Quality Characteristics of Biodiesel Produced from Used Cooking Oil in Southern Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. UCO Collection
2.2. Samples Selection
2.3. Biodiesel Production
2.4. Biodiesel Analysis
3. Results and Discussion
3.1. UCO Samples Converted at ELIN Laboratories
3.2. UCO Samples Converted to Biodiesel Locally
4. Policy Recommendations
5. Conclusions
- Hight sulphur content, which is due to the various foods that cooking oil comes in contact with, which might cause corrosion in the engine and increased particulate matter emissions.
- High water content, since FAMEs are hygroscopic compounds, which might lead to the corrosion of engine parts and microbial contamination.
- Low ester content since oils when heated during cooking/frying are oxidized and polymerized, which might result in operational problems of the engine due to depositions in its parts.
- Low oxidation stability, requiring antioxidant additives, which produces compounds that may cause fouling and deposits in the fuel injection system of the engine.
Author Contributions
Funding
Conflicts of Interest
References
- Chen, R.; Qin, Z.; Han, J.; Wang, M.; Taheripour, F.; Tyner, W.; O’Connor, D.; Duffield, J. Life cycle energy and greenhouse gas emission effects of biodiesel in the United States with induced land use change impacts. Bioresour. Technol. 2018, 251, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Abed, K.A.; El Morsi, A.K.; Sayed, M.M.; El Shaib, A.A.; Gad, M.S. Effect of waste cooking-oil biodiesel on performance and exhaust emissions of a diesel engine. Egypt. J. Pet. 2018, in press. [Google Scholar] [CrossRef]
- Mohd Noor, C.W.; Noora, M.M.; Mamata, R. Biodiesel as alternative fuel for marine diesel engine applications: A review. Renew. Sustain. Energy Rev. 2018, 94, 127–142. [Google Scholar] [CrossRef]
- Mandolesi de Araujo, C.D.; Andrade, C.C.; de Souza e Silva, E.; Dupas, F.A. Biodiesel production from used cooking oil: A review. Renew. Sustain. Energy Rev. 2013, 27, 445–452. [Google Scholar] [CrossRef]
- Phan, A.N.; Phan, T.M. Biodiesel production from waste cooking oils. Fuel 2008, 87, 3490–3496. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, Y. Supply chain optimization of biodiesel produced from waste cooking oil. Transp. Res. Procedia 2016, 12, 938–949. [Google Scholar] [CrossRef]
- Aboelazayem, O.; Gadalla, M.; Saha, B. Valorisation of high acid value waste cooking oil into biodiesel using supercritical methanolysis: Experimental assessment and statistical optimisation on typical Egyptian feedstock. Energy 2018, 162, 408–420. [Google Scholar] [CrossRef]
- Avinash, A.; Sasikumar, P.; Murugesan, A. Understanding the interaction among the barriers of biodiesel production from waste cooking oil in India—An interpretive structural modeling approach. Renew. Energy 2018, 127, 678–684. [Google Scholar] [CrossRef]
- Sahar; Sadaf, S.; Iqbala, J.; Ullah, I.; Nawaz Bhatti, H.; Nouren, S.; Rehman, H.; Nisar, J.; Iqbalh, M. Biodiesel production from waste cooking oil: An efficient technique to convert waste into biodiesel. Sustain. Cities Soc. 2018, 41, 220–226. [Google Scholar] [CrossRef]
- Paraíba, O.; Tsoutsos, T.; Tournaki, S.; Antunes, D. Strategies for optimization of the domestic used cooking oil to biodiesel chain—The European project RecOil. In Proceedings of the Energy for Sustainability. Sustainable Cities: Designing for People and the Planet, Coimbra, Portugal, 8–10 September 2013. [Google Scholar]
- Tsoutsos, T.D.; Tournaki, S.; Paraíba, O.; Kaminaris, S.D. The Used Cooking Oil-to-biodiesel chain in Europe assessment of best practices and environmental performance. Renew. Sustain. Energy Rev. 2016, 54, 74–83. [Google Scholar] [CrossRef]
- El Libro. The Handbook for Local Initiatives for Biodiesel from Recycled Oil, Biodienet. Available online: www.sec.bg/userfiles/file/BioDieNet/EL%20LIBRO.pdf (accessed on 8 November 2018).
- Sheinbaum-Pardo, C.; Calderón-Irazoque, A.; Ramírez-Suárez, M. Potential of biodiesel from waste cooking oil in Mexico. Biomass Bioenergy 2013, 56, 230–238. [Google Scholar] [CrossRef]
- Fernando Bautista, L.F.; Vicente, G.; Rodríguez, R.; Pacheco, M. Optimisation of FAME production from waste cooking oil for biodiesel use. Biomass Bioenergy 2009, 33, 862–872. [Google Scholar] [CrossRef]
- Renewable Energy Directive 2009/28/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32009L0028 (accessed on 8 November 2018).
- Fuel Quality Directive 2009/30/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32009L0030 (accessed on 8 November 2018).
- Talens Peiro, L.; Lombardi, L.; Villalba Méndez, G.; Gabarrell i Durany, X. Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO). Energy 2010, 35, 889–893. [Google Scholar] [CrossRef]
- Sarantopoulos, I.; Franklin, C.; Tsoutsos, T.; Bakirtzoglou, V.; Azangue, W.; Donatien, B.; Mulluh Ndipen, F. An evaluation of a small-scale biodiesel production technology: Case study: Mango’o Village, Center Province, Cameroon. Phys. Chem. Earth 2009, 34, 55–58. [Google Scholar] [CrossRef]
- Tsoutsos, T.; Kouloumpis, V.; Zafiris, T.; Foteinis, S. Life Cycle Assessment for biodiesel production under Greek climate conditions. J. Clean. Prod. 2010, 18, 328–335. [Google Scholar] [CrossRef]
- Gardy, J.; Demirbas, A.; Rashid, U.; Budzianowski, W.M.; Pant, D.; Nizamia, A.S. Waste to biodiesel: A preliminary assessment for Saudi Arabia. Bioresour. Technol. 2018, 250, 17–25. [Google Scholar] [CrossRef]
- Gardy, J.; Hassanpour, A.; Lai, X.; Rehan, M. The influence of blending process on the quality of rapeseed oil-used cooking oil biodiesels. In Proceedings of the International Conference on Environment and Renewable Energy, Paris, France, 7–8 May 2014. [Google Scholar]
- Silalertruksa, T.; Gheewala, S.H.; Hünecke, K.; Fritsche, U.R. Biofuels and employment effects: Implications for socio-economic development in Thailand. Biomass Bioenergy 2012, 46, 409–418. [Google Scholar] [CrossRef]
- Corral Bobadilla, M.; Lostado Lorza, R.; Escribano García, E.; Somovilla Gómez, F.; Vergara González, E.P. An improvement in biodiesel production from waste cooking oil by applying thought multi-response surface methodology using desirability functions. Energies 2017, 10, 130. [Google Scholar] [CrossRef]
- Hsiao, M.C.; Hou, S.S.; Kuo, J.Y.; Hsieh, P.H. Optimized Conversion of Waste Cooking Oil to Biodiesel Using Calcium Methoxide as Catalyst under Homogenizer System Conditions. Energies 2018, 11, 2622. [Google Scholar] [CrossRef]
- Xuan NguyenThi, T.; Bazile, J.P.; Bessières, D. Density Measurements of Waste Cooking Oil Biodiesel and Diesel Blends Over Extended Pressure and Temperature Ranges. Energies 2018, 11, 1212. [Google Scholar] [CrossRef]
- Paraíba, O.; Tsoutsos, T.D.; Tournaki, S.; Antunes, D.; Magnolfi, V.; Cocchi, M. Full chain analysis of the domestic used cooking oil to biodiesel chain—The European Initiative RecOil. In Proceedings of the 22th European Biomass Conference & Exhibition, Hamburg, Germany, 23–26 June 2014. [Google Scholar]
- International Olive Council. Trends in World Olive Oil Consumption, Market Newsletter. 2016. Available online: www.oliveoilmarket.eu/wp-content/uploads/2016/03/NEWSLETTER_FEBRUARY-2016_ENGLISH.pdf (accessed on 6 December 2018).
- EurObserv’ER, Biofuels Barometer. Available online: https://www.eurobserv-er.org/biofuels-barometer-2018 (accessed on 8 November 2018).
