Dalton Trans. 2016, 45, 3139–3150. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.J.; Chen, R.F.; Liu, W.K.; Wu, J.M.; Gao, D. Catalytic reduction of 4-nitrophenol over Ni-Pd nanodimers supported on nitrogen-doped reduced graphene oxide. J. Hazard. Mater. 2016, 320, 96–104. [Google Scholar] [CrossRef]
- Wang, X.; Liu, D.P.; Song, S.Y.; Zhang, H.J. Pt@CeO2 Multicore@Shell Self-Assembled Nanospheres: Clean Synthesis, Structure Optimization, and Catalytic Applications. J. Am. Chem. Soc. 2013, 135, 15864–15872. [Google Scholar] [CrossRef]
- Jiang, Y.F.; Yuan, C.Z.; Xie, X.; Zhou, X.; Jiang, N.; Wang, X.; Imran, M.; Xu, A.W. A Novel Magnetically Recoverable Ni-CeO2–x/Pd Nanocatalyst with Superior Catalytic Performance for Hydrogenation of Styrene and 4-Nitrophenol. ACS Appl. Mater. Interfaces 2017, 9, 9756–9762. [Google Scholar] [CrossRef]
- Wu, G.Q.; Liang, X.Y.; Zhang, L.J.; Tang, Z.Y.; Al-Mamun, M.; Zhao, H.J.; Su, X.T. Fabrication of Highly Stable Metal Oxide Hollow Nanospheres and Their Catalytic Activity toward 4-Nitrophenol Reduction. ACS Appl. Mater. Interfaces 2017, 9, 18207–18214. [Google Scholar] [CrossRef]
- Yu, C.; Fu, J.J.; Muzzio, M.; Shen, T.; Su, D.; Zhu, J.J.; Sun, S.H. CuNi Nanoparticles Assembled on Graphene for Catalytic Methanolysis of Ammonia Borane and Hydrogenation of Nitro/Nitrile Compounds. Chem. Mater. 2017, 29, 1413–1418. [Google Scholar] [CrossRef]
- Fang, H.; Wen, M.; Chen, H.X.; Wu, Q.S.; Li, W.Y. Graphene stabilized ultra-small CuNi nanocomposite with high activity and recyclability toward catalysing the reduction of aromatic nitro-compounds. Nanoscale 2016, 8, 536–542. [Google Scholar] [CrossRef]
- Kohantorabi, M.; Gholami, M.R. Kinetic Analysis of the Reduction of 4-Nitrophenol Catalyzed by CeO2 Nanorods-Supported CuNi Nanoparticles. Ind. Eng. Chem. Res. 2017, 56, 1159–1167. [Google Scholar] [CrossRef]
- Krishna, R.; Fernandes, D.M.; Ventura, J.; Freire, C.; Titus, E. Novel synthesis of highly catalytic active Cu@Ni/RGO nanocomposite for efficient hydrogenation of 4-nitrophenol organic pollutant. Int. J. Hydrogen Energy 2016, 41, 11608–11615. [Google Scholar] [CrossRef]
- Qi, H.T.; Yu, P.; Wang, Y.X.; Han, G.C.; Liu, H.B.; Yi, Y.P.; Li, Y.L.; Mao, L.Q. Graphdiyne Oxides as Excellent Substrate for Electroless Deposition of Pd Clusters with High Catalytic Activity. J. Am. Chem. Soc. 2015, 137, 5260–5263. [Google Scholar] [CrossRef]
- Mallick, K.; Witcomb, M.; Scurrell, M. Silver nanoparticle catalysed redox reaction: An electron relay effect. Mater. Chem. Phys. 2006, 97, 283–287. [Google Scholar] [CrossRef]
- Mandlimath, T.R.; Gopal, B. Catalytic activity of first row transition metal oxides in the conversion of p-nitrophenol to p-aminophenol. J. Mol. Catal. A Chem. 2011, 350, 9–15. [Google Scholar] [CrossRef]
- Chen, J.; Yao, N.; Wang, R.; Zhang, J. Hydrogenation of chloronitrobenzene to chloroaniline over Ni/TiO2 catalysts prepared by sol–gel method. Chem. Eng. J. 2009, 148, 164–172. [Google Scholar] [CrossRef]
