Heavy Metal Accumulation in Rice and Aquatic Plants Used as Human Food: A General Review
Abstract
:1. Introduction
2. Importance of Rice and Aquatic Plants as Human Food
3. Heavy Metals Present/Accumulated in Rice and Aquatic Plants
4. Mechanisms of Heavy Metal Accumulation
5. Sources of Heavy Metals for Bioaccumulation
6. Heavy Metals in Food Chain from Rice and Aquatic Plants to Humans
- Indicator plants—plants which are usually sensitive to heavy metals. These can be used as indicators as for the presence of metal in the substrate they have grown in.
- Excluders—these plants can tolerate heavy metals in the substrate up to a threshold concentration. This is achieved by preventing the accumulation of the heavy metal in the cell by either blocking the uptake in roots or by energy dependent efflux pumps. Most metal (hyper) tolerant plants are categorised into this group.
- Hyperaccumulators—in addition to the ability to tolerate high concentrations of specific elements, these plants can actively take them up and accumulate them in their aerial parts. Often these plants have specific mechanisms to avoid poisoning themselves by the accumulated metals.
7. Human Health Risk Associated with Heavy Metal Accumulation in Food
8. Ecological and Environmental Challenges Due to Heavy Metal Accumulation
9. Mitigation of Heavy Metal Accumulation in Rice and Aquatic Plants
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, R.K.; Agrawal, M. Biological effects of heavy metals: An overview. J. Environ. Biol. 2005, 26, 301–313. [Google Scholar]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Hawkes, S.J. What is a “heavy metal”? J. Chem. Educ. 1997, 74, 1374. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Aasim, M.; Bakhsh, A.; Sameeullah, M.; Karataş, M.; Khawar, K.M. Aquatic plants as human food. In Global Perspectives on Underutilized Crops; Ozturk, M., Hakeem, K., Ashraf, M., Ahmad, M., Eds.; Springer: Cham, Switzerland, 2018; pp. 165–187. [Google Scholar]
- Mishra, P.; Mishra, M. Risk Assessment of heavy metal contamination in paddy soil, plants, and grains (Oryza sativa L.). In Environmental Pollution of Paddy Soils; Hashmi, M., Varma, A., Eds.; Springer: Cham, Switzerland, 2018; Volume 53, pp. 165–178. [Google Scholar]
- Mishra, S.; Bharagava, R.N.; More, N.; Yadav, A.; Zainith, S.; Mani, S.; Chowdhary, P. Heavy metal contamination: An alarming threat to environment and human health. In Environmental Biotechnology: For Sustainable Future; Sobti, R., Arora, N., Kothari, R., Eds.; Springer: Singapore, 2019; pp. 103–125. [Google Scholar]
- Tiner, R.W. The concept of a hydrophyte for wetland identification. Bioscience 1991, 41, 236–247. [Google Scholar] [CrossRef]
- Martin, J.H.; Leonard, W.H. Principles of Field Crop Production; Macmillan: New York, NY, USA, 1949. [Google Scholar]
- Drew, M.; Lynch, J.M. Soil anaerobiosis, microorganisms, and root function. Annu. Rev. Phytopathol. 1980, 18, