Assessing Novel Drugs and Radiation Technology in the Chemoradiation of Oropharyngeal Cancer
Abstract
:1. Introduction
2. Clinical Target Volume Definition
3. Oral Cavity OAR Definition
4. Measurement of the Acute Mucosal Reaction
5. The Role of PET CT in Response Assessment Following Treatment
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gillison, M.L.; Zhang, Q.; Jordan, R.; Xiao, W.; Westra, W.H.; Trotti, A.; Spencer, S.; Harris, J.; Chung, C.H.; Ang, K.K. Tobacco smoking and increased risk of death and progression for patients with p16-positive and p16-negative oropharyngeal cancer. J. Clin. Oncol. 2012, 30, 2102–2111. [Google Scholar] [CrossRef] [PubMed]
- Granata, R.; Miceli, R.; Orlandi, E.; Perrone, F.; Cortelazzi, B.; Franceschini, M.; Locati, L.D.; Bossi, P.; Bergamini, C.; Mirabile, A.; et al. Tumor stage, human papillomavirus and smoking status affect the survival of patients with oropharyngeal cancer: An Italian validation study. Ann. Oncol. 2012, 23, 1832–1837. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.M.; Felix, C.; Wang, P.C.; Hsu, S.; Basehart, V.; Garst, J.; Beron, P.; Wong, D.; Rosove, M.H.; Rao, S.; et al. Reduced-dose radiotherapy for human papillomavirus-associated squamous-cell carcinoma of the oropharynx: A single-arm, phase 2 study. Lancet Oncol. 2017, 18, 803–811. [Google Scholar] [CrossRef]
- Meade, S.; Gaunt, P.; Hartley, A.; Robinson, M.; Harrop, V.; Cashmore, J.; Wagstaff, L.; Babrah, J.; Bowden, S.J.; Mehanna, H.; et al. Feasibility of Dose-escalated Hypofractionated Chemoradiation in Human Papilloma Virus-negative or Smoking-associated Oropharyngeal Cancer. Clin. Oncol. 2018, 30, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Mirghani, H.; Amen, F.; Blanchard, P.; Moreau, F.; Guigay, J.; Hartl, D.M.; Lacau St Guily, J. Treatment de-escalation in HPV-positive oropharyngeal carcinoma: Ongoing trials, critical issues and perspectives. Int. J. Cancer 2015, 136, 1494–1503. [Google Scholar] [CrossRef] [PubMed]
- Mirghani, H.; Blanchard, P. Treatment de-escalation for HPV-driven oropharyngeal cancer: Where do we stand? Clin. Transl. Radiat. Oncol. 2017, 8, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Frank, S.J.; Blanchard, P.; Lee, J.J.; Sturgis, E.M.; Kies, M.S.; Machtay, M.; Vikram, B.; Garden, A.S.; Rosenthal, D.I.; Gunn, G.B.; et al. Comparing Intensity-Modulated Proton Therapy with Intensity-Modulated Photon Therapy for Oropharyngeal Cancer: The Journey From Clinical Trial Concept to Activation. Semin. Radiat. Oncol. 2018, 28, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Mehanna, H.M.; Sen, M.; Chester, J.D.; Sanghera, P.; Paleri, V.; Gaunt, P.; Babrah, J.; Hartley, A.G.J.; Kong, A.; Al-Booz, H.; et al. Phase III randomised controlled trial (RCT) comparing alternative regimens for escalating treatment of intermediate and high-risk oropharyngeal cancer (CompARE). J. Clin. Oncol. 2017. [Google Scholar] [CrossRef]