- Yan, X.; Sun, J.; Wang, Y.; Yang, J. A Fe-promoted Ni–P amorphous alloy catalyst (Ni–Fe–P) for liquid phase hydrogenation of m- and p-chloronitrobenzene. J. Mol. Catal. A Chem. 2006, 252, 17–22. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, X.; Yang, N.; Tantai, X.; Xiao, X.; Jiang, B.; Zhang, L. Morphology-Controlled Synthesis of Three-Dimensional Hierarchical Flowerlike Mg–Al Layered Double Hydroxides with Enhanced Catalytic Activity for Transesterification. Ind. Eng. Chem. Res. 2019, 58, 7937–7947. [Google Scholar] [CrossRef]
- Balsamo Mendieta, S.; Heredia, A.; Crivello, M. Nanoclays as dispersing precursors of La and Ce oxide catalysts to produce high-valued derivatives of biodiesel by-product. Mol. Catal. 2020, 481, 110290. [Google Scholar] [CrossRef]
- Álvarez, M.G.; Chimentão, R.; Barrabés, N.; Föttinger, K.; Gispert-Guirado, F.; Kleymenov, E.; Tichit, D.; Medina, F. Structure evolution of layered double hydroxides activated by ultrasound induced reconstruction. Appl. Clay Sci. 2013, 83, 1–11. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, X.; Cong, X.; Liu, S.; Zhou, D. Influence of Zr on the performance of Mg-Al catalysts via hydrotalcite-like precursors for the synthesis of glycerol carbonate from urea and glycerol. Appl. Catal. A Gen. 2018, 555, 36–46. [Google Scholar] [CrossRef]
- Sangkhum, P.; Yanamphorn, J.; Wangriya, A.; Ngamcharussrivichai, C. Ca–Mg–Al ternary mixed oxides derived from layered double hydroxide for selective etherification of glycerol to short-chain polyglycerols. Appl. Clay Sci. 2019, 173, 79–87. [Google Scholar] [CrossRef]
- Li, X.; Zheng, L.; Hou, Z. Acetalization of glycerol with acetone over Co[II](Co[III]xAl2−x)O4 derived from layered double hydroxide. Fuel 2018, 233, 565–571. [Google Scholar] [CrossRef]
- Talebian-Kiakalaieh, A.; Amin, N.A.S.; Rajaei, K.; Tarighi, S. Oxidation of bio-renewable glycerol to value-added chemicals through catalytic and electro-chemical processes. Appl. Energy 2018, 230, 1347–1379. [Google Scholar] [CrossRef]
- Jing, F.; Liu, S.; Wang, R.; Li, X.; Yan, Z.; Luo, S.; Chu, W. Hydrogen production through glycerol steam reforming over the NiCexAl catalysts. Renew. Energy 2020, 158, 192–201. [Google Scholar] [CrossRef]
- Gao, W.; Zhao, Y.; Liu, J.; Huang, Q.; He, S.; Li, C.; Zhao, J.; Wei, M. Catalytic conversion of syngas to mixed alcohols over CuFe-based catalysts derived from layered double hydroxides. Catal. Sci. Technol. 2013, 3, 1324–1332. [Google Scholar] [CrossRef]
- Han, X.; Fang, K.; Sun, Y. Effects of metal promotion on CuMgFe catalysts derived from layered double hydroxides for higher alcohol synthesis via syngas. RSC Adv. 2015, 5, 51868–51874. [Google Scholar] [CrossRef]
- Han, X.; Fang, K.; Zhou, J.; Zhao, L.; Sun, Y. Synthesis of higher alcohols over highly dispersed Cu–Fe based catalysts derived from layered double hydroxides. J. Colloid Interface Sci. 2016, 470, 162–171. [Google Scholar] [CrossRef]
- Ning, X.; An, Z.; He, J. Remarkably efficient CoGa catalyst with uniformly dispersed and trapped structure for ethanol and higher alcohol synthesis from syngas. J. Catal. 2016, 340, 236–247. [Google Scholar] [CrossRef]
