Antibacterial, Antioxidant, and Antiproliferative Activities of Corymbia citriodora and the Essential Oils of Eight Eucalyptus Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, EO Extraction, and Composition Analysis
2.1.1. Isolation of the Essential Oils
2.1.2. Gas Chromatography (GC)
2.1.3. Gas Chromatography-Mass Spectrometry (GC-MS)
2.2. Determination of Antioxidant Activity
2.3. Determination of Antibacterial Activity
2.4. Determination of Antiproliferative Activity
2.5. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Activity
3.2. Antibacterial Activity
3.3. Antiproliferative Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mulu, W.; Yizengaw, E.; Alemu, M.; Mekonnen, D.; Hailu, D.; Ketemaw, K.; Abera, B.; Kibret, M. Pharyngeal colonization and drug resistance profiles of Morraxella catarrhalis, Streptococcus pneumoniae, Staphylococcus aureus, and Haemophilus influenzae among HIV infected children attending ART clinic of felegehiwot referral hospital, Ethiopia. PLoS ONE 2018, 13, e0196722. [Google Scholar] [CrossRef] [PubMed]
- Örtqvist, A.; Hedlund, J.; Kalin, M. Streptococcus pneumoniae: Epidemology, risk factors, and clinical features. Semin. Respir. Crit. Care Med. 2005, 26, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Brochot, A.; Guilbot, A.; Haddioui, L.; Roques, C. Antibacterial, antifungal, and antiviral effects of three essential oil blends. MicrobiologyOpen 2017, 6, e459. [Google Scholar] [CrossRef] [PubMed]
- Horváth, G.; Ács, K. Essential oils in the treatment of respiratory tract diseases highlighting their role in bacterial infections and their anti-inflammatory action: A review. Flavour Fragr. J. 2015, 30, 331–341. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Apolónio, J.; Faleiro, M.L.; Miguel, M.G.; Neto, L. No induction of antimicrobial resistance in Staphylococcus aureus and Listeria monocytogenes during continuous exposure to eugenol and citral. FEMS Microbiol. Lett. 2014, 354, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Ung, L.; Pattamatta, U.; Carnt, N.; Wilkinson-Berka, J.L.; Liew, G. Oxidative stress and reactive oxygen species: A review of their role in ocular disease. Clin. Sci. 2017, 131, 2865–2883. [Google Scholar] [CrossRef] [PubMed]
- Le Gal, K.; Ibrahim, M.X.; wiel, C.; Sayin, V.I.; Akula, M.K.; Karlsson, C.; Dalin, M.G.; Akyürek, L.M.; Lindahl, P.; Nilsson, J.; et al. Antioxidants can increase melanoma metastasis in mice. Sci. Transl. Med. 2015, 7, 308re8. [Google Scholar] [CrossRef] [PubMed]
- Blowman, K.; Magalhães, M.; Lemos, M.F.L.; Cabral, C.; Pires, I.M. Anticancer properties of essential oils and other natural products. Evid. Based Complement. Altern. Med. 2018, 3149362. [Google Scholar] [CrossRef] [PubMed]
- Hill, K.D.; Johnson, L.A.S. Systematic studies in the eucalypts. 7. A revision of the bloodwoods, genus Corymbia (Myrtaceae). Telopea 1995, 6, 185–504. [Google Scholar] [CrossRef]
- Brophy, J.J.; Forster, P.I.; Goldsack, R.J.; Hibbert, D.B. The essential oils of the yellow bloodwood eucalypts (Corymbia, section Ochraria, Myrtaceae). Biochem. Syst. Ecol. 1998, 26, 239–249. [Google Scholar] [CrossRef]
- Barbosa, L.C.A.; Filomeno, C.A.; Teixeira, R.R. Chemical variability and biological activities of Eucalyptus spp. essential oils. Molecules 2016, 21, 1671. [Google Scholar] [CrossRef] [PubMed]
- Gilles, M.; Zhao, J.; An, M.; Agboola, S. Chemical composition and antimicrobial properties of essential oils of three Australian Eucalyptus species. Food Chem. 2010, 119, 731–737. [Google Scholar] [CrossRef]
