The Association between Age, Comorbidities and Use of Radiotherapy in Women with Breast Cancer: Implications for Survival
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Eligibility
2.3. Definitions
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. RT Survival and Local Control
4.2. Omission of RT
4.3. RT and Comorbidities
4.4. Decision Making Tools
4.5. Strengths and Limitations
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Gandhi, S.; Verma, S. Early breast cancer in the older woman. Oncologist 2011, 16, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.D.; Siegel, R.L.; Lin, C.C.; Mariotto, A.B.; Kramer, J.L.; Rowland, J.H.; Stein, K.D.; Alteri, R.; Jemal, A. Cancer treatment and survivorship statistics, 2016. CA Cancer J. Clin. 2016, 66, 271–289. [Google Scholar] [CrossRef] [PubMed]
- Lodi, M.; Scheer, L.; Reix, N.; Heitz, D.; Carin, A.J.; Thiebaut, N.; Neuberger, K.; Tomasetto, C.; Mathelin, C. Breast cancer in elderly women and altered clinico-pathological characteristics: A systematic review. Breast Cancer Res. Treat. 2017, 166, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin. 2016, 66, 7–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlson, R.W.; McCormick, B. Update: NCCN breast cancer Clinical Practice Guidelines. J. Natl. Compr. Cancer Netw. 2005, 3 (Suppl. 1), S7–S11. [Google Scholar]
- Darby, S.; McGale, P.; Correa, C.; Taylor, C.; Arriagada, R.; Clarke, M.; Cutter, D.; Davies, C.; Ewertz, M.; Godwin, J.; et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: Meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet 2011, 378, 1707–1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGale, P.; Taylor, C.; Correa, C.; Cutter, D.; Duane, F.; Ewertz, M.; Gray, R.; Mannu, G.; Peto, R.; Whelan, T.; et al. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: Meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet 2014, 383, 2127–2135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchholz, T.A. Radiotherapy and survival in breast cancer. Lancet 2011, 378, 1680–1682. [Google Scholar] [CrossRef]
- Lichtman, S.M.; Hurria, A.; Jacobsen, P.B. Geriatric oncology: An overview. J. Clin. Oncol. 2014, 32, 2521–2522. [Google Scholar] [CrossRef] [PubMed]
- Tew, W.P.; Muss, H.B.; Kimmick, G.G.; Von Gruenigen, V.E.; Lichtman, S.M. Breast and ovarian cancer in the older woman. J. Clin. Oncol. 2014, 32, 2553–2561. [Google Scholar] [CrossRef] [PubMed]
- Sarfati, D.; Koczwara, B.; Jackson, C. The impact of comorbidity on cancer and its treatment. CA Cancer J. Clin. 2016, 66, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Kunkler, I.H.; Williams, L.J.; King, C.C.; Jack, W. Breast radiotherapy: Considerations in older patients. Clin. Oncol. 2009, 21, 111–117. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Data Base. Available online: https://www.facs.org/quality-programs/cancer/ncdb (accessed on 12 June 2018).
- Green, F.L.; Page, D.L.; Fleming, I.D.; Fritz, A.G.; Balch, C.M.; Haller, D.G. AJCC Cancer Staging Manual, 6th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Agresti, A. Categorical Data Analysis, 2nd ed.; John Wiley & Sons, Inc.: New Jersey, NJ, USA, 2003. [Google Scholar]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the em algorithm. J. R. Stat. Soc. Ser. B Stat. Methodol. 1977, 39, 1–38. [Google Scholar]
- Janssen-Heijnen, M.L.; Houterman, S.; Lemmens, V.E.; Louwman, M.W.; Maas, H.A.; Coebergh, J.W. Prognostic impact of increasing age and co-morbidity in cancer patients: A population-based approach. Crit. Rev. Oncol. Hematol. 2005, 55, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuwen, B.L.; Rosenkranz, K.M.; Feng, L.L.; Bedrosian, I.; Hartmann, K.; Hunt, K.K.; Kuerer, H.M.; Ross, M.; Singletary, S.E.; Babiera, G.V. The effect of under-treatment of breast cancer in women 80 years of age and older. Crit. Rev. Oncol. Hematol. 2011, 79, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Biganzoli, L.; Wildiers, H.; Oakman, C.; Marotti, L.; Loibl, S.; Kunkler, I.; Reed, M.; Ciatto, S.; Voogd, A.C.; Brain, E.; et al. Management of elderly patients with breast cancer: Updated recommendations of the International Society of Geriatric Oncology (SIOG) and European Society of Breast Cancer Specialists (EUSOMA). Lancet Oncol. 2012, 13, e148–e160. [Google Scholar] [CrossRef]
