Occurrence of Bisphenols and Benzophenone UV Filters in White-Tailed Eagles (Haliaeetus albicilla) from Smøla, Norway
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Materials
2.2. Study Population and Sample Collection
2.3. Sample Preparation and Analysis
2.4. Quality Assurance and Quality Control (QA/QC)
3. Results and Discussion
3.1. Occurrence of BPs
3.2. Occurrence of BzPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Ethics Statement
References
- Elliott, J.E.; Norstrom, R.J. Chlorinated hydrocarbon contaminants and productivity of bald eagle populations on the Pacific coast of Canada. Environ. Toxicol. Chem. 1998, 17, 1142. [Google Scholar] [CrossRef]
- Furness, R.W. Birds as monitors of pollution. In Birds as Monitors of Environmental Change; Furness, R.W., Greenwood, J.J.D., Eds.; Springer: Dordrecht, The Netherlands, 1993; pp. 86–143. [Google Scholar]
- Ratcliffe, D.A. Changes attributable to pesticides in egg breakage frequency and eggshell thickness in some british birds. J. Appl. Ecol. 1970, 7, 67. [Google Scholar] [CrossRef]
- Espín, S.; García-Fernández, A.J.; Herzke, D.; Shore, R.F.; Van Hattum, B.; Martínez-López, E.; Coeurdassier, M.; Eulaers, I.; Fritsch, C.; Gómez-Ramírez, P.; et al. Tracking pan-continental trends in environmental contamination using sentinel raptors—What types of samples should we use? Ecotoxicology 2016, 25, 777–801. [Google Scholar] [CrossRef] [Green Version]
- Ratcliffe, D.A. Decrease in eggshell weight in certain birds of prey. Nature 1967, 215, 208–210. [Google Scholar] [CrossRef]
- Jaspers, V.L.; Rodriguez, F.S.; Boertmann, D.; Sonne, C.; Dietz, R.; Rasmussen, L.M.; Eens, M.; Covaci, A. Body feathers as a potential new biomonitoring tool in raptors: A study on organohalogenated contaminants in different feather types and preen oil of West Greenland white-tailed eagles (Haliaeetus albicilla). Environ. Int. 2011, 37, 1349–1356. [Google Scholar] [CrossRef]
- Gómara, B.; González, M.J.; Baos, R.; Hiraldo, F.; Abad, E.; Rivera, J.; Jimenez, B. Unexpected high PCB and total DDT levels in the breeding population of red kite (Milvus milvus) from Doñana National Park, south-western Spain. Environ. Int. 2008, 34, 73–78. [Google Scholar] [CrossRef]
- Eulaers, I.; Jaspers, V.L.B.; Pinxten, R.; Covaci, A.; Eens, M. Legacy and current-use brominated flame retardants in the Barn Owl. Sci. Total Environ. 2014, 472, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Monclús, L.; Lopez-Bejar, M.; De La Puente, J.; Covaci, A.; Jaspers, V.L. First evaluation of the use of down feathers for monitoring persistent organic pollutants and organophosphate ester flame retardants: A pilot study using nestlings of the endangered cinereous vulture (Aegypius monachus). Environ. Pollut. 2018, 238, 413–420. [Google Scholar] [CrossRef]
- Jaspers, V.L.B.; Herzke, D.; Eulaers, I.; Gillespie, B.W.; Eens, M. Perfluoroalkyl substances in soft tissues and tail feathers of Belgian barn owls (Tyto alba) using statistical methods for left-censored data to handle non-detects. Environ. Int. 2013, 52, 9–16. [Google Scholar] [CrossRef]