- Silva, S.M.; Abe, S.Y.; Murakami, F.S.; Frensch, G.; Marques, F.A.; Nakashima, T. Essential oils from different plant parts of Eucalyptus cinerea F. Muell. Ex Benth. (Myrtaceae) as a source of 1,8-cineole and their bioactivities. Pharmaceuticals 2011, 4, 1535–1550. [Google Scholar] [CrossRef] [PubMed]
- Dhakad, A.; Pandey, V.V.; Beg, S.; Rawat, J.M.; Singh, A. Biological, medicinal and toxicological significance of Eucalyptus leaf essential oil: A review. J. Sci. Food Agric. 2018, 98, 833–848. [Google Scholar] [CrossRef] [PubMed]
- Faria, M.S.; Barbosa, P.; Bennett, R.N.; Mota, M.; Figueiredo, A.C. Bioactivity against Bursaphelenchus xylophilus: Nematotoxics from essential oils, essential oils fractions and decoction waters. Phytochemistry 2013, 94, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, P.; Faria, J.M.S.; Mendes, M.D.; Dias, L.S.; Tinoco, M.T.; Barroso, J.G.; Pedro, L.G.; Figueiredo, A.C.; Mota, M. Bioassays against Pinewood nematode: Assessment of a suitable dilution agent and screening for bioactive essential oils. Molecules 2012, 17, 12312–12329. [Google Scholar] [CrossRef] [PubMed]
- Faria, J.M.S.; Sanches, J.; Lima, A.S.; Mendes, M.D.; Leiria, R.; Geraldes, D.A.; Figueiredo, A.C.; Trindade, H.; Pedro, L.G.; Barroso, J.G. Eucalyptus from Mata Experimental do Escaroupim (Portugal): Evaluation of the essential oil composition from sixteen species. Acta Hortic. 2011, 925, 61–66. [Google Scholar] [CrossRef]
- Council of Europe (COE); European Directorate for the Quality of Medicines. European Pharmacopoeia, 6th ed.; Council of Europe (COE): Strasbourg, France, 2007. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Antunes, M.D.C.; Dandlen, S.; Cavaco, A.M.; Miguel, G. Effects of postharvest application of 1-MCP and postcutting dip treatment on the quality and nutritional properties of fresh-cut kiwifruit. J. Agric. Food Chem. 2010, 58, 6173–6181. [Google Scholar] [CrossRef] [PubMed]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef] [PubMed]
- Miguel, M.G.; Gago, C.; Antunes, M.D.; Megías, C.; Cortés-Giraldo, I.; Vioque, J.; Lima, A.S.; Figueiredo, A.C. Antioxidant and antiproliferative activities of the essential oils from Thymbra capitata and Thymus species grown in Portugal. Evid. Based Complement. Altern. Med. 2015, 2015, 851721. [Google Scholar] [CrossRef] [PubMed]
- Faleiro, L.; Miguel, G.; Gomes, S.; Costa, L.; Venâncio, F.; Teixeira, A.; Figueiredo, A.C.; Barroso, J.A.; Pedro, L.G. Antibacterial and antioxidant activities of essential oils isolated from Thymbra capitata L. (Cav.) and Origanum vulgare L. J. Agric. Food Chem. 2005, 53, 8162–8168. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Sena, I.; Faria, J.M.S.; Sanches, J.; Trindade, H.; Pedro, L.G.; Barroso, J.G.; Figueiredo, A.C. Essential oil composition from twenty-six Eucalyptus taxa from Mata Experimental do Escaroupim (Portugal). In Proceedings of the 43rd International Symposium on Essential Oils, Lisboa, Portugal, 5–8 September 2012; p. 216. [Google Scholar]
- Luis, A.; Duarte, A.P.; Pereira, L.; Domingues, F. Chemical profiling and evaluation of antioxidant and anti-microbial properties of selected commercial essential oils: A comparative study. Medicines 2017, 4, 36. [Google Scholar] [CrossRef] [PubMed]
- Ciesla, L.M.; Wojtunik-Kulesza, K.A.; Oniszczuk, A.; Waksmundzka-Hajnos, M. Antioxidant synergism and antagonism between selected monoterpenes using the 2,2-diphenyl-1-picrylhydrazyl method. Flavour Fragr. J. 2016, 31, 412–419. [Google Scholar] [CrossRef]