- Petrakis, I.E.; Paraskakis, S. Breast cancer in the elderly. Arch. Gerontol. Geriatr. 2010, 50, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Thavarajah, N.; Menjak, I.; Trudeau, M.; Mehta, R.; Wright, F.; Leahey, A.; Ellis, J.; Gallagher, D.; Moore, J.; Bristow, B.; et al. Towards an optimal multidisciplinary approach to breast cancer treatment for older women. Can. Oncol. Nurs. J. 2015, 25, 384–408. [Google Scholar] [CrossRef] [PubMed]
- Mislang, A.R.; Cheung, K.L.; Hamaker, M.E.; Kunkler, I.; Markopoulos, C.; Orecchia, R.; Brain, E.; Biganzoli, L. Controversial issues in the management of older adults with early breast cancer. J. Geriatr. Oncol. 2017, 8, 397–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Algan, O.; Zhao, Y.D.; Herman, T. Radiotherapy in patients 70 years and older with Triple-Negative Breast Cancer. Clin. Breast Cancer 2016, 16, e99–e106. [Google Scholar] [CrossRef] [PubMed]
- Fyles, A.W.; McCready, D.R.; Manchul, L.A.; Trudeau, M.E.; Merante, P.; Pintilie, M.; Weir, L.M.; Olivotto, I.A. Tamoxifen with or without breast irradiation in women 50 years of age or older with early breast cancer. N. Engl. J. Med. 2004, 351, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Hughes, K.S.; Schnaper, L.A.; Bellon, J.R.; Cirrincione, C.T.; Berry, D.A.; McCormick, B.; Muss, H.B.; Smith, B.L.; Hudis, C.A.; Winer, E.P.; et al. Lumpectomy plus tamoxifen with or without irradiation in women age 70 years or older with early breast cancer: Long-term follow-up of CALGB 9343. J. Clin. Oncol. 2013, 31, 2382–2387. [Google Scholar] [CrossRef] [PubMed]
- Joslyn, S.A. Radiation therapy and patient age in the survival from early-stage breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 1999, 44, 821–826. [Google Scholar] [CrossRef]
- Truong, P.T.; Bernstein, V.; Lesperance, M.; Speers, C.H.; Olivotto, I.A. Radiotherapy omission after breast-conserving surgery is associated with reduced breast cancer-specific survival in elderly women with breast cancer. Am. J. Surg. 2006, 191, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Potter, R.; Gnant, M.; Kwasny, W.; Tausch, C.; Handl-Zeller, L.; Pakisch, B.; Taucher, S.; Hammer, J.; Luschin-Ebengreuth, G.; Schmid, M.; et al. Lumpectomy plus tamoxifen or anastrozole with or without whole breast irradiation in women with favorable early breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Rueth, N.M.; Lin, H.Y.; Bedrosian, I.; Shaitelman, S.F.; Ueno, N.T.; Shen, Y.; Babiera, G. Underuse of trimodality treatment affects survival for patients with inflammatory breast cancer: An analysis of treatment and survival trends from the National Cancer Database. J. Clin. Oncol. 2014, 32, 2018–2024. [Google Scholar] [CrossRef] [PubMed]
- Smith, I.E.; Ross, G.M. Breast radiotherapy after lumpectomy—No longer always necessary. N. Engl. J. Med. 2004, 351, 1021–1023. [Google Scholar] [CrossRef] [PubMed]
- D’Alimonte, L.; Angus, J.; Wong, J.; Paszat, L.; Soren, B.; Szumacher, E. Working toward a decision: The development and first impressions of a decision aid for older women with early-stage breast cancer. J. Med. Imaging Radiat. Sci. 2012, 43, 60–65. [Google Scholar] [CrossRef]
- Smith, G.L.; Smith, B.D. Radiation treatment in older patients: A framework for clinical decision making. J. Clin. Oncol. 2014, 32, 2669–2678. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute. Surveillance, Epidemiology, and End Results. Available online: https://seer.cancer.gov (accessed on 12 June 2018).
- Fietz, T.; Zahn, M.O.; Kohler, A.; Engel, E.; Frank, M.; Kruggel, L.; Janicke, M.; Marschner, N.; TMK-Group. Routine treatment and outcome of breast cancer in younger versus elderly patients: Results from the SENORA project of the prospective German TMK cohort study. Breast Cancer Res. Treat. 2018, 167, 567–578. [Google Scholar] [CrossRef] [PubMed]
- Bilimoria, K.Y.; Stewart, A.K.; Winchester, D.P.; Ko, C.Y. The National Cancer Data Base: A powerful initiative to improve cancer care in the United States. Ann. Surg. Oncol. 2008, 15, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Needham, D.M.; Scales, D.C.; Laupacis, A.; Pronovost, P.J. A systematic review of the Charlson comorbidity index using Canadian administrative databases: A perspective on risk adjustment in critical care research. J. Crit. Care 2005, 20, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Rutter, C.E.; Chagpar, A.B.; Evans, S.B. Breast cancer laterality does not influence survival in a large modern cohort: Implications for radiation-related cardiac mortality. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Ng, H.S.; Koczwara, B.; Roder, D.M.; Niyonsenga, T.; Vitry, A.I. Comorbidities in Australian women with hormone-dependent breast cancer: A population-based analysis. Med. J. Aust. 2018, 208, 24–28. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Age (Years) | p Value † | ||
---|---|---|---|---|
<45 n (%) Median [IQR] | 45–65 n (%) Median [IQR] | >65 n (%) Median [IQR] | ||
Overall (n) | 127,786 | 517,614 | 334,981 | |
Demographics | ||||
Facility type | <0.0001 | |||
Academic/research | 52,964 (41) | 156,816 (30) | 82,258 (25) | |
Community | 7229 (6) | 55,352 (11) | 44,994 (13) | |
Comprehensive community | 59,156 (46) | 248,486 (48) | 172,210 (51) | |
Integrated network | 8437 (7) | 56,960 (11) | 35,519 (11) | |
Great circle distance (miles) | 10 [4] | 9 [15] | 8 [12] | <0.0001 |
Hispanic | 14,507 (11) | 37,636 (7) | 15,665 (5) | <0.0001 |
Insurance | <0.0001 | |||
Medicaid | 14,356 (11) | 44,324 (9) | 6985 (2) | |
Medicare | 2736 (2) | 49,652 (10) | 280,882 (84) | |
Other government | 1624 (1) | 6614 (1) | 1092 (<1) | |
Private | 103,805 (81) | 403,061 (78) | 44,565 (13) | |
None | 5265 (4) | 13,963 (3) | 1457 (<1) | |
Income (US $) | <0.0001 | |||
<38,000 | 17,817 (14) | 74,639 (14) | 52,688 (16) | |
38,000–47,999 | 25,131 (20) | 107,224 (21) | 78,190 (23) | |
48,000–62,999 | 34,099 (27) | 139,865 (27) | 93,572 (28) | |
63,000+ | 50,739 (40) | 195,886 (38) | 110,531 (33) | |
Race | <0.0001 | |||
Black | 18,933 (15) | 60,820 (12) | 29,177 (9) | |
White | 99,832 (78) | 432,056 (83) | 296,153 (88) | |
Other | 9021 (7) | 24,738 (5) | 9651 (3) | |
Clinical | ||||
Clinical stage (AJCC) | <0.0001 | |||
I | 41,433 (32) | 224,219 (43) | 162,074 (48) | |
II | 41,488 (32) | 130,998 (25) | 76,745 (23) | |
III | 44,865 (35) | 162,397 (31) | 96,162 (29) | |
Charlson (Deyo) Comorbidity Index | <0.0001 | |||
0 | 120,259 (94) | 455,787 (88) | 265,192 (79) | |
1 | 6818 (5) | 52,573 (10) | 55,730 (17) | |
2 | 709 (1) | 9254 (2) | 14,059 (4) | |
Differentiation (Grade) | <0.0001 | |||
Well (I) | 15,599 (12) | 108,904 (21) | 85,473 (26) | |