- Gómez-Ramírez, P.; Bustnes, J.O.; Eulaers, I.; Herzke, D.; Johnsen, T.; Lepoint, G.; Pérez-García, J.M.; García-Fernández, A.J.; Jaspers, V.L.B. Per- and polyfluoroalkyl substances in plasma and feathers of nestling birds of prey from northern Norway. Environ. Res. 2017, 158, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Løseth, M.E.; Briels, N.; Flo, J.; Malarvannan, G.; Poma, G.; Covaci, A.; Herzke, D.; Nygård, T.; Bustnes, J.O.; Jenssen, B.M.; et al. White-tailed eagle (Haliaeetus albicilla) feathers from Norway are suitable for monitoring of legacy, but not emerging contaminants. Sci. Total Environ. 2019, 647, 525–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briels, N.; Torgersen, L.N.; Castaño-Ortiz, J.M.; Løseth, M.E.; Herzke, D.; Nygård, T.; Bustnes, J.O.; Ciesielski, T.M.; Poma, G.; Malarvannan, G.; et al. Integrated exposure assessment of northern goshawk (Accipiter gentilis) nestlings to legacy and emerging organic pollutants using non-destructive samples. Environ. Res. 2019, 178, 108678. [Google Scholar] [CrossRef] [PubMed]
- Brausch, J.M.; Rand, G.M. A review of personal care products in the aquatic environment: Environmental concentrations and toxicity. Chemosphere 2011, 82, 1518–1532. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Kannan, K.; Tan, H.; Zheng, Z.; Feng, Y.-L.; Wu, Y.; Widelka, M. Bisphenol analogues other than BPA: Environmental occurrence, human exposure, and toxicity—A review. Environ. Sci. Technol. 2016, 50, 5438–5453. [Google Scholar] [CrossRef]
- Česen, M.; Lenarčič, K.; Mislej, V.; Levstek, M.; Kovačič, A.; Cimrmančič, B.; Uranjek, N.; Kosjek, T.; Heath, D.; Dolenc, M.S.; et al. The occurrence and source identification of bisphenol compounds in wastewaters. Sci. Total Environ. 2018, 616–617, 744–752. [Google Scholar] [CrossRef]
- Yamazaki, E.; Yamashita, N.; Taniyasu, S.; Lam, J.; Lam, P.K.; Moon, H.-B.; Jeong, Y.; Kannan, P.; Achyuthan, H.; Munuswamy, N.; et al. Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India. Ecotoxicol. Environ. Saf. 2015, 122, 565–572. [Google Scholar] [CrossRef]
- Moriyama, K.; Tagami, T.; Akamizu, T.; Usui, T.; Saijo, M.; Kanamoto, N.; Hataya, Y.; Shimatsu, A.; Kuzuya, H.; Nakao, K. Thyroid hormone action is disrupted by bisphenol A as an antagonist. J. Clin. Endocrinol. Metab. 2002, 87, 5185–5190. [Google Scholar] [CrossRef]
- Pérez-Albaladejo, E.; Fernandes, D.C.; Lacorte, S.; Porte, C. Comparative toxicity, oxidative stress and endocrine disruption potential of plasticizers in JEG-3 human placental cells. Toxicol. Vitr. 2017, 38, 41–48. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, L.; Zhang, J.; Yang, Y.; Wu, Y.; Shao, B. Simultaneous determination of seven bisphenols in environmental water and solid samples by liquid chromatography–electrospray tandem mass spectrometry. J. Chromatogr. A 2014, 1328, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Abualnaja, K.O.; Asimakopoulos, A.G.; Covaci, A.; Gevao, B.; Johnson-Restrepo, B.; Kumosani, T.A.; Malarvannan, G.; Minh, T.B.; Moon, H.-B.; et al. A comparative assessment of human exposure to tetrabromobisphenol A and eight bisphenols including bisphenol A via indoor dust ingestion in twelve countries. Environ. Int. 2015, 83, 183–191. [Google Scholar] [CrossRef]
- Rocha, B.A.; Da Costa, B.R.B.; De Albuquerque, N.C.P.; De Oliveira, A.R.M.; Souza, J.M.O.; Al-Tameemi, M.; Campiglia, A.D.; Barbosa, F. A fast method for bisphenol A and six analogues (S, F, Z, P, AF, AP) determination in urine samples based on dispersive liquid-liquid microextraction and liquid chromatography-tandem mass spectrometry. Talanta 2016, 154, 511–519. [Google Scholar] [CrossRef]