- Wojtunik, K.A.; Ciesla, L.M.; Waksmundzka-Hajnos, M. Model studies on the antioxidant activity of common terpenoid constituents of essential oils by means of the 2,2-diphenyl-1-picrylhydrazyl method. J. Agric. Food Chem. 2014, 62, 9088–9094. [Google Scholar] [CrossRef] [PubMed]
- Aazza, S.; Lyoussi, B.; Miguel, M.G. Antioxidant and antiacetylcholinesterase activities of some commercial essential oils and their major compounds. Molecules 2011, 16, 7672–7690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.-X.; Liu, Z.-Q. Unusual antioxidant behavior of α- and γ-terpinene in protecting methyl linoleate, DNA, and erythrocyte. J. Agric. Food Chem. 2009, 57, 3943–3948. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-L.; Seon, S.-H.; Rhee, D.-H. Pneumonia and Streptococcus pneumoniae vaccine. Arch. Pharm. Res. 2017, 40, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Hendry, E.R.; Worthington, T.; Conway, B.R.; Lambert, P.A. Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures. J. Antimicrob. Chemother. 2009, 64, 1219–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aazza, S.; Lyoussi, B.; Megías, C.; Cortés-Giraldo, I.; Vioque, J.; Figueiredo, A.C.; Miguel, M.G. Anti-oxidant, anti-inflammatory and anti-proliferative activities of Moroccan commercial essential oils. Nat. Prod. Commun. 2014, 9, 587–594. [Google Scholar] [PubMed]
Family/Species | Code | SY | PP | CP | Yield (%, v/w) | Main Components (≥10%) * | |
---|---|---|---|---|---|---|---|
Myrtaceae | |||||||
Current accepted species name | Synonyms | ||||||
Corymbia citriodora (Hook.) K.D.Hill & L.A.S.Johnson a | Corymbia citriodora subsp. variegata (F.Muell.) A.R.Bean & M.W.McDonald, Corymbia variegata (F.Muell.) K.D.Hill & L.A.S.Johnson, Eucalyptus citriodora Hook., Eucalyptus maculata var. citriodora (Hook.) F.M.Bailey, Eucalyptus melissiodora Lindl., Eucalyptus variegata F.Muell. | Cc | 2009 | FV | MEE | 0.86 | citronellal 36, isopulegol 13, citronellol 12, 1,8-cineole 11 |
Eucalyptus dives Schauer a | Eucalyptus amygdalina var. latifolia H.Deane & Maiden | Ed | 2009 | FV | MEE | 3.30 | piperitone 40, α-phellandrene 19, p-cymene 19 |
Eucalyptus globulus Labill. b | Eucalyptus gigantea Dehnh., Eucalyptus glauca A.Cunn. ex DC., Eucalyptus globulosus St.-Lag., Eucalyptus globulus subsp. globulus, Eucalyptus maidenii subsp. globulus (Labill.) J.B.Kirkp., Eucalyptus perfoliata Desf., Eucalyptus pulverulenta Link | Eg | 2009 | FV | Lisbon | 2.15 | 1.8-Cineole 64, α-pinene 20 |
Eucalyptus delegatensis subsp. tasmaniensis Boland c | Eucalyptus gigantea Hook.f., Eucalyptus risdonii var. elata Benth., Eucalyptus tasmanica Blakely | Edt | 2011 | FV | MEE | 0.52 | Limonene 36, p-cymene 11, 1,8-cineole 10 |
Eucalyptus pauciflora Sieber ex Spreng a | Eucalyptus coriacea A.Cunn. ex Schauer, Eucalyptus coriacea var. alpina Benth, Eucalyptus pauciflora var. alpina Ewart, Eucalyptus pauciflora subsp. pauciflora, Eucalyptus phlebophylla F.Muell. ex Miq., Eucalyptus submultiplinervis Miq., Eucalyptus sylvicultrix F.Muell. ex Benth. | Ep | 2009 | FV | MEE | 0.84 | α-pinene 82 |
Eucalyptus radiata A.Cunn. ex DC. a | Eucalyptus amygdalina var. radiata (A.Cunn. ex DC.) Benth., Eucalyptus australiana R.T.Baker & H.G.Sm., Eucalyptus australiana var. latifolia R.T.Baker & H.G.Sm., Eucalyptus phellandra R.T.Baker & H.G.Sm., Eucalyptus radiata var. australiana (R.T.Baker & H.G.Sm.) Blakel, Eucalyptus radiata subsp. radiata, Eucalyptus radiata var. subexserta Blakely | Er | 2009 | FV | MEE | 5.55 | 1,8-cineole 48, p-cymene 13 |