- Hassan, U.; Al-Zubaidi, I.; Ibrahim, H. The Effect of Off-Spec Canola Biodiesel Blending on Fuel Properties for Cold Weather Applications. ChemEngineering 2018, 2, 30. [Google Scholar] [CrossRef]
- Liquid Petroleum Products—Fatty Acid Methyl Esters (FAME) for Use in Diesel Engines and Heating Applications—Requirements and Test Methods; EN 14214; BSI Group: London, UK, 2012.
- Fat and Oil Derivatives. Fatty Acid Methyl Esters (FAME). Determination of Free and Total Glycerol and Mono-, Di-, Triglyceride Contents; BS EN 14105; BSI Group: London, UK, 2011.
- Animal and Vegetable Fats and Oils—Determination of Water Content—Karl Fischer Method (Pyridine Free); DIN EN ISO 8534; German Institute for Standardization: Berlin, Germany, 2017.
- Fregolente, B.; Wolf Maciel, M.; Oliveira, L. Removal of water content from biodiesel and diesel fuel using hydrogel adsorbents. Braz. J. Chem. Eng. 2015, 32, 895–901. [Google Scholar] [CrossRef]
- Cardoso, C.; Celante, V.; Ribeiro de Castro, E.; Duarte Pasa, V. Comparison of the properties of special biofuels from palm oil and its fractions synthesized with various alcohols. Fuel 2014, 135, 406–412. [Google Scholar] [CrossRef]
- Viegas, I.; Barradas Filho, A.; Marques, E.; Pereira, C.; Marques, A. Oxidative stability of biodiesel by mixture design and a four-component diagram. Fuel 2018, 219, 389–398. [Google Scholar] [CrossRef]
- Cordero-Ravelo, V.; Schallenberg-Rodriguez, J. Biodiesel production as a solution to waste cooking oil (WCO) disposal. Will any type of WCO do for a transesterification process? A quality assessment. J. Environ. Manag. 2018, 15, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Zahos-Siagos, I.; Karonis, D. Exhaust Emissions and Physicochemical Properties of Hydrotreated Used Cooking Oils in Blends with Diesel Fuel. Int. J. Chem. Eng. 2018, 2018, 4308178. [Google Scholar] [CrossRef]
- Hafizil Mat Yasin, M.; Mamat, R.; Majeed Ali, O.; Fitri Yusop, A.; Adnin Hamidi, M.; Yusri Ismail, M.; Rasu, M. Study of diesel-biodiesel fuel properties and wavelet analysis on cyclic variations in a diesel engine. Energy Procedia 2017, 110, 498–503. [Google Scholar] [CrossRef]
- Benjumea, P.; Agudelo, J.; Agudelo, A. Basic properties of palm oil biodiesel-diesel blends. Fuel 2008, 87, 2069–2075. [Google Scholar] [CrossRef]
- Zahos-Siagos, I.; Karathanassis, V.; Karonis, D. Exhaust emissions and physicochemical properties of n-nutanol/Diesel blends with 2-ethylhexyl nitrate (EHN) or hydrotreated Used Cooking Oil (HUCO) as cetane Improvers. Energies 2018, 11, 3413. [Google Scholar] [CrossRef]
- van Kasteren, J.M.N.; Nisworo, A.P. A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification. Resour. Conserv. Recycl. 2007, 50, 442–458. [Google Scholar] [CrossRef]
- Directive 2014/94/EU on the Deployment of Alternative Fuels Infrastructure. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A32014L0094 (accessed on 8 November 2018).
- Waste Framework Directive 2008/98/EC. Available online: http://ec.europa.eu/environment/waste/framework/ (accessed on 8 November 2018).
- Amending Directive on waste 2018/851. Available online: https://eur-lex.europa.eu/eli/dir/2018/851/oj (accessed on 8 November 2018).
- Renewable Energy Directive II. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/directive_renewable_factsheet.pdf (accessed on 12 December 2018).