- Liao, P.; Zhang, C.; Zhang, L.; Yang, Y.; Zhong, L.; Wang, H.; Sun, Y. Higher alcohol synthesis via syngas over CoMn catalysts derived from hydrotalcite-like precursors. Catal. Today 2018, 311, 56–64. [Google Scholar] [CrossRef]
- Cao, A.; Liu, G.; Yue, Y.; Zhang, L.; Liu, Y. Nanoparticles of Cu–Co alloy derived from layered double hydroxides and their catalytic performance for higher alcohol synthesis from syngas. RSC Adv. 2015, 5, 58804–58812. [Google Scholar] [CrossRef]
- Xiao, K.; Bao, Z.; Qi, X.; Wang, X.; Zhong, L.; Lin, M. Unsupported CuFe bimetallic nanoparticles for higher alcohol synthesis via syngas. Catal. Commun. 2013, 40, 154–157. [Google Scholar] [CrossRef] [Green Version]
- Ding, M.; Qiu, M.; Liu, J.; Li, Y.; Wang, T.; Ma, L.; Wu, C. Influence of manganese promoter on co-precipitated Fe–Cu based catalysts for higher alcohols synthesis. Fuel 2013, 109, 21–27. [Google Scholar] [CrossRef]
- Kattel, S.; Ramirez, P.J.; Chen, J.G.; Rodriguez, J.A.; Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 2017, 355, 1296–1299. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.J.; Anderson, R.B. A chain growth scheme for the higher alcohols synthesis. J. Catal. 1984, 85, 428–436. [Google Scholar] [CrossRef]
- Nunan, J.G.; Bogdan, C.E.; Klier, K.; Smith, K.J.; Young, C.W.; Herman, R.G. Methanol and C2 oxygenate synthesis over cesium doped CuZnO and Cu/ZnO/Al2O3 catalysts: A study of selectivity and 13C incorporation patterns. J. Catal. 1988, 113, 410–433. [Google Scholar] [CrossRef]
- Nunan, J.G.; Herman, R.G.; Klier, K. Higher alcohol and oxygenate synthesis over Cs/Cu/ZnO/M2O3 (M = Al, Cr) catalysts. J. Catal. 1989, 116, 222–229. [Google Scholar] [CrossRef]
- Spivey, J.J.; Egbebi, A. Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas. Chem. Soc. Rev. 2007, 36, 1514–1528. [Google Scholar] [CrossRef]
- Subramani, V.; Gangwal, S.K. A Review of Recent Literature to Search for an Efficient Catalytic Process for the Conversion of Syngas to Ethanol. Energy Fuels 2008, 22, 814–839. [Google Scholar] [CrossRef]
- Herman, R.G. Advances in catalytic synthesis and utilization of higher alcohols. Catal. Today 2000, 55, 233–245. [Google Scholar] [CrossRef]
- Li, L.; Zhu, Z.H.; Yan, Z.F.; Lu, G.Q.; Rintoul, L. Catalytic ammonia decomposition over Ru/carbon catalysts: The importance of the structure of carbon support. Appl. Catal. A Gen. 2007, 320, 166–172. [Google Scholar] [CrossRef]
- Nie, R.; Wang, J.; Wang, L.; Qin, Y.; Chen, P.; Hou, Z. Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes. Carbon 2012, 50, 586–596. [Google Scholar] [CrossRef]
- Ye, A.; Fan, W.; Zhang, Q.; Deng, W.; Wang, Y. CdS–graphene and CdS–CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation. Catal. Sci. Technol. 2012, 2, 969–978. [Google Scholar] [CrossRef]
- Li, Y.; Gao, W.; Ci, L.; Wang, C.; Ajayan, P.M. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon 2010, 48, 1124–1130. [Google Scholar] [CrossRef]