Eucalyptus smithii R.T. Baker a | Eucalyptus viminalis var. pedicellaris H.Deane & Maiden | Es | 2009 | FV | MEE | 2.80 | 1,8-cineole 83 |
Eucalyptus urophylla S. T. Blake a | No synonyms recorded | Eu | 2009 | FV | MEE | 0.86 | α-phellandrene 45, 1,8-cineole 23 |
Eucalyptus viminalis Labill. a | Eucalyptus angustifolia Desf. ex Link, Eucalyptus gunnii Miq., Eucalyptus huberiana Naudin, Eucalyptus viminalis var. huberiana (Naudin) N.T.Burb., Eucalyptus viminalis var. rhynchocorys Maiden, Eucalyptus viminalis subsp. viminalis | Ev | 2009 | FV | MEE | 1.10 | 1,8-cineole 46, α-pinene 13, γ-terpinene 12 |
Sample Code * | TEAC (µmol TE/g Essential Oil) | ORAC (µmol TE/g Essential Oil) |
---|---|---|
Cc | 5.08 ± 0.08 a | 148.55 ± 7.76 a |
Ed | 0.53 ± 0.08 d | 96.83 ± 7.76 bc |
Edt | 1.27 ± 0.08 c | 73.31 ± 7.76 c |
Eg | 0.30 ± 0.08 e | 87.29 ± 7.76 bc |
Ep | 0.17 ± 0.08 e | 99.70 ± 7.76 b |
Er | 0.21 ± 0.08 e | 112.33 ± 7.76 b |
Es | 0.10 ± 0.08 e | 93.66 ± 7.76 bc |
Eu | 0.68 ± 0.08 d | 37.14 ± 7.76 d |
Ev | 1.62 ± 0.08 b | 135.80 ± 7.76 a |
Essential Oil | Microorganism † | ||
---|---|---|---|
S. pneumoniae D39 | S. pneumoniae TIGR 4 | H. influenza DSM 9999 | |
Tea tree | 14.00 ± 1.73 a | 12.25 ± 1.89 a | 11.75 ± 2.36 a |
C. citriodora | 11.33 ± 2.03 a | 8.00 ± 1.41 b | 11.25 ± 0.50 a |
E. dives | 13.67 ± 2.08 a | NI | 10.00 ± 0.81 a |
E. globulus | 12.00 ± 1.73 a | 8.75 ± 0.95 b | 13.00 ± 1.82 a |
E. smithii | 14.00 ± 1.73 a | 8.00 ± 0.81 b | 12.00 ± 2.16 a |
E. viminalis | 14.66 ± 1.52 a | 6.66 ± 0.57 b | 11.75 ± 1.50 a |
Chloramphenicol | 22.33 ± 4.04 b | 21.00 ± 1.15 c | 24.00 ± 0.81 b |
Microorganism | Tea Tree | E. globulus | E. smithii | |||
---|---|---|---|---|---|---|
MIC † | MBC † | MIC | MBC | MIC | MBC | |
S. pneumoniae D39 | 0.025 | 0.1 | 0.1 | 0.15 | 0.1 | 0.30 |
S. pneumoniae TIGR 4 | 0.025 | 0.1 | 0.015 | 0.05 | 0.1 | 0.15 |
H. influenza DSM 9999 | >0.4 | >0.4 | >0.4 | >0.4 | >0.4 | >0.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miguel, M.G.; Gago, C.; Antunes, M.D.; Lagoas, S.; Faleiro, M.L.; Megías, C.; Cortés-Giraldo, I.; Vioque, J.; Figueiredo, A.C. Antibacterial, Antioxidant, and Antiproliferative Activities of Corymbia citriodora and the Essential Oils of Eight Eucalyptus Species. Medicines 2018, 5, 61. https://doi.org/10.3390/medicines5030061
Miguel MG, Gago C, Antunes MD, Lagoas S, Faleiro ML, Megías C, Cortés-Giraldo I, Vioque J, Figueiredo AC. Antibacterial, Antioxidant, and Antiproliferative Activities of Corymbia citriodora and the Essential Oils of Eight Eucalyptus Species. Medicines. 2018; 5(3):61. https://doi.org/10.3390/medicines5030061
Chicago/Turabian StyleMiguel, Maria Graça, Custódia Gago, Maria Dulce Antunes, Soraia Lagoas, Maria Leonor Faleiro, Cristina Megías, Isabel Cortés-Giraldo, Javier Vioque, and Ana Cristina Figueiredo. 2018. "Antibacterial, Antioxidant, and Antiproliferative Activities of Corymbia citriodora and the Essential Oils of Eight Eucalyptus Species" Medicines 5, no. 3: 61. https://doi.org/10.3390/medicines5030061
APA StyleMiguel, M. G., Gago, C., Antunes, M. D., Lagoas, S., Faleiro, M. L., Megías, C., Cortés-Giraldo, I., Vioque, J., & Figueiredo, A. C. (2018). Antibacterial, Antioxidant, and Antiproliferative Activities of Corymbia citriodora and the Essential Oils of Eight Eucalyptus Species. Medicines, 5(3), 61. https://doi.org/10.3390/medicines5030061