- Eladak, S.; Grisin, T.; Moison, D.; Guerquin, M.-J.; N’Tumba-Byn, T.; Pozzi-Gaudin, S.; Benachi, A.; Livera, G.; Rouiller-Fabre, V.; Habert, R. A new chapter in the bisphenol A story: Bisphenol S and bisphenol F are not safe alternatives to this compound. Fertil. Steril. 2015, 103, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.; Liu, F.; Kannan, K. Bisphenol S, a new bisphenol analogue, in paper products and currency bills and its association with bisphenol A residues. Environ. Sci. Technol. 2012, 46, 6515–6522. [Google Scholar] [CrossRef]
- Feng, Y.; Yin, J.; Jiao, Z.; Shi, J.; Li, M.; Shao, B. Bisphenol AF may cause testosterone reduction by directly affecting testis function in adult male rats. Toxicol. Lett. 2012, 211, 201–209. [Google Scholar] [CrossRef]
- Maćczak, A.; Cyrkler, M.; Bukowska, B.; Michałowicz, J. Bisphenol A, bisphenol S, bisphenol F and bisphenol AF induce different oxidative stress and damage in human red blood cells (in vitro study). Toxicol. Vitr. 2017, 41, 143–149. [Google Scholar] [CrossRef]
- Negreira, N.; Rodríguez, I.; Ramil, M.; Rubi, E.; Cela, R.; Pereiro, I.R. Solid-phase extraction followed by liquid chromatography–tandem mass spectrometry for the determination of hydroxylated benzophenone UV absorbers in environmental water samples. Anal. Chim. Acta 2009, 654, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Langford, K.H.; Reid, M.J.; Fjeld, E.; Øxnevad, S.; Thomas, K.V. Environmental occurrence and risk of organic UV filters and stabilizers in multiple matrices in Norway. Environ. Int. 2015, 80, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Miljødirektoratet. Norwegian Environmental Agency. Screening Program 2013. New Bisphenols, Organic Peroxides, Fluorinated Siloxanes, Organic UV Filters and Selected PBT Substances. Available online: https://www.miljodirektoratet.no/globalassets/publikasjoner/M176/M176.pdf (accessed on 20 August 2020).
- González-Rubio, S.; Vike-Jonas, K.; Gonzalez, S.V.; Ballesteros-Gomez, A.; Sonne, C.; Dietz, R.; Boertmann, D.; Rasmussen, L.M.; Jaspers, V.L.B.; Asimakopoulos, A.G. Bioaccumulation potential of bisphenols and benzophenone UV filters: A multiresidue approach in raptor tissues. Sci. Total Environ. 2020, 741, 140330. [Google Scholar] [CrossRef] [PubMed]
- Willgohs, J.F. The White-Tailed Eagle Haliaëtus Albicilla Albicilla (Linné) in Norway; Norwegian University Press: Oslo, Norway, 1961. [Google Scholar]
- International Union for Conservation of Nature (IUCN). Bird Life International. Haliaeetus albicilla. The IUCN Red List of Threatened Species. 2015. Available online: https://www.iucnredlist.org/species/22695137/60115830 (accessed on 1 September 2020).
- Dahl, E.L.; Bevanger, K.; Nygård, T.; Røskaft, E.; Stokke, B.G. Reduced breeding success in white-tailed eagles at Smøla windfarm, western Norway, is caused by mortality and displacement. Biol. Conserv. 2012, 145, 79–85. [Google Scholar] [CrossRef]
- Statkraft: Smøla Wind Farm. Available online: https://www.statkraft.com/about-statkraft/where-we-operate/norway/smola-wind-farm/ (accessed on 6 February 2021).
- Dahl, E.L.; May, R.; Hoel, P.L.; Bevanger, K.; Pedersen, H.C.; Røskaft, E.; Stokke, B.G. White-tailed eagles (Haliaeetus albicilla) at the Smøla wind-power plant, Central Norway, lack behavioral flight responses to wind turbines. Wildl. Soc. Bull. 2013, 37, 66–74. [Google Scholar] [CrossRef]
- MapBox. 2020. Available online: https://www.mapbox.com/ (accessed on 23 August 2020).