Moderately (II) | 51,151 (40) | 234,551 (45) | 164,743 (49) | |
Poorly (III) | 60,257 (47) | 171,836 (33) | 83,680 (25) | |
Non (IV) | 779 (1) | 2323 (<1) | 1085 (<1) | |
Biologic subtype | <0.0001 | |||
HR+/HER2− | 52,857 (41) | 251,859 (49) | 176,543 (53) | |
HR+/HER2+ | 18,547 (15) | 75,850 (15) | 47,845 (14) | |
HR−/HER2+ | 24,493 (19) | 89,104 (17) | 52,700 (16) | |
HR−/HER2− | 31,889 (25) | 100,801 (19) | 57,893 (17) | |
Histology (ICD-O-3) | <0.0001 | |||
Infiltrating duct (8500) | 104,416 (82) | 395,108 (76) | 239,639 (72) | |
Invasive lobular (8520, 8522) | 11,443 (9) | 73,191 (14) | 54,353 (16) | |
Infiltrating duct mixed (8523) | 3782 (3) | 16,010 (3) | 12,236 (4) | |
Other | 8145 (6) | 33,305 (6) | 28,753 (8) | |
Lymph node invasion | 37,148 (29) | 112,473 (22) | 55,017 (16) | <0.0001 |
Margins (positive) | 6490 (5) | 22,287 (4) | 16,612 (5) | <0.0001 |
Tumor size (cm) | <0.0001 | |||
≤2 | 66,117 (52) | 326,887 (63) | 223,751 (67) | |
>2–5 | 50,259 (39) | 159,876 (31) | 94,927 (28) | |
>5 | 11,410 (9) | 30,851 (6) | 16,303 (5) |
Treatment | Age (Years) | p Value † | ||
---|---|---|---|---|
<45 n (%) Median [IQR] | 45–65 n (%) Median [IQR] | >65 n (%) Median [IQR] | ||
Chemo | 98,703 (77) | 292,645 (57) | 80,891 (24) | <0.0001 |
Endocrine | 78,852 (62) | 350,597 (68) | 213,620 (64) | <0.0001 |
Immuno (only for HER2+) | 2469 (6) | 6839 (4) | 2235 (2) | <0.0001 |
Neoadjuvant therapy | ||||
No | 120,641 (94) | 500,969 (97) | 330,098 (99) | <0.0001 |
Yes | 7145 (6) | 16,645 (3) | 4883 (1) | |
Response | ||||
NR | 1541 (22) | 4146 (25) | 1602 (33) | <0.0001 |
pCR | 1412 (20) | 2736 (16) | 557 (11) | |
RD | 4192 (59) | 9763 (59) | 2724 (56) | |
Radiotherapy | <0.0001 | |||
No | 53,048 (42) | 175,492 (34) | 158,469 (47) | |
Yes | 74,738 (58) | 342,122 (66) | 176,512 (53) | |
Dose (cGy) | 5001 [360] | 5000 [440] | 5000 [540] | <0.0001 |
4000–5000 | 37,365 (50) | 192,799 (56) | 107,659 (61) | <0.0001 |
>5000–6000 | 37,373 (50) | 149,323 (44) | 68,853 (39) | |
Lymph nodes treated | 25,353 (34) | 76,095 (22) | 30,014 (17) | <0.0001 |
Surgery | ||||
BCS/partial mastectomy | 55,062 (43) | 309,460 (60) | 213,094 (64) | <0.0001 <0.0001 |
Mastectomy | 72,724 (57) | 208,154 (40) | 121,887 (36) | |
Contralateral | 31,007 (43) | 57,412 (28) | 11,020 (9) |
Biologic Subtype | Radiation | Charlson/Deyo Comorbidity Index (CCI) | p Trend by Age †,‡ | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age <45 Years | Age 45–65 Years | Age >65 Years | |||||||||||||||
0 * n (%) | I * n (%) | II * n (%) | p Trend † | aOR †,‡ (95% CI) II vs. 0 | 0 * n (%) | I * n (%) | II * n (%) | p Trend † | aOR †,‡ (95% CI) II vs. 0 | 0 * n (%) | I * n (%) | II * n (%) | p Trend † | aOR †,‡ (95% CI) II vs. 0 | |||
All | N | 49,692 (41) | 3054 (45) | 302 (43) | 0.020 | 1.1 (0.91–1.3) | 151,604 (33) | 19,849 (38) | 4039 (44) | <0.0001 | 1.3 (1.26–1.41) | 120,090 (45) | 29,713 (53) | 8666 (62) | <0.0001 | 1.6 (1.5–1.7) | <0.0001 |
Y | 70,567 (59) | 3764 (55) | 407 (57) | 304,183 (67) | 32,724 (62) | 5215 (56) | 145,102 (55) | 26,017 (47) | 5393 (38) | ||||||||