- Luo, X.; Yuan, S.; Pan, X.; Zhang, C.; Du, S.; Liu, Y. Synthesis and Enhanced Corrosion Protection Performance of Reduced Graphene Oxide Nanosheet/ZnAl Layered Double Hydroxide Composite Films by Hydrothermal Continuous Flow Method. ACS Appl. Mater. Interfaces 2017, 9, 18263–18275. [Google Scholar] [CrossRef]
- Tichit, D.; Layrac, G.; Gérardin, C. Synthesis of layered double hydroxides through continuous flow processes: A review. Chem. Eng. J. 2019, 369, 302–332. [Google Scholar] [CrossRef]
Nanocarbon | Properties | Synthesis Methods |
---|---|---|
Graphene-like materials | sp2-sp3 electronic configuration with free π-electrons Semiconductor, fast electron transfer Highly functionalizable Strong hybridization with electronic state of catalyst species, strong interfacial coupling π-π conjugation interaction of reactants Extremely high theoretical surface area | Confined self-assembly Chemical vapor deposition Arc discharge Epitaxial growth on SiC layer Unzipping of carbon nanotubes Mechanical exfoliation of graphite Sonication of graphite Electrochemical exfoliation/functionalization of graphene Chemical synthesis/exfoliation |
CNT | sp2 electronic configuration with free π-electrons Highly graphitic Enhanced charge transport Tailorable acid/basicity and easy functionalization High surface area Good thermal stability | Arc discharge Laser ablation Chemical vapor deposition |
CNF | Facile and eco-friendly preparation Semiconductive, electronic structure similar to graphite Chemically active edges, easy functionalization Excellent thermal resistance High surface area | Chemical vapor deposition Floating catalyst method Electrospinning/carbonization |
CD | sp2 hybridization Water solubility, easy functionalization Low cost and toxicity Quantum confinement properties, semiconductor | Microwave-assisted Combustion/hydrothermal Supporting synthesis method Arc discharge Laser ablation Electrochemical synthesis Chemical oxidation |
Comp. | Preparation Method | Reaction (Substrate) | Reaction Conditions | Ref. | |
---|---|---|---|---|---|
1 | CNF/MgAl-LDH | Pore precipion by incipient impion | Condension (Acetone) | 1.8 mol acetone; mcat: 1 g; activated 450 °C; rehyd. gas phase; T = 0 °C | [13] |
2 | CNF/MgAl-LDH | Pore precipion by incipient impion | MIBK synthesis (Acetone) | 1.8 mol acetone; mcat: 1 g; calcined 450 °C; red. 250 °C (H2); rehyd. gas phase. T = 60 °C, P H2 = 1.2 bar | [14] |
3 | CNF/MgAl-LDH | Pyrolysis/hydration of electrospun PVA/PEO/MgAl–nitrate | Transestion (DEC, glycerol) | DEC: glycerol: 16 mol/mol; mcat: 0.4 g; calcined 450 °C; rehyd. gas phase; T = 130 °C | [59] |
4 | MWCNT/MgAl-LDH | Coprecipion | Condension (Acetone) | 0.8 mol acetone; mcat adjusted to contain 50 mg LDH; calcined 450 °C; rehyd. liq. phase; T = 0 °C | [44] |
5 | CNF/MgAl-LDH | Pore precipion by incipient impion | Transestion (DEC, glycerol) | DEC: glycerol: 17 mol/mol; mcat: 0.3 g; calcined 500 °C; rehyd. liq. or gas phase; T = 130 °C | [60] |
6 | CNF/MgAl-LDH | Pore precipion by incipient impion | Condension (Acetone) | 100 g acetone; 1 g supported catalyst (0.3 g bulk catalyst); calcined 500 °C; rehyd. gas phase | [60] |
