Characterisation of Polyphenol-Containing Extracts from Stachys mucronata and Evaluation of Their Antiradical Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. Sample Preparation and Extraction
2.4. Solvent Partition
2.5. Total Polyphenol and Antiradical Activity Determination
2.6. Qualitative Liquid Chromatography-Diode Array-Mass Spectrometry (LC-DAD-MS)
2.7. Statistics
3. Results and Discussion
3.1. Polyphenolic Content and Antiradical Activity
3.2. Polyphenolic Composition
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, Y. Needs for new plant-derived pharmaceuticals in the post-genome era: An industrial view in drug research and development. Phytochem. Rev. 2008, 7, 395–406. [Google Scholar] [CrossRef]
- Li, A.-N.; Li, S.; Zhang, Y.-J.; Xu, X.-R.; Chen, Y.-M.; Li, H.-B. Resources and biological activities of natural polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Tair, A.; Weiss, E.-K.; Palade, L.M.; Loupassaki, S.; Makris, D.P.; Ioannou, E.; Roussis, V.; Kefalas, P. Origanum species native to the island of Crete: In vitro antioxidant characteristics and liquid chromatography–mass spectrometry identification of major polyphenolic components. Nat. Prod. Res. 2014, 28, 1284–1287. [Google Scholar] [CrossRef] [PubMed]
- Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process. 2011, 89, 217–233. [Google Scholar] [CrossRef]
- Atwi, M.; Weiss, E.-K.; Loupassaki, S.; Makris, D.P.; Ioannou, E.; Roussis, V.; Kefalas, P. Major antioxidant polyphenolic phytochemicals of three Salvia species endemic to the island of Crete. J. Herbs Spices Med. Plants 2016, 22, 27–34. [Google Scholar] [CrossRef]
- Karakashov, B.; Grigorakis, S.; Loupassaki, S.; Mourtzinos, I.; Makris, D.P. Optimisation of organic solvent-free polyphenol extraction from Hypericum triquetrifolium Turra using Box–Behnken experimental design and kinetics. Int. J. Ind. Chem. 2015, 6, 85–92. [Google Scholar] [CrossRef]
- Dourtoglou, V.G.; Mamalos, A.; Makris, D.P. Storage of olives (Olea europaea) under CO2 atmosphere: Effect on anthocyanins, phenolics, sensory attributes and in vitro antioxidant properties. Food Chem. 2006, 99, 342–349. [Google Scholar] [CrossRef]
- Karakashov, B.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. Optimisation of polyphenol extraction from Hypericum perforatum (St. John’s Wort) using aqueous glycerol and response surface methodology. J. Appl. Res. Med. Aromat. Plants 2015, 2, 1–8. [Google Scholar] [CrossRef]
- Marin, P.D.; Grayer, R.J.; Grujic-Jovanovic, S.; Kite, G.C.; Veitch, N.C. Glycosides of tricetin methyl ethers as chemosystematic markers in Stachys subgenus Betonica. Phytochemistry 2004, 65, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
- Karageorgou, I.; Grigorakis, S.; Lalas, S.; Makris, D.P. Enhanced extraction of antioxidant polyphenols from Moringa oleifera Lam. leaves using a biomolecule-based low-transition temperature mixture. Eur. Food Res. Technol. 2017, 243, 1839–1848. [Google Scholar] [CrossRef]
- Dedousi, M.; Mamoudaki, V.; Grigorakis, S.; Makris, D.P. Ultrasound-assisted extraction of polyphenolic antioxidants from olive (Olea europaea) leaves using a novel glycerol/sodium-potassium tartrate low-transition temperature mixture (LTTM). Environments 2017, 4, 31. [Google Scholar] [CrossRef]
Peak | Rt (min) | λmax (nm) | [M + H]+ (m/z) | Other Ions (m/z) | Tentative Identity |
---|---|---|---|---|---|
1 | 16.39 | 298 (s), 322 | 779 | 765, 751, 731, 503, 489, 457, 355, 163 | Chlorogenate derivative |
2 | 24.68 | 242, 292 (s), 344 | 763 | 627, 465, 441, 393, 371, 303 | Quercetin derivative |
3 | 25.11 | 250, 348 | 449 | 287 | Luteolin glucoside |
4 | 26.32 | 278, 300 (s), 344 | 653 | 611, 287 | Luteolin derivative |
5 | 26.52 | 242, 374 (s), 392 | 669 | 653, 517, 303 | Quercetin derivative |
6 | 26.72 | 272, 300, 330 | 653 | 449 | Isoscutellarein acetylallosylglucoside |
7 | 26.88 | 265, 340 | 433 | 271 | Apigenin C-glucoside |
8 | 29.03 | 270, 304 (s), 358 | 653 | 287 | Luteolin derivative |
9 | 29.73 | 252, 280, 344 | 695 | 653, 287 | Luteolin derivative |
10 | 32.74 | 234, 336 | 579 | 447, 271 | Apigenin derivative |
11 | 33.73 | 264, 302 (s), 364 | 695 | 717 [M + Na]+, 287 | Luteolin derivative |
12 | 33.97 | 232, 276, 306, 332 | 695 | 717 [M + Na]+, 287 | Luteolin derivative |
13 | 34.35 | 234, 268, 316, 344 | 579 | 601 [M + Na]+, 271 | Apigenin derivative |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigorakis, S.; Makris, D.P. Characterisation of Polyphenol-Containing Extracts from Stachys mucronata and Evaluation of Their Antiradical Activity. Medicines 2018, 5, 14. https://doi.org/10.3390/medicines5010014
Grigorakis S, Makris DP. Characterisation of Polyphenol-Containing Extracts from Stachys mucronata and Evaluation of Their Antiradical Activity. Medicines. 2018; 5(1):14. https://doi.org/10.3390/medicines5010014
Chicago/Turabian StyleGrigorakis, Spyros, and Dimitris P. Makris. 2018. "Characterisation of Polyphenol-Containing Extracts from Stachys mucronata and Evaluation of Their Antiradical Activity" Medicines 5, no. 1: 14. https://doi.org/10.3390/medicines5010014
APA StyleGrigorakis, S., & Makris, D. P. (2018). Characterisation of Polyphenol-Containing Extracts from Stachys mucronata and Evaluation of Their Antiradical Activity. Medicines, 5(1), 14. https://doi.org/10.3390/medicines5010014