- Helander, B.; Ekman, B.; Hägerroth, J.-E.; Hägerroth, P.-Å.; Israelsson, J. Dräktkaraktärer hos havsörnar med känd ålder. Vår Fågelvärld 1989, 48, 319–334. [Google Scholar]
- Herzke, D.; Kallenborn, R.; Nygård, T. Organochlorines in egg samples from Norwegian birds of prey: Congener-, isomer- and enantiomer specific considerations. Sci. Total Environ. 2002, 291, 59–71. [Google Scholar] [CrossRef]
- European Chemicals Agency (ECHA). Substance Info Card for BPA. Available online: https://echa.europa.eu/substance-information/-/substanceinfo/100.001.133 (accessed on 25 August 2020).
- Corrales, J.; Kristofco, L.A.; Steele, W.B.; Yates, B.S.; Breed, C.S.; Williams, E.S.; Brooks, B. Global assessment of bisphenol A in the environment. Dose-Response 2015, 13. [Google Scholar] [CrossRef] [Green Version]
- Miljøstatus; Norwegian Environmental Agency. Bisphenol A. Last Update May 2019. Available online: https://miljostatus.miljodirektoratet.no/tema/miljogifter/prioriterte-miljogifter/bisfenoler-bisfenol-a/#heading2 (accessed on 3 September 2020).
- Staniszewska, M.; Falkowska, L.; Grabowski, P.; Kwaśniak, J.; Mudrak-Cegiołka, S.; Reindl, A.R.; Sokołowski, A.; Szumiło, E.; Zgrundo, A. Bisphenol A, 4-tert-octylphenol, and 4-nonylphenol in the Gulf of Gdańsk (Southern Baltic). Arch. Environ. Contam. Toxicol. 2014, 67, 335–347. [Google Scholar] [CrossRef] [Green Version]
- Baron, E.; Manez, M.; Andreu, A.C.; Sergio, F.; Hiraldo, F.; Eljarrat, E.; Barceló, J. Bioaccumulation and biomagnification of emerging and classical flame retardants in bird eggs of 14 species from Doñana Natural Space and surrounding areas (South-western Spain). Environ. Int. 2014, 68, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Tongue, A.D.; Reynolds, S.J.; Fernie, K.; Harrad, S. Flame retardant concentrations and profiles in wild birds associated with landfill: A critical review. Environ. Pollut. 2019, 248, 646–658. [Google Scholar] [CrossRef] [PubMed]
- European Chemicals Agency (ECHA). Substance Info Card for BPAF. Available online: https://echa.europa.eu/es/substance-information/-/substanceinfo/100.014.579 (accessed on 31 August 2020).
- Shi, J.; Jiao, Z.; Zheng, S.; Li, M.; Zhang, J.; Feng, Y.; Yin, J.; Shao, B. Long-term effects of bisphenol AF (BPAF) on hormonal balance and genes of hypothalamus-pituitary-gonad axis and liver of zebrafish (Danio rerio), and the impact on offspring. Chemosphere 2015, 128, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Z.; Liu, J.; Ji, G.; Shi, L.; Xu, J.; Yang, J. Deriving the freshwater quality criteria of BPA, BPF and BPAF for protecting aquatic life. Ecotoxicol. Environ. Saf. 2018, 164, 713–721. [Google Scholar] [CrossRef]
- Blum, A.; Balan, S.A.; Scheringer, M.; Trier, X.; Goldenman, G.; Cousins, I.T.; Diamond, M.; Fletcher, T.; Higgins, C.; Lindeman, A.E.; et al. The Madrid statement on poly- and perfluoroalkyl substances (PFASs). Environ. Health Perspect. 2015, 123, A107–A111. [Google Scholar] [CrossRef]
- European Chemicals Agency (ECHA). Substance Info Card for BPF. Available online: https://echa.europa.eu/es/substance-information/-/substanceinfo/100.009.691 (accessed on 31 August 2020).
