Next Article in Journal
Natural Hematite and Siderite as Heterogeneous Catalysts for an Effective Degradation of 4-Chlorophenol via Photo-Fenton Process
Previous Article in Journal
Development and Analyses of Artificial Intelligence (AI)-Based Models for the Flow Boiling Heat Transfer Coefficient of R600a in a Mini-Channel
Article Menu
Issue 2 (June) cover image

Export Article

Open AccessReview
ChemEngineering 2018, 2(2), 28; https://doi.org/10.3390/chemengineering2020028

Exergy Evaluation of Desalination Processes

Department of Civil and Environmental Engineering, Mississippi State University, Mississippi State, MS 39762, USA
Received: 31 March 2018 / Revised: 22 May 2018 / Accepted: 6 June 2018 / Published: 14 June 2018
Full-Text   |   PDF [4882 KB, uploaded 14 June 2018]   |  

Abstract

Desalination of sea or brackish water sources to provide clean water supplies has now become a feasible option around the world. Escalating global populations have caused the surge of desalination applications. Desalination processes are energy intensive which results in a significant energy portfolio and associated environmental pollution for many communities. Both electrical and heat energy required for desalination processes have been reduced significantly over the recent years. However, the energy demands are still high and are expected to grow sharply with increasing population. Desalination technologies utilize various forms of energy to produce freshwater. While the process efficiency can be reported by the first law of thermodynamic analysis, this is not a true measure of the process performance as it does not account for all losses of energy. Accordingly, the second law of thermodynamics has been more useful to evaluate the performance of desalination systems. The second law of thermodynamics (exergy analysis) accounts for the available forms of energy in the process streams and energy sources with a reference environment and identifies the major losses of exergy destruction. This aids in developing efficient desalination processes by eliminating the hidden losses. This paper elaborates on exergy analysis of desalination processes to evaluate the thermodynamic efficiency of major components and process streams and identifies suitable operating conditions to minimize exergy destruction. Well-established MSF, MED, MED-TVC, RO, solar distillation, and membrane distillation technologies were discussed with case studies to illustrate the exergy performances. View Full-Text
Keywords: desalination; energy; exergy; entropy; environment; sustainability desalination; energy; exergy; entropy; environment; sustainability
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Gude, V.G. Exergy Evaluation of Desalination Processes. ChemEngineering 2018, 2, 28.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
ChemEngineering EISSN 2305-7084 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top