7 | rGO/MgAl-LDH | Copion or self-assembly; Freeze drying or drying in air (80 °C) | Condension (Acetone) | 27.5 mmol acetone; 1.5 wt% LDH/rGO respect to acetone; activated 450 °C; T = 0 °C | [20] |
8 | rGO/MgAl-LDH | Copion LDH on GO | Claisen-Schmidt condension (BALD, acetophenone) | BALD (a)/acetophenone = 1.05; mcat: 25 wt%; calcined 450 °C; T = 40 °C | [37] |
9 | rGO/CeMgAl-LDH | Copion LDH on GO | Knoev.el (BALD, diethylmalonate) | BALD: diethylmalonate 2:3; mcat: 1 wt%; non-activated; T = 160 °C. | [61] |
10 | rGO/CeMgAl-LDH | Copion LDH on GO | Cascade oxidation- Knoev.el (BA/benzoyl acetonitrile) | BA (b)/benzoyl acetonitrile 0.83; mcat: 1 g; non-calcined; P O2 =1 atm: T = 80 °C | [61] |
11 | GO/CuAl-LDH GO/CoAl-LDH | Copion LDH from metal nitrates with NaOH + Na2CO3 on GO) Copion LDH from metal chlorides by urea on GO (97 °C; 48 h) | Ullmann (Iodobenzene) | Iodobenzene (2 mmol), DMSO (4 mmol), mcat: 0.25 g; non-activated; T = 110 °C | [21] |
12 | N,S-G/CoAl-LDH/Pd | Mixture Al3+, Co2+, NH4F, and thiourea hydrothermally treated. Then + H2PdCl4 | Sonogashira (Aryl halides/Phenylacetylene) | Aryhalide (1 mmol), phenylacetylene (1.2 mmol), 0.06 mol% Pd; cat. non-activated; T = 100 °C. | [36] |
13 | rGO/CoAl-LDH/Pd | Copion Co and Al nitrates on the CA-modified GO (pH 10). Aging 65 °C; 4 h | Heck (Iodobenz./Styrene) | DMF (12 mL), H2O (4 mL), K2CO3 (3 mmol), aryl halide (1 mmol), styrene (1.2 mmol); cata non-activated | [53] |
14 | GO/ZnNiFe-LDH/Fe3O4 | Fe3O4 on GO. Then LDH immobilized on Fe3O4@GO | One-pot Knoev.el-Michael (BALD/4-hydroxycoumarin) | 4-hydroxycoumarin/BALD = 1: 0.5; mcat: 30 mg; non-activated; reflux H2O (2 mL) | [33] |
15 | rGO/RuCoAl-LDH | Ru, Co, and Al chlorides added into GO susp.ion. NaOH + Na2CO3 then added until pH 10. Aging 90 °C; 6 h Ru, Co, and Al chlorides and NaOH + Na2CO3 sol.ion simultaneously added to GO susp.ion until pH 10. Aging 90 °C; 6 h | One-pot oxidation + Knoev.el condion (Cinnamyl alcohol/ethyl cyanoacetate (substituted BA/ethyl cyanoacetate or malonitrile)) | BA (1 mmol) and toluene (7 mL) in 50 mL flask kept 60 °C (O2, 2 h, 0.10 MPa). After ethyl cyanoacetate (1.5 mmol) added at 60 °C: cata non-activated | [54] |
16 | rGO/NiAl-LDH/Au | LDH/rGO: Copion metal nitrates and exfol. GO dispersed into NaOH + Na2CO3 Au/NiAl-LDH/rGO: (1) PVA aq. sol. (PVA/Au = 1.2) + aq. HAuCl4 +NaBH4 (NaBH4/Au = 5); (2) LDH/rGO added in the Au-containing colloid | Oxidation (BA) | mcata = 0.4 g; non-activated; 40 mL BA, no solvent; T = 140 °C; P O2 = 2 bar | [40] |
17 | GO/CoAl-LDH | Assembly of GO and LDH exfoliated in formamide | Oxidation (BA) | mcata = 0.1 g; non-activated; 1 mmol BA, 5 mL DMF; T = 120 °C; P O2 = 1 bar | [32] |
18 | NCD/MgAl-LDH/Au | Copion LDH in presence NCD (pH 10.5). Then addition of HAuCl4 into aq. suspion NCD/LDH and poly(N-vinyl-2-pyrrolidone) + NaBH4 | Oxidation (BA) | mcata = 0.1 g; non-activated; 10 mL BA, no solvent; T = 120 °C; P O2 = 0.4 MPa | [49] |