- Molins-Delgado, D.; Máñez, M.; Andreu, A.; Hiraldo, F.; Eljarrat, E.; Barceló, J.; Diaz-Cruz, M.S. A potential new threat to wild life: Presence of UV filters in bird eggs from a preserved area. Environ. Sci. Technol. 2017, 51, 10983–10990. [Google Scholar] [CrossRef]
Target Analytes | Amount (ng) | % R (n = 4) | RSD % (n = 4) |
---|---|---|---|
BPS | 2.5 | not quantifiable | - |
10 | 104 | 7.5 | |
20 | 97 | 4.8 | |
50 | 85 | 5.5 | |
BzP-2 | 2.5 | 39 | 7.1 |
10 | 42 | 6.8 | |
20 | 40 | 5.9 | |
50 | 40 | 7.4 | |
4-OH-BzP | 2.5 | 72 | 5.2 |
10 | 79 | 19 | |
20 | 82 | 25 | |
50 | 80 | 31 | |
BzP-1 | 2.5 | 55 | 15 |
10 | 44 | 16 | |
20 | 44 | 28 | |
50 | 39 | 34 | |
BPF | 2.5 | 65 | 3.7 |
10 | 60 | 14 | |
20 | 57 | 7.4 | |
50 | 57 | 13 | |
BzP-8 | 2.5 | 57 | 24 |
10 | 84 | 18 | |
20 | 59 | 11 | |
50 | 64 | 14 | |
BPAF | 2.5 | 104 | 4.2 |
10 | 98 | 7.9 | |
20 | 98 | 2.0 | |
50 | 94 | 6.7 | |
BPA | 2.5 | 61 | 12 |
10 | 52 | 7.0 | |
20 | 54 | 6.0 | |
50 | 52 | 4.5 | |
BPB | 2.5 | 38 | 15 |
10 | 55 | 27 | |
20 | 52 | 22 | |
50 | 62 | 8.6 | |
BPM/BPP | 2.5 | 67 | 12 |
10 | 83 | 17 | |
20 | 88 | 9.6 | |
50 | 91 | 14 |
Sample Code | Sampling Year | Gender | Estimated Age | BzP-2 | 4-OH-BzP | BzP-1 | BzP-8 | BPAF | BPA |
---|---|---|---|---|---|---|---|---|---|
HA 07 | 2006 | F | Adult | 2.17 | 0.38 | - | - | 1.54 | - |
HA 08 | 2006 | M | Adult | - # | - | - | - | 2.22 | - |
HA 11 | 2006 | F | Subadult | - | 0.64 | - | - | - | - |
HA 14 | 2008 | M | Adult | - | - | 2.45 | - | - | - |
HA 15A | 2008 | M | Adult | - | - | 3.14 | - | 2.21 | - |
HA 20 | 2008 | M | Adult | - | - | - | - | 5.19 | 33.8 |
HA 21 | 2008 | M | Adult | - | 0.21 | - | - | 2.90 | - |
HA 22A | 2009 | M | Subadult | - | - | - | - | 2.75 | - |
HA 25 | 2009 | F | Subadult | - | - | 2.14 | 10.5 | 6.39 | - |
HA 26 | 2009 | M | Subadult | - | - | - | - | 4.98 | 7.43 |
117862 | 2010 | M | Juvenile | - | - | - | - | 4.54 | - |
HA 29 | 2010 | F | Adult | - | - | - | - | 2.34 | 3.74 |
HA 30 | 2010 | M | Subadult | - | 2.08 | - | - | - | - |
HA 31 | 2010 | F | Adult | - | 0.14 | - | - | 2.57 | 3.36 |
HA 32 | 2010 | M | Subadult | - | 0.39 | - | - | - | - |
HA 35 | 2010 | F | Subadult | - | - | - | - | 6.68 | 15.1 |
HA 40 | 2011 | M | Adult | - | - | 3.04 | - | 3.11 | - |
HA 41 | 2011 | F | Adult | - | 0.22 | 7.94 | - | 1.08 | - |
HA 42 | 2011 | M | Adult | - | - | - | - | 2.48 | - |
HA 45 | 2012 | M | Subadult | - | - | - | 2.08 | 1.88 | - |
HA 46 | 2012 | M | Adult | - | - | - | - | 3.08 | - |