- Grégoire, V.; Evans, M.; Le, Q.T.; Bourhis, J.; Budach, V.; Chen, A.; Eisbruch, A.; Feng, M.; Giralt, J.; Gupta, T.; et al. Delineation of the primary tumour Clinical Target Volumes (CTV-P) in laryngeal, hypopharyngeal, oropharyngeal and oral cavity squamous cell carcinoma: AIRO, CACA, DAHANCA, EORTC, GEORCC, GORTEC, HKNPCSG, HNCIG, IAG-KHT, LPRHHT, NCIC CTG, NCRI, NRG Oncology, PHNS, SBRT, SOMERA, SRO, SSHNO, TROG consensus guidelines. Radiother. Oncol. 2018, 126, 3–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petkar, I.; Rooney, K.; Roe, J.W.; Patterson, J.M.; Bernstein, D.; Tyler, J.M.; Emson, M.A.; Morden, J.P.; Mertens, K.; Miles, E.; et al. DARS: A phase III randomised multicentre study of dysphagia-optimised intensity-modulated radiotherapy (Do-IMRT) versus standard intensity- modulated radiotherapy (S-IMRT) in head and neck cancer. BMC Cancer 2016, 16, 770. [Google Scholar] [CrossRef] [PubMed]
- Thomson, D.; Yang, H.; Baines, H.; Miles, E.; Bolton, S.; West, C.; Slevin, N. NIMRAD—A phase III trial to investigate the use of nimorazole hypoxia modification with intensity-modulated radiotherapy in head and neck cancer. Clin. Oncol. 2014, 26, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Nutting, C.M.; Morden, J.P.; Harrington, K.J.; Urbano, T.G.; Bhide, S.A.; Clark, C.; Miles, E.A.; Miah, A.B.; Newbold, K.; Tanay, M.; et al. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): A phase 3 multicentre randomised controlled trial. Lancet Oncol. 2011, 12, 127–136. [Google Scholar] [CrossRef]
- Holliday, E.B.; Kocak-Uzel, E.; Feng, L.; Thaker, N.G.; Blanchard, P.; Rosenthal, D.I.; Gunn, G.B.; Garden, A.S.; Frank, S.J. Dosimetric advantages of intensity-modulated proton therapy for oropharyngeal cancer compared with intensity-modulated radiation: A case-matched control analysis. Med. Dosim. 2016, 41, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Sio, T.T.; Lin, H.K.; Shi, Q.; Gunn, G.B.; Cleeland, C.S.; Lee, J.J.; Hernandez, M.; Blanchard, P.; Thaker, N.G.; Phan, J.; et al. Intensity Modulated Proton Therapy Versus Intensity Modulated Photon Radiation Therapy for Oropharyngeal Cancer: First Comparative Results of Patient-Reported Outcomes. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 1107–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunn, G.B.; Blanchard, P.; Garden, A.S.; Zhu, X.R.; Fuller, C.D.; Mohamed, A.S.; Morrison, W.H.; Phan, J.; Beadle, B.M.; Skinner, H.D.; et al. Clinical Outcomes and Patterns of Disease Recurrence After Intensity Modulated Proton Therapy for Oropharyngeal Squamous Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 360–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stützer, K.; Jakobi, A.; Bandurska-Luque, A.; Barczyk, S.; Arnsmeyer, C.; Löck, S.; Richter, C. Potential proton and photon dose degradation in advanced head and neck cancer patients by intratherapy changes. J. Appl. Clin. Med. Phys. 2017, 18, 104–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomson, D.; Teo, B.; Ong, A.; Ang, K.; Kirk, M.; Ahn, P.; Lukens, J.; Swisher-McClure, S.; Liptrot, T.; Solberg, T.; et al. The Impact of Anatomic Change on Pencil Beam Scanning in the Treatment of Oropharynx Cancer. Int. J. Part. Ther. 2015, 2, 394–403. [Google Scholar] [CrossRef]