19 | CNT/MgAl-LDH/Ru | LDH-CNT: Acid-treated CNT dispersed in NaOH + Na2CO3 then addition of metal nitrates (pH 10.5). Treatment 100 °C; 16 h. Wetness impr. LDH-CNT with RuCl3.3H2O (Ru = 1 wt%) | Oxidation (BA) | mcata = 0.2 g (0.02 mmol Ru); reduced 400 °C (H2); 2 mmol BA, 105 mL toluene, 6 mL H2O; T = 85 °C; P O2 = 1 bar; O2 flow rate 25 mL min−1 | [42] |
20 | GO/CoCuAl-LDH | Copion LDH from metal nitrates on GO with NaOH + Na2CO3 (pH 10). GO/LDH = 0.2–0.8 wt/wt | Oxidation (EB (c)) | EB 10 mmol; TBHP 40 mmol; mcata = 0.1 g; non-activated; T = 120 °C | [38] |
21 | CNT/ZnCr-LDH | Copion LDH from nitrate salts on acid-treated CNT and NaOH + Na2CO3 | Oxidation (EB) | EB: 10 mL (81.7 mmol); no solvent; PO2 =1 MPa; mcata = 0.1 g; non-activated; T = 130 °C | [62] |
22 | rGO/NiCo-LDH | GO colloid added in mixed sol. (VC2H5OH:VH2O = 1:1) and sonicated. Metal chloride solion (Ni/Co = 1) added dropwise to GO suspion with NH4Cl (pH 9). Treatment 120 °C; 12 h. | Oxidation (Sty (d)) | 1.1 mL Sty; mcata = 0.03 g; non activated; 10 mL acetonitrile, 1.8 mL TBHP (70%, aq. sol.); T = 80 °C | [63] |
23 | rGO/CuMgAl-LDH | Copion LDH into CA (e)-GO suspension | Reduction (4-NP) | 1 mM 4-NP (200 µL) + 10 mM NaBH4 (2.5 mL) + 10 µL cata. susp. (2.5 mg mL−1) non-activated | [39] |
24 | rGO/CuMgAl-LDH | Copion LDH into CA-GO suspension | Reduction (4-NP) | 200 µL 4-NP (200 µL, 1 mM) + NaBH4 (2.5 mL, 10 mM) + cata. (20 µL, 1 mg mL−1) calcined 600 °C | [41] |
25 | rGO/CuNiAl-LDH | Copion LDH into CA-GO suspension | Reduction (4-NP) | 4-NP (200 µL, 1 mM) + NaBH4 sol (2.5 mL, 10 mM) + cata. (10 µL, 2.5 mg mL−1) non-activated | [35] |
26 | CDs/MgAlCe-LDH/Ag | LDH Copion and dispersed into AgNO3 aq. sol. Then addition of CDs aq. sol. and UV irradiation | Reduction (4-NP, MB, MO, CR, RhB, R6G) | 4-NP (200 µL, 10 mM) + NaBH4 sol (200 µL, 0.1 M) + cata. (20 µL, 1 mg mL−1) non-activated | [34] |
27 | CDs/MgAl-LDH/PNIPAM/Pd | LDH functed with PNIPAM (Mussel). Then addition of Pd and CDs | Reduction; Knoev.el; One-pot Knoev. el -reduction (MB, RhB, CR, R6G, MO. 4-NP, o-NO, m-NP, BALD, malonitrile) | MB (2 mL, 0.013 mM) + NaBH4 sol (1 mL, 0.5 M) + cata. (20 µL, 0.05 mg mL−1) non-activated | [22] |
28 | rGO/NiAl-LDH/Pt | Copion LDH on GO. Then impregnation with H2PtCl6 | Reduction (p-nitrophenol, P-NA) | P-NA (3 mL, 0.1 M) + NaBH4 sol (0.1 mL, 0.1 M) + mcat: 1 mg activated 600 °C (N2) | [64] |
29 | PAA-CNT/NiAl-LDH | LDH copion in presence PAA functionalized CNT (P-CNT) and L-cysteine | Reduction o-(CNB) | T = 140 °C, P H2 = 2 MPa; cata activated 500 °C (10% v/v H2/Ar) | [47] |
30 | rGO/NiAl-LDH | LDH copion in presence GO | Reduction (CALD) | T = 120 °C, P H2 = 1 MPa; cata activated 600 °C (N2) | [65] |
31 | MWCNT/CuMgAl-LDH | LDH copion in presence pretreated MWCNT | Reduction (Glycerol) | Glycerol (5 g, 60 wt%); P H2 2 Mpa; T = 180 °C; mcat: 0.2 g activated 400 °C (air) | [66] |
32 | CFs/CuCoAl-LDH | Copion of Cu, Co, and Al nitrates on CF (pH 9.5–10). Aging 60 °C | HAS (H2/CO/N2) | 3 MPa syngas mixture H2/CO/N2 = 8:4:1 (GHSV: 3900 mL (gcat h)−1); T = 220 °C; cata reduced 450 °C (H2) | [48] |