172013 | 2013 | M | Nestling | - | - | - | - | - | 3.76 |
HA 52 | 2013 | F | Subadult | - | - | - | - | 2.23 | - |
23042014 | 2014 | F | Adult | - | - | - | - | 1.12 | - |
HA 56 | 2014 | M | Subadult | - | - | - | - | 2.15 | 10.7 |
HA 58 | 2014 | F | Subadult | - | - | - | - | 1.79 | - |
HA 59 | 2014 | F | Adult | - | - | 3.18 | - | 3.38 | - |
HA 60 | 2015 | M | Subadult | - | - | - | - | 1.7 | - |
HA 61 | 2015 | M | Subadult | - | - | - | - | 1.98 | - |
HA 62 | 2015 | F | Adult | - | - | 2.74 | - | 3.12 | - |
HA 65 | 2016 | M | Subadult | - | - | 2.07 | - | 2.99 | - |
HA 67 | 2016 | F | Adult | - | - | - | - | 3.73 | - |
HA 68 | 2016 | F | Subadult | - | - | 2.47 | - | 2.33 | 5.3 |
HA 72 | 2016 | F | Adult | - | - | - | - | 3.28 | - |
HA 83 | 2017 | M | Adult | - | - | - | - | 2.56 | - |
HA 81 | 2018 | M | Adult | - | 0.9 | 3.25 | - | 2.32 | - |
HA 85 | 2018 | F | Adult | - | - | - | - | - | - |
HA 88 | 2018 | F | Adult | - | - | - | - | 2.25 | - |
Detection rate | 1/38 | 8/38 | 10/38 | 2/38 | 32/38 | 8/38 | |||
Median * | 2.17 | 0.38 | 2.89 | 6.32 | 2.52 | 6.37 | |||
Mean * | 2.17 | 0.62 | 3.24 | 6.32 | 2.91 | 10.4 | |||
SD * | n.c. | 0.60 | 1.62 | 4.23 | 1.33 | 9.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oró-Nolla, B.; Lacorte, S.; Vike-Jonas, K.; Gonzalez, S.V.; Nygård, T.; Asimakopoulos, A.G.; Jaspers, V.L.B. Occurrence of Bisphenols and Benzophenone UV Filters in White-Tailed Eagles (Haliaeetus albicilla) from Smøla, Norway. Toxics 2021, 9, 34. https://doi.org/10.3390/toxics9020034
Oró-Nolla B, Lacorte S, Vike-Jonas K, Gonzalez SV, Nygård T, Asimakopoulos AG, Jaspers VLB. Occurrence of Bisphenols and Benzophenone UV Filters in White-Tailed Eagles (Haliaeetus albicilla) from Smøla, Norway. Toxics. 2021; 9(2):34. https://doi.org/10.3390/toxics9020034
Chicago/Turabian StyleOró-Nolla, Bernat, Silvia Lacorte, Kristine Vike-Jonas, Susana V. Gonzalez, Torgeir Nygård, Alexandros G. Asimakopoulos, and Veerle L.B. Jaspers. 2021. "Occurrence of Bisphenols and Benzophenone UV Filters in White-Tailed Eagles (Haliaeetus albicilla) from Smøla, Norway" Toxics 9, no. 2: 34. https://doi.org/10.3390/toxics9020034
APA StyleOró-Nolla, B., Lacorte, S., Vike-Jonas, K., Gonzalez, S. V., Nygård, T., Asimakopoulos, A. G., & Jaspers, V. L. B. (2021). Occurrence of Bisphenols and Benzophenone UV Filters in White-Tailed Eagles (Haliaeetus albicilla) from Smøla, Norway. Toxics, 9(2), 34. https://doi.org/10.3390/toxics9020034