- Arts, T.; Breedveld, S.; de Jong, M.A.; Astreinidou, E.; Tans, L.; Keskin-Cambay, F.; Krol, A.D.G.; van de Water, S.; Bijman, R.G.; Hoogeman, M.S. The impact of treatment accuracy on proton therapy patient selection for oropharyngeal cancer patients. Radiother. Oncol. 2017, 125, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Van der Voort, S.; van de Water, S.; Perkó, Z.; Heijmen, B.; Lathouwers, D.; Hoogeman, M. Robustness Recipes for Minimax Robust Optimization in Intensity Modulated Proton Therapy for Oropharyngeal Cancer Patients. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Bonner, J.A.; Giralt, J.; Harari, P.M.; Baselga, J.; Spencer, S.; Bell, D.; Raben, D.; Liu, J.; Schulten, J.; Ang, K.K.; et al. Association of human papillomavirus and p16 status with mucositis and dysphagia for head and neck cancer patients treated with radiotherapy with or without cetuximab: Assessment from a phase 3 registration trial. Eur. J. Cancer 2016, 64, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, Y.L.; Pui, N.N.M. Confounding factors associated with oral mucositis assessment in patients receiving chemoradiotherapy for head and neck cancer. Support Care Cancer 2017, 25, 2743–2751. [Google Scholar] [CrossRef] [PubMed]
- Dean, J.A.; Welsh, L.C.; Wong, K.H.; Aleksic, A.; Dunne, E.; Islam, M.R.; Patel, A.; Patel, P.; Petkar, I.; Phillips, I.; et al. Normal Tissue Complication Probability (NTCP) Modelling of Severe Acute Mucositis using a Novel Oral Mucosal Surface Organ at Risk. Clin. Oncol. 2017, 29, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Strigari, L.; Pinnarò, P.; Carlini, P.; Torino, F.; Strolin, S.; Minosse, S.; Sanguineti, G.; Benassi, M. Efficacy and mucosal toxicity of concomitant chemo-radiotherapy in patients with locally-advanced squamous cell carcinoma of the head-and-neck in the light of a novel mathematical model. Crit. Rev. Oncol. Hematol. 2016, 102, 101–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartley, A.; Sanghera, P.; Kazi, W.; Mehanna, H.; McConkey, C.; Glaholm, J.; Fowler, J. Correlation of currently used radiobiological parameters with local control and acute and late mucosal toxicity in randomised studies of altered fractionationfor locally advanced head and neck cancer. Clin. Oncol. 2011, 23, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Meade, S.; Sanghera, P.; Glaholm, J.; Hartley, A. Models of acute mucosal tolerance to radiotherapy alone applied to synchronous chemoradiation schedules in head and neck cancer. Tumour Biol. 2014, 35, 2017–2023. [Google Scholar] [CrossRef] [PubMed]
- Meade, S.; McConkey, C.; Sanghera, P.; Mehanna, H.; Hartley, A. Revised radiobiological modelling of the contribution of synchronous chemotherapy to the rate of grades 3–4 mucositis in head and neck cancer. J. Med. Imaging Radiat. Oncol. 2013, 57, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Sanguineti, G.; Rao, N.; Gunn, B.; Ricchetti, F.; Fiorino, C. Predictors of PEG dependence after IMRT ± chemotherapy for oropharyngeal cancer. Radiother. Oncol. 2013, 107, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Wopken, K.; Bijl, H.P.; Langendijk, J.A. Prognostic factors for tube feeding dependence after curative (chemo-) radiation in head and neck cancer: A systematic review of literature. Radiother. Oncol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Wopken, K.; Bijl, H.P.; van der Schaaf, A.; van der Laan, H.P.; Chouvalova, O.; Steenbakkers, R.J.; Doornaert, P.; Slotman, B.J.; Oosting, S.F.; Christianen, M.E.; et al. Development of a multivariable normal tissue complication probability (NTCP) model for tube feeding dependence after curative radiotherapy/chemo-radiotherapy in head and neck cancer. Radiother. Oncol. 2014, 113, 95–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petkar, I.; Bhide, S.; Newbold, K.; Harrington, K.; Nutting, C. Dysphagia-optimised Intensity-modulated Radiotherapy Techniques in Pharyngeal Cancers: Is Anyone Going to Swallow it? Clin. Oncol. 2017, 29, e110–e118. [Google Scholar] [CrossRef] [PubMed]