- Agarwal, M.; Chauhan, G.; Chaurasia, S.P.; Singh, K. Study of catalytic behavior of KOH as homogeneous and heterogeneous catalyst for biodiesel production. J. Taiwan Inst. Chem. Eng. 2012, 43, 89–94. [Google Scholar] [CrossRef]
- Suthisripok, T.; Semsamran, P. The impact of biodiesel B100 on a small agricultural diesel engine. Tribol. Int. 2018, 128, 397–409. [Google Scholar] [CrossRef]
Country | Biodiesel Consumption for Transport in Toe | |
---|---|---|
2017 | 2016 | |
Italy | 1,027,458 | 1,008,300 |
Greece | 151,000 | 149,000 |
Portugal | 252,172 | 256,237 |
Spain | 1,148,074 | 980,656 |
Total EU 28 | 12,514,812 | 11,372,778 |
Collection Points and UCO Collected (L) | New UCO Collection Systems | Optimized UCO Collection Systems | ||||
---|---|---|---|---|---|---|
Public Collection Points | Door-to-Door | Total | Public Collection Points | Door-to-Door | Total | |
Number of systems | 2 | 1 | 3 | 3 | 1 | 4 |
Number of collection points (or bottles for door-to-door) before RecOil | - | - | - | 334 | 200 | - |
Number of collection points (or bottles for door-to-door) 2015 | 177 | 3500 | - | 373 | 2000 | - |
UCO collected before RecOil/month [L] | - | - | - | 10,525 | 37 | 10,562 |
UCO collected 2015/month [L] | 6758 | 805 | 7563 | 12,342 | 852 | 13,194 |
UCO collected 2015/month/collection system [L] | 3379 | 805 | 2521 | 4,114 | 852 | 3299 |
UCO collected before RecOil /month/collection point (or bottle delivered) [L] | - | - | - | 32 | 0.18 | - |
UCO collected 2015 /month/collection point (or bottle delivered) [L] | 38 | 3500 | - | 33 | 0.43 | - |
Number of collection points (or bottles for door-to-door)/system | 89 | 3500 | - | 124 | 2000 | - |
Country | Body in Charge 1 | UCO Samples | Biodiesel Samples |
---|---|---|---|
Portugal | ENA | 5 | 3 |
Spain | APEC | 4 | 0 |
Portugal | SENERGIA | 2 | 0 |
Greece | TUC | 4 | 3 |
Italy | MC | 2 | 5 |
Italy | ALESSCO | 2 | 5 |
Greece | ELIN | 5 | 0 |
Total | 24 | 16 |
Partners that Locally Collected UCO | FFA (%) | H2O (%) |
---|---|---|
ENA-U-LOCAL | 0.34 | 0.17 |
ALESSCO-U-LOCAL | 1.23 | 0.18 |
APEC-U-LOCAL | 2.58 | 0.26 |
ELIN-U-LOCAL | 2.66 | 0.33 |
SENERGIA-U-LOCAL | 0.52 | 0.15 |
TUC-U-LOCAL | 0.81 | 0.16 |
MC-U-LOCAL | 0.17 | 0.08 |
Average | 1.19 | 0.19 |
Parameter | Unit | Min | Max | Specification EN 14214: 2012 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|---|---|---|
Density at 15 °C | kg/m3 | 860 | 900 | EN ISO 12185 | 891 | 882 | 885 | 529 | 887 | 881 | 883 |
Viscosity at 40 °C | mm2/s | 3.5 | 5.0 | EN ISO 3104 | 5.6 | 4.5 | 4.6 | 4.4 | 4.5 | 4.6 | 4.3 |
Flash Point | °C | 101 | - | EN ISO 3679 | 173 | >170 | 171.8 | 173.5 | >195 | 174 | |
Sulphur Content | mg/kg | - | 10.0 | EN ISO 20846 | 3.3 | 9.6 | 44.9 | 9.2 | 6.2 | 20.3 | 18.4 |
Cetane Number | - | 51.0 | - | EN ISO 5165 | 53.3 | 56.7 | 56.0 | 53.1 | 53.7 | 59.2 | 54.8 |
Sulphated Ash | % m/m | - | 0.02 | ISO 3987 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Water Content | mg/kg | - | 500 | EN ISO 12937 | 1,439 | 683 | 464 | 369 | 600 | 601 | 564 |
Total Contamination | mg/kg | - | 24 | EN 12662 | 24 | 7 | 73 | 20 | 13 | 14 | 16 |