33 | CNT/CuCoAl-LDH | Cu, Co, Al nitrates dissolved into CNT solion then + (NaOH + Na2CO3) at pH 9.5. Aging RT | HAS (H2/CO/N2) | 3 MPa syngas mixture H2/CO/N2 = 8:4:1 (GHSV: 3900 mL (gcat h)−1). T = 230 °C; cata reduced 450 °C (H2) | [43] |
34 | CFs/CuFeMg-LDH | Copion Cu, Fe and Mg nitrates and on CF at pH 9.5–10. Aging 65 °C | HAS (H2/CO/N2) | 3 MPa syngas mixture H2/CO/N2 = 8:4:1 (GHSV: 3900 mL (gcat h)−1). T = 280 °C; cata reduced 500 °C (H2) | [67] |
35 | CFs/CuZnAl-LDH/K | Copion Zn and Cu nitrates on CF and Al nitrate at pH 5.5–6.2. Aging 110 °C. K2CO3 impion | Isobutanol synthesis (H2/CO) | H2/CO = 2 (GHSV: 3900 h−1), mcat: 560 mg; T = 320 °C, P = 4 MPa; cata activated 400 °C (N2) + 320 °C (N2/H2 = 4:1) | [68,69] |
Carbon | Activation (Rehyd.ion) | mHT [mg] | macet [mol] | mHT/macet. × 103 [g/g] | CO2 ads. [mmol gHT−1] | React. Rate [mmolDAA gHT−1 h−1] | Ref. |
---|---|---|---|---|---|---|---|
CNF | Calc. 450 °C (gas phase) | 110 | 1.8 | 1.05 | 0.75 (a) | 542 (b) | [14] |
CNF | Calc. 450 °C (gas phase) | 120 | 1.72 | 1.20 | 0.37 (c) | nd | [60] |
MWCNT | Calc. 450 °C (liq. phase) | 50 | 0.8 | 1.08 | 1.8 (c) | 196 (d) | [44] |
rGO | Calc. 450 °C | 0.57 | 2.75 × 10−2 | 0.36 | 0.41 (c) | 0.052 (e) | [20] |
Catalyst | BA [mmol] | Solv | mcat [g] | PO2 [bar] | T [°C] | t [h] | SS [m2 g−1] | Conv. [%] | BAL [%] | BB [%] | Ref |
---|---|---|---|---|---|---|---|---|---|---|---|
Au/NiAl-LDH/rGO | 4.3 | no | 0.4 | 2 | 140 | 5 | 172.5 | 35 | 80 | 20 | [40] |
CoAl-ELDH/GO | 1 | DMF | 0.1 | 1 | 120 | 4 | 92.2 | 99.3 | 0 | [42] | |
Au/NCD/MgAl-LDH | 89 | no | 0.1 | 4 | 120 | 5 | 61 | 49 | 83.4 | 16 | [32] |
Ru/LDH-CNT (Pickering) | 2 | H2O/Tolne | 0.2 | 1 | 85 | 5 | 89 | 92 | 99.9 | 6 | [49] |
Catalyst | SA [m2 g−1] | Active Interf. Domain | Size Cu [nm] | t [min] | kapp [×10−3 s−1] | TOF [h−1] | Rec. (a) [nb] | Ref |
---|---|---|---|---|---|---|---|---|
Cu1Mg2Al-LDH/rGO (1.0Cu-LDH/rGO) | 210.5 | Cu2O-Cu(LDH)-rGO | Cu2O (~6.8) | 2 | 25.11 | 161.9 | 20 | [39] |
1.0Cu@Cu2O/MgAlO-rGO | 160 | Cu-Cu2O-MgAlO-rGO | Cu@Cu2O (24.3/core 12.2) | 1 | 55.35 | 199.6 | 25 | [41] |
Cu1Ni2Al-LDH/rGO | 151 | Cu2O-Ni-OH (CuNiAl-LDH)-rGO | Cu2O (~3.8) | 1.5 | 34.37 | 197.6 | 10 | [35] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tichit, D.; Álvarez, M.G. Layered Double Hydroxide/Nanocarbon Composites as Heterogeneous Catalysts: A Review. ChemEngineering 2022, 6, 45. https://doi.org/10.3390/chemengineering6040045
Tichit D, Álvarez MG. Layered Double Hydroxide/Nanocarbon Composites as Heterogeneous Catalysts: A Review. ChemEngineering. 2022; 6(4):45. https://doi.org/10.3390/chemengineering6040045
Chicago/Turabian StyleTichit, Didier, and Mayra G. Álvarez. 2022. "Layered Double Hydroxide/Nanocarbon Composites as Heterogeneous Catalysts: A Review" ChemEngineering 6, no. 4: 45. https://doi.org/10.3390/chemengineering6040045
APA StyleTichit, D., & Álvarez, M. G. (2022). Layered Double Hydroxide/Nanocarbon Composites as Heterogeneous Catalysts: A Review. ChemEngineering, 6(4), 45. https://doi.org/10.3390/chemengineering6040045