- Bhide, S.A.; Gulliford, S.; Schick, U.; Miah, A.; Zaidi, S.; Newbold, K.; Nutting, C.M.; Harrington, K.J. Dose-response analysis of acute oral mucositis and pharyngeal dysphagia in patients receiving induction chemotherapy followed by concomitantchemo-IMRT for head and neck cancer. Radiother. Oncol. 2012, 103, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Eisbruch, A.; Kim, H.M.; Terrell, J.E.; Marsh, L.H.; Dawson, L.A.; Ship, J.A. Xerostomia and its predictors following parotid-sparing irradiation of head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 2001, 50, 695–704. [Google Scholar] [CrossRef]
- Dean, J.A.; Welsh, L.C.; Gulliford, S.L.; Harrington, K.J.; Nutting, C.M. A novel method for delineation of oral mucosa for radiotherapy dose-response studies. Radiother. Oncol. 2015, 115, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Dean, J.A.; Wong, K.H.; Welsh, L.C.; Jones, A.B.; Schick, U.; Newbold, K.L.; Bhide, S.A.; Harrington, K.J.; Nutting, C.M.; Gulliford, S.L. Normal tissue complication probability (NTCP) modelling using spatial dose metrics and machine learning methods for severe acute oral mucositis resulting from head and neck radiotherapy. Radiother. Oncol. 2016, 120, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Dean, J.A.; Welsh, L.C.; McQuaid, D.; Wong, K.H.; Aleksic, A.; Dunne, E.; Islam, M.R.; Patel, A.; Patel, P.; Petkar, I.; et al. Assessment of fully-automated atlas-based segmentation of novel oral mucosal surface organ-at-risk. Radiother. Oncol. 2016, 119, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Otter, S.; Schick, U.; Gulliford, S.; Lal, P.; Franceschini, D.; Newbold, K.; Nutting, C.; Harrington, K.; Bhide, S. Evaluation of the Risk of Grade 3 Oral and Pharyngeal Dysphagia Using Atlas-Based Method and Multivariate Analyses of Individual Patient Dose Distributions. Int. J. Radiat. Oncol. Biol. Phys. 2015, 93, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Sonis, S.T.; Eilers, J.P.; Epstein, J.B.; LeVeque, F.G.; Liggett, W.H., Jr.; Mulagha, M.T.; Peterson, D.E.; Rose, A.H.; Schubert, M.M.; Spijkervet, F.K.; et al. Validation of a new scoring system for the assessment of clinical trial research of oral mucositis induced by radiation or chemotherapy. Mucositis Study Group. Cancer 1999, 85, 2103–2113. [Google Scholar] [CrossRef]
- Brouwer, C.L.; Steenbakkers, R.J.; Bourhis, J.; Budach, W.; Grau, C.; Grégoire, V.; van Herk, M.; Lee, A.; Maingon, P.; Nutting, C.; et al. CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROGconsensus guidelines. Radiother. Oncol. 2015, 117, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Hoebers, F.; Yu, E.; Eisbruch, A.; Thorstad, W.; O’Sullivan, B.; Dawson, L.A.; Hope, A. A pragmatic contouring guideline for salivary gland structures in head and neck radiation oncology: The MOIST target. Am. J. Clin. Oncol. 2013, 36, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, P.; Wong, A.J.; Gunn, G.B.; Garden, A.S.; Mohamed, A.S.R.; Rosenthal, D.I.; Crutison, J.; Wu, R.; Zhang, X.; Zhu, X.R.; et al. Toward a model-based patient selection strategy for proton therapy: External validation of photon-derived normal tissue complication probability models in a head and neck proton therapy cohort. Radiother. Oncol. 