Copper Strip Corrosion | rating | Class 1 | Class 1 | EN ISO 2160 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
CFPP | °C | - | 13 | EN 116 | −5 | −1 | −3 | −1 | −4 | 0 | 0 |
Cloud Point | °C | - | 16 | EN23015 | −3 | 2 | 1 | 2 | 2 | 2 | 7 |
Ester Content | % m/m | 96.5 | - | ΕΝ 14103 | - | 96.8 | 94.3 | 95.6 | 93.8 | 95.7 | >99 |
Linolenic Acid Methylester | % m/m | - | 12 | ΕΝ 14103 | - | 0.9 | 0.9 | 1.5 | 0.4 | 0.4 | 0.1 |
Polyunsaturated Methyl Esters (≥ 4 double bonds) | % m/m | - | 1 | ΕΝ 15779 | - | <0.6 | <0.6 | <0.5 | <0.6 | <0.6 | <0.6 |
Oxidation Stability at 110 °C | h | 8 | - | ΕΝ 14112 | 4.40 | 3.70 | 4.14 | 4.46 | 2.10 | 2.05 | 3.79 |
Acid Value | mg KOH/g | - | 0.50 | EN 14104 | 0.48 | 0.19 | 0.34 | 0.23 | 0.21 | 0.28 | 0.16 |
Iodine Value | g iodine/100g | - | 120 | EN 14111 | - | 97 | 100 | 109 | 114 | 84 | 118 |
Monoglyceride Content | % m/m | - | 0.700 | ΕΝ 14105 | - | 0.537 | 0.462 | 0.330 | 0.449 | 0.490 | 0.414 |
Diglyceride Content | % m/m | - | 0.200 | ΕΝ 14105 | - | 0.084 | 0.088 | 0.097 | 0.084 | 0.066 | 0.066 |
Triglyceride Content | % m/m | - | 0.200 | ΕΝ 14105 | - | 0.002 | 0.009 | <0.015 | <0.006 | 0.009 | 0.002 |
Free Glycerol | % m/m | - | 0.020 | ΕΝ 14106 | - | 0.008 | 0.005 | 0.004 | 0.006 | 0.003 | 0.005 |
Total Glycerol | % m/m | - | 0.250 | ΕΝ 14105 | - | 0.157 | 0.136 | 0.106 | 0.133 | 0.139 | 0.121 |
Phosphorous Content | mg/kg | - | 4.0 | ΕΝ 14107 | - | <0.5 | <2.3 | <4 | <0.5 | <0.5 | <0.5 |
Metals I (Na/K) | mg/kg | - | 5.0 | EN 14108 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Metals II (Ca/Mg) | mg/kg | - | 5.0 | EN 14538 | - | <1 | <1 | <1 | <1 | <1 | <1 |
Methanol Content | % m/m | - | 0.20 | ΕΝ 14110 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Parameter | Unit | Min | Max | Specification EN 14214: 2012 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|---|---|---|
Density at 15°C | kg/m3 | 860 | 900 | EN ISO 12185 | 885 | 889 | 887 | 877 |
Viscosity at 40°C | mm2/s | 3.5 | 5.0 | EN ISO 3104 | 4.3 | 7.3 | 5.4 | 3.9 |
Flash Point | °C | 101 | - | EN ISO 3679 | 177.2 | 124.5 | 111 | 90 |
Sulphur Content | mg/kg | - | 10.0 | EN ISO 20846 | 12.0 | 1.2 | 17.7 | ~5.0 |
Cetane Number | - | 51,0 | - | EN ISO 5165 | 54.5 | 55 | 58.2 | 53.2 |
Sulphated Ash | % m/m | - | 0.02 | ISO 3987 | 0 | 0.01 | 0 | 0.08 |
Water Content | mg/kg | - | 500 | EN ISO 12937 | 537 | 467 | 2,047 | 688 |
Total Contamination | mg/kg | - | 24 | EN 12662 | 82 | 65 | 26 | 71 |
Copper Strip Corrosion | rating | Class 1 | Class 1 | EN ISO 2160 | 1 | 1 | 1 | 1 |
CFPP | °C | - | 13 (*) | EN 116 | −3 | - | −1 | 1 |
Cloud Point | °C | - | 16 (*) | EN23015 | 1 | - | 1 | |
Ester Content | % m/m | 96.5 | - | ΕΝ 14103 | - | 94.0 | 84.9 | 91.9 |
Linolenic Acid Methylester | % m/m | - | 12 | ΕΝ 14103 | 1.6 | 0.4 | 0.9 | 0.3 |
Polyunsaturated Methyl Esters (≥ 4 double bonds) | % m/m | - | 1 | ΕΝ 15779 | - | - | <0.6 | <0.6 |
Oxidation Stability at 110 °C | h | 8 | - | ΕΝ 14112 | 3.2 | 1.1 | 1.7 | 2.1 |
Acid Value | mg KOH/g | - | 0.50 | EN 14104 | 0.23 | 0.38 | 0.51 | 0.04 |