HR+ HER2− | N | 19,793 (40) | 1327 (44) | 140 (42) | 0.0029 | 1.2 (0.92–1.6) | 67,842 (31) | 9350 (35) | 1899 (40) | <0.0001 | 1.4 (1.2–1.5) | 59,307 (43) | 15,160 (50) | 4498 (59) | <0.0001 | 1.6 (1.5–1.7) | <0.0001 |
Y | 29,698 (60) | 1705 (56) | 194 (58) | 152,403 (69) | 17,519 (65) | 2846 (60) | 79,394 (57) | 15,041 (50) | 3143 (41) | ||||||||
HR+ HER2+ | N | 7066 (41) | 448 (43) | 48 (44) | 0.57 | 1.1 (0.70–1.8) | 22,001 (33) | 2919 (37) | 580 (43) | <0.0001 | 1.4 (1.2–1.7) | 16,677 (44) | 4240 (53) | 1248 (62) | <0.0001 | 1.8 (1.6–2.0) | <0.0001 |
Y | 10,329 (59) | 594 (57) | 62 (56) | 44,690 (67) | 4903 (63) | 757 (57) | 21,131 (56) | 3778 (47) | 771 (38) | ||||||||
HR− HER2+ | N | 9595 (41) | 521 (45) | 45 (46) | 0.03 | 1.4 (0.87–2.4) | 28,064 (35) | 3363 (42) | 722 (50) | <0.0001 | 1.4 (1.2–1.6) | 20,581 (49) | 4777 (58) | 1371 (67) | <0.0001 | 1.9 (1.5–1.9) | <0.0001 |
Y | 13,648 (59) | 631 (55) | 53 (54) | 51,622 (65) | 4621 (58) | 712 (50) | 21,861 (52) | 3439 (42) | 671 (33) | ||||||||
HR− HER2− | N | 13,238 (44) | 758 (48) | 69 (41) | 0.71 | 0.80 (0.55–1.2) | 33,697 (38) | 4217 (43) | 838 (48) | 0.0011 | 1.3 (1.1–1.4) | 23,525 (51) | 5536 (60) | 1549 (66) | <0.0001 | 1.3 (1.2–1.5) | <0.0001 |
Y | 16,892 (56) | 834 (52) | 98 (59) | 55,468 (62) | 5681 (57) | 900 (52) | 22,716 (49) | 3759 (40) | 808 (34) |
Biologic Subtype | Radiation | Overall Survival (%) | Hazard Ratio (95% CI) | ||||
---|---|---|---|---|---|---|---|
Years | Univariable | Multivariable † | |||||
2 | 5 | 8 | 10 | ||||
All | N | 94 | 83 | 73 | 67 | 0.45 (0.441–0.454) | 0.53 (0.52–0.54) |
Y | 98 | 91 | 85 | 80 | |||
HR+ HER2− | N | 95 | 85 | 76 | 71 | 0.41 (0.40–0.42) | 0.49 (0.48–0.51) |
Y | 98 | 93 | 87 | 84 | |||
HR+ HER2+ | N | 94 | 85 | 77 | 74 | 0.40 (0.39–0.42) | 0.47 (0.45–0.49) |
Y | 98 | 93 | 88 | 84 | |||
HR− HER2+ | N | 93 | 81 | 72 | 67 | 0.47 (0.46–0.49) | 0.54 (0.52–0.56) |
Y | 98 | 91 | 84 | 80 | |||
HR− HER2− | N | 92 | 81 | 70 | 63 | 0.54 (0.52–0.55) | 0.62 (0.60–0.64) |
Y | 96 | 89 | 81 | 75 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Efird, J.T.; Hunter, S.; Chan, S.; Jeong, S.; Thomas, S.L.; Jindal, C.; Biswas, T. The Association between Age, Comorbidities and Use of Radiotherapy in Women with Breast Cancer: Implications for Survival. Medicines 2018, 5, 62. https://doi.org/10.3390/medicines5030062
Efird JT, Hunter S, Chan S, Jeong S, Thomas SL, Jindal C, Biswas T. The Association between Age, Comorbidities and Use of Radiotherapy in Women with Breast Cancer: Implications for Survival. Medicines. 2018; 5(3):62. https://doi.org/10.3390/medicines5030062
Chicago/Turabian StyleEfird, Jimmy T., Sharyn Hunter, Sally Chan, Sarah Jeong, Susan L. Thomas, Charulata Jindal, and Tithi Biswas. 2018. "The Association between Age, Comorbidities and Use of Radiotherapy in Women with Breast Cancer: Implications for Survival" Medicines 5, no. 3: 62. https://doi.org/10.3390/medicines5030062
APA StyleEfird, J. T., Hunter, S., Chan, S., Jeong, S., Thomas, S. L., Jindal, C., & Biswas, T. (2018). The Association between Age, Comorbidities and Use of Radiotherapy in Women with Breast Cancer: Implications for Survival. Medicines, 5(3), 62. https://doi.org/10.3390/medicines5030062