2016, 121, 381–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Laan, H.P.; Bijl, H.P.; Steenbakkers, R.J.; van der Schaaf, A.; Chouvalova, O.; Vemer-van den Hoek, J.G.; Gawryszuk, A.; van der Laan, B.F.; Oosting, S.F.; Roodenburg, J.L.; et al. Acute symptoms during the course of head and neck radiotherapy or chemoradiation are strong predictors of late dysphagia. Radiother. Oncol. 2015, 115, 56–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yahya, S.; Benghiat, H.; Nightingale, P.; Tiffany, M.; Sanghera, P.; Hartley, A. Does Dose to an Oral Mucosa Organ at Risk Predict the Duration of Grade 3 Mucositis after Intensity-modulated Radiotherapy for Oropharyngeal Cancer? Clin. Oncol. 2016, 28, e216–e219. [Google Scholar] [CrossRef] [PubMed]
- Hickman, M.; Meade, S.J.; Fong, C.; Sanghera, P.; Good, J.; Hartley, A. A prospective comparison of common toxicity criteria adverse events Version 3 and 4 in assessing oral mucositis for oral and oropharyngeal carcinoma. Tech. Innov. Patient Support Radiat. Oncol. 2017, 1, 18–21. [Google Scholar] [CrossRef]
- Ojo, B.; Genden, E.M.; Teng, M.S.; Milbury, K.; Misiukiewicz, K.J.; Badr, H. A systematic review of head and neck cancer quality of life assessment instruments. Oral Oncol. 2012, 48, 923–937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basch, E.; Reeve, B.B.; Mitchell, S.A.; Clauser, S.B.; Minasian, L.M.; Dueck, A.C.; Mendoza, T.R.; Hay, J.; Atkinson, T.M.; Abernethy, A.P.; et al. Development of the National Cancer Institute’s patient-reported outcomes version of the common terminology criteria for adverse events (PRO-CTCAE). J. Natl. Cancer Inst. 2014, 106. [Google Scholar] [CrossRef] [PubMed]
- Denham, J.W.; Peters, L.J.; Johansen, J.; Poulsen, M.; Lamb, D.S.; Hindley, A.; O’Brien, P.C.; Spry, N.A.; Penniment, M.; Krawitz, H.; et al. Do acute mucosal reactions lead to consequential late reactions in patients with head and neck cancer? Radiother. Oncol. 1999, 52, 157–164. [Google Scholar] [CrossRef]
- Henke, M.; Alfonsi, M.; Foa, P.; Giralt, J.; Bardet, E.; Cerezo, L.; Salzwimmer, M.; Lizambri, R.; Emmerson, L.; Chen, M.G.; et al. Palifermin decreases severe oral mucositis of patients undergoing postoperative radiochemotherapy for head and neck cancer: A randomized, placebo-controlled trial. J. Clin. Oncol. 2011, 29, 2815–2820. [Google Scholar] [CrossRef] [PubMed]
- Le, Q.T.; Kim, H.E.; Schneider, C.J.; Muraközy, G.; Skladowski, K.; Reinisch, S.; Chen, Y.; Hickey, M.; Mo, M.; Chen, M.G.; et al. Palifermin reduces severe mucositis in definitive chemoradiotherapy of locally advanced head and neck cancer: A randomized, placebo-controlled study. J. Clin. Oncol. 2011, 29, 2808–2814. [Google Scholar] [CrossRef] [PubMed]
- Gussgard, A.M.; Jokstad, A.; Wood, R.; Hope, A.J.; Tenenbaum, H. Symptoms Reported by Head and Neck Cancer Patients during Radiotherapy and Association with Mucosal Ulceration Site and Size: An Observational Study. PLoS ONE 2015, 10, e0129001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hickman, M.; Kelly, S.; Fong, C.; Nightingale, P.; Sanghera, P.; Mehanna, H.; Hartley, A. Use of a patient reported outcome as a potential radiobiological endpoint in oropharyngeal cancer (conference abstract). Radiother. Oncol. 2018, 127 (Suppl. 1), S50–S51. [Google Scholar] [CrossRef]