Iodine Value | g iodine/100g | - | 120 | EN 14111 | 119 | 90 | 91 | 118 |
Monoglyceride Content | % m/m | - | 0.700* | ΕΝ 14105 | 0.413 | 0.64 | 0.944 | 0.73 |
Diglyceride Content | % m/m | - | 0.200 | ΕΝ 14105 | 0.062 | 1 | 1.802 | 1.01 |
Triglyceride Content | % m/m | - | 0.200 | ΕΝ 14105 | - | 0.110 | 5.416 | 0.275 |
Free Glycerol | % m/m | - | 0.020 | ΕΝ 14106 | 0.003 | 0.006 | 0.013 | 0.380 |
Total Glycerol | % m/m | - | 0.250 | ΕΝ 14105 | 0.116 | 0.264 | 1.075 | 0.61 |
Phosphorous Content | mg/kg | - | 4.0 | ΕΝ 14107 | - | 0.1 | <0.5 | 0.3 |
Metals I (Na/K) | mg/kg | - | 5.0 | EN 14108 | 0 | 0.297 | 0 | 3.03 |
Metals II (Ca/Mg) | mg/kg | - | 5.0 | EN 14538 | - | 5.9 | <1. | 3.5 |
Methanol Content | % m/m | - | 0.20 | ΕΝ 14110 | 0 | 0.74 | 0 | 1.09 |
Level | Recommendations |
---|---|
Global | It is urgent that UCO, as a waste, to be treated in a viable full-chain way in favour of the environment and the society. |
EU/States | Further support of efficient systems to collect and treat UCO produced in households; The bottled UCO collection is preferred versus the bulk one; EU policymakers should take measures in favour of decentralised local biodiesel (self)production, which will change the local collection culture, as well as the production infrastructure; Capacity building efforts will improve the awareness of the policymakers. |
Industries | Although industrially produced biodiesel from 100% UCO is close to the specifications set in the EN 14214 Standard, still, blending with non-UCO biodiesel is considered necessary to enhance properties. |
Local authorities/communities | Conversion procedures should be upgraded locally to meet the biodiesel standards of EN 14214. There is a need for transferring processing plant technology and know-how, from industrial scale to small-scale viable biodiesel plants. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsoutsos, T.; Tournaki, S.; Gkouskos, Z.; Paraíba, O.; Giglio, F.; García, P.Q.; Braga, J.; Adrianos, H.; Filice, M. Quality Characteristics of Biodiesel Produced from Used Cooking Oil in Southern Europe. ChemEngineering 2019, 3, 19. https://doi.org/10.3390/chemengineering3010019
Tsoutsos T, Tournaki S, Gkouskos Z, Paraíba O, Giglio F, García PQ, Braga J, Adrianos H, Filice M. Quality Characteristics of Biodiesel Produced from Used Cooking Oil in Southern Europe. ChemEngineering. 2019; 3(1):19. https://doi.org/10.3390/chemengineering3010019
Chicago/Turabian StyleTsoutsos, Theocharis, Stavroula Tournaki, Zacharias Gkouskos, Orlando Paraíba, Filippo Giglio, Pablo Quero García, João Braga, Haris Adrianos, and Monica Filice. 2019. "Quality Characteristics of Biodiesel Produced from Used Cooking Oil in Southern Europe" ChemEngineering 3, no. 1: 19. https://doi.org/10.3390/chemengineering3010019
APA StyleTsoutsos, T., Tournaki, S., Gkouskos, Z., Paraíba, O., Giglio, F., García, P. Q., Braga, J., Adrianos, H., & Filice, M. (2019). Quality Characteristics of Biodiesel Produced from Used Cooking Oil in Southern Europe. ChemEngineering, 3(1), 19. https://doi.org/10.3390/chemengineering3010019