- Musha, A.; Shimada, H.; Shirai, K.; Saitoh, J.; Yokoo, S.; Chikamatsu, K.; Ohno, T.; Nakano, T. Prediction of Acute Radiation Mucositis using an Oral Mucosal Dose Surface Model in Carbon Ion Radiotherapy for Head and Neck Tumors. PLoS ONE 2015, 10, e0141734. [Google Scholar] [CrossRef] [PubMed]
- Isles, M.G.; McConkey, C.; Mehanna, H.M. A systematic review and meta-analysis of the role of positron emission tomography in the follow up of head and neck squamous cell carcinoma following radiotherapy or chemoradiotherapy. Clin. Otolaryngol. 2008, 33, 210–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehanna, H.; Wong, W.L.; McConkey, C.C.; Rahman, J.K.; Robinson, M.; Hartley, A.G.; Nutting, C.; Powell, N.; Al-Booz, H.; Robinson, M.; et al. PET-CT Surveillance versus Neck Dissection in Advanced Head and Neck Cancer. N. Engl. J. Med. 2016, 374, 1444–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelissen, C.; Sherriff, J.; Jones, T.; Guest, P.; Colley, S.; Sanghera, P.; Hartley, A. The Role of Positron Emission Tomography/Computed Tomography Imaging in Head and Neck Cancer after Radical Chemoradiotherapy: A Single Institution Experience. Clin. Oncol. 2017, 29, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Bird, T.; Barrington, S.; Thavaraj, S.; Jeannon, J.P.; Lyons, A.; Oakley, R.; Simo, R.; Lei, M.; Guerrero Urbano, T. (18)F-FDG PET/CT to assess response and guide risk-stratified follow-up after chemoradiotherapy for oropharyngeal squamous cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.Y.; Sanguineti, G.; Richmon, J.D.; Marur, S.; Gourin, C.G.; Koch, W.; Chung, C.H.; Quon, H.; Bishop, J.A.; Aygun, N.; et al. Retrospective review of positron emission tomography with contrast-enhanced computed tomography in the posttreatment setting in human papillomavirus-associated oropharyngeal carcinoma. Arch. Otolaryngol. Head Neck Surg. 2012, 138, 1040–1046. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, K.; Inohara, H.; Higuchi, I.; Hamada, K.; Tomiyama, Y.; Kubo, T.; Hatazawa, J. Prognostic Value of FDG-PET in patients with oropharyngeal carcinoma treated with concurrent chemoradiotherapy. Mol. Imaging Biol. 2008, 10, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Gouw, Z.A.R.; Jasperse, B.; Sonke, J.J.; Heemsbergen, W.D.; Navran, A.; Hamming-Vrieze, O.; Paul de Boer, J.; van den Brekel, M.W.M.; Al-Mamgani, A. A predictive model for residual disease after (chemo) radiotherapy in oropharyngeal carcinoma: Combined radiological and clinical evaluation of tumor response. Clin. Transl. Radiat. Oncol. 2017, 6, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Hitchcock, K.E.; Amdur, R.J.; Mendenhall, W.M.; Werning, J.W.; Drane, W.E.; Mancuso, A.A. Lessons from a standardized program using PET-CT to avoid neck dissection after primary radiotherapy for N2 squamous cell carcinoma of the oropharynx. Oral Oncol. 2015, 51, 870–874. [Google Scholar] [CrossRef] [PubMed]
- Koshkareva, Y.; Branstetter, B.F., IV; Gaughan, J.P.; Ferris, R.L. Predictive accuracy of first post-treatment PET/CT in HPV-related oropharyngeal squamous cell carcinoma. Laryngoscope 2014, 124, 1843–1847. [Google Scholar] [CrossRef] [PubMed]
- Mak, D.; Hicks, R.J.; Rischin, D.; Solomon, B.; Peters, L.; Bressel, M.; Young, R.J.; Corry, J. Treatment response in the neck: P16+ versus p16− oropharyngeal cancer. J. Med. Imaging Radiat. Oncol. 2013, 57, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Pellini, R.; Manciocco, V.; Turri-Zanoni, M.; Vidiri, A.; Sanguineti, G.; Marucci, L.; Sciuto, R.; Covello, R.; Sperduti, I.; Kayal, R.; et al. Planned neck dissection after chemoradiotherapy in advanced oropharyngeal squamous cell cancer: The role of US, MRI and FDG-PET/TC scans to assess residual neck disease. J. Craniomaxillofac. Surg. 2014, 42, 1834–1839. [Google Scholar] [CrossRef] [PubMed]
- Prestwich, R.J.; Subesinghe, M.; Gilbert, A.; Chowdhury, F.U.; Sen, M.; Scarsbrook, A.F. Delayed response assessment with FDG-PET-CT following (chemo) radiotherapy for locally advanced head and neck squamous cell carcinoma. Clin. Radiol. 2012, 67, 966–975. [Google Scholar] [CrossRef] [PubMed]
- Vainshtein, J.M.; Spector, M.E.; Stenmark, M.H.; Bradford, C.R.; Wolf, G.T.; Worden, F.P.; Chepeha, D.B.; McHugh, J.B.; Carey, T.; Wong, K.K.; et al. Reliability of post-chemoradiotherapy F-18-FDG PET/CT for prediction of locoregional failure in human papillomavirus-associated oropharyngeal cancer. Oral Oncol. 2014, 50, 234–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Wong, T.Z.; Amdur, R.J.; Mendenhall, W.M.; Sheets, N.C.; Green, R.; Thorp, B.D.; Patel, S.N.; Hackman, T.G.; Zanation, A.M.; et al. Pitfalls of post-treatment PET after de-intensified chemoradiotherapy for HPV-associated oropharynx cancer: Secondary analysis of a phase 2 trial. Oral Oncol. 2018, 78, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Toriihara, A.; Okochi, K.; Watanabe, H.; Shibuya, H.; Kurabayashi, T. Optimal timing of post-treatment [18F]fluorodeoxyglucose-PET/CT for patients with head and neck malignancy. Nucl. Med. Commun. 2013, 34, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, M.; Shinohara, S.; Hino, M.; Itoh, K.; Tona, R.; Kishimoto, I.; Harada, H.; Fujiwara, K.; Suehiro, A.; Naito, Y. Detection of subclinical recurrence or second primary cancer using (18) F-FDG PET/CT in patients treated curatively for head and neck squamous cell carcinoma. Head Neck 2016, 38 (Suppl. 1), E511–E518. [Google Scholar] [CrossRef] [PubMed]
- Leung, A.S.; Rath, T.J.; Hughes, M.A.; Kim, S.; Branstetter, B.F., IV. Optimal timing of first posttreatment FDG PET/CT in head and neck squamous cell carcinoma. Head Neck 2016, 38 (Suppl. 1), E853–E858. [Google Scholar] [CrossRef] [PubMed]
- Marcus, C.; Ciarallo, A.; Tahari, A.K.; Mena, E.; Koch, W.; Wahl, R.L.; Kiess, A.P.; Kang, H.; Subramaniam, R.M. Head and neck PET/CT: Therapy response interpretation criteria (Hopkins Criteria)-interreader reliability, accuracy, and survival outcomes. J. Nucl. Med. 2014, 55, 1411–1416. [Google Scholar] [CrossRef] [PubMed]
Site | Stage | Superior Constrictor | Para-Pharyngeal SPACE | Base of Tongue/Mobile Tongue | Medial Pterygoid | Lateral Pterygoid | Mandible | Retromolar Trigone | Hard Palate |
---|---|---|---|---|---|---|---|---|---|
Tonsil | T1 | ✔ | x | x | x | x | x | x | x |
T2 | ✔ | ✔ | ✔ | x | x | x | x | x | |
T3 | ✔ | ✔ | ✔ | ✔ | x | x | x | x | |
T4 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Site | Stage | Pre-Epiglottic Space | Hyo-Glossus | Para-Pharyngeal SPACE | Adjacent Nodes e.g., Levels Ib/II; Retropharyngeal | Lateral portion Superior Pharyngeal Constrictor | Mobile Tongue | Medial portion Superior Pharyngeal Constrictor | Hyoid | Larynx/Hypopharynx |
---|---|---|---|---|---|---|---|---|---|---|
Base of Tongue | T1 | x | x | x | x | x | x | x | x | x |
T2 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | x | x | x | |
T3 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | x | x | x | |
T4 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Site | Stage | Hard Palate | Lateral Pharyngeal Wall | Para-Pharyngeal Space | Medial Pterygoid | Mobile Tongue | Nasopharynx | Nasal Cavity |
---|---|---|---|---|---|---|---|---|
Soft palate | T1 | x | x | x | x | x | x | |
T2 | ✔ | ✔ | ✔ | x | x | x | x | |
T3 | ✔ | ✔ | ✔ | ✔ | x | x | x | |
T4 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Site | Stage | Pharyngeal Constrictor | Longus Muscles | Prevertebral Fascia | Vertebral Body |
---|---|---|---|---|---|
Posterior pharyngeal wall | T1–T3 | ✔ | x | x | x |
T4 | ✔ | ✔ | ✔ | ✔ |
Whole Study | p16+ve | p16-ve | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reference | Study | Timing of FDG PET (Weeks) | RT Dose | N | CR | CR T | CR N | N | CR | CR T | CR N | N | CR | CR T | CR N |
[65] | Prospective | 12 | 60 Gy/30# | 79 | 44 (56%) | 79 (100%) | 44 (56%) | ||||||||
[58] | Retrospective | 15 (median) | 70 Gy/35# | 50 | 39 (78%) | ||||||||||
[55] | Retrospective | 12.4 (median) | 65 Gy/30# | 146 | 90 (62%) | 96 (66%) | 35 (24%) | ||||||||
[59] | Prospective | 13.5 (median) | 70 Gy/35# | 50 | 45 (90%) | 32 (64%) | 7 (14%) | ||||||||
[62] | Prospective | 12.4 (median) | 70 Gy/35# | 36 | 36 (100%) | 28 (76%) | |||||||||
[64] | Retrospective | 13.4 (median) | 70 Gy/35# | 98 | 98 (100%) | 87 (88%) | 91 (93%) | ||||||||
[60] | Retrospective | 9 | 61 | 48 (79%) | 50 (82%) | 40 (80%) | 11 (18%) | 8 (73%) | |||||||
[61] | Retrospective | 12 (mean) | 70 Gy/35# | 48 | 41 (85%) | 43 (89%) | 30 (63%) | 27 (90%) | 28 (93%) | 18 (37%) | 14 (78%) | 15 (83%) | |||
[56] | Retrospective | 12 (median) | 70 Gy/35# | 67 | 67 (100%) | 59 (88%) | 67 (100%) | 67 (100%) | 59 (88%) | ||||||
[63] | Retrospective | 16.8 (median) | 70 Gy/35# | 30 | 25 (83%) | 26 (87%) | |||||||||
[57] | Prospective | 6 | 60 Gy/30 | 18 | 14 (78%) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cristaudo, A.; Hickman, M.; Fong, C.; Sanghera, P.; Hartley, A. Assessing Novel Drugs and Radiation Technology in the Chemoradiation of Oropharyngeal Cancer. Medicines 2018, 5, 65. https://doi.org/10.3390/medicines5030065
Cristaudo A, Hickman M, Fong C, Sanghera P, Hartley A. Assessing Novel Drugs and Radiation Technology in the Chemoradiation of Oropharyngeal Cancer. Medicines. 2018; 5(3):65. https://doi.org/10.3390/medicines5030065
Chicago/Turabian StyleCristaudo, Agostino, Mitchell Hickman, Charles Fong, Paul Sanghera, and Andrew Hartley. 2018. "Assessing Novel Drugs and Radiation Technology in the Chemoradiation of Oropharyngeal Cancer" Medicines 5, no. 3: 65. https://doi.org/10.3390/medicines5030065
APA StyleCristaudo, A., Hickman, M., Fong, C., Sanghera, P., & Hartley, A. (2018). Assessing Novel Drugs and Radiation Technology in the Chemoradiation of Oropharyngeal Cancer. Medicines, 5(3), 65. https://doi.org/10.3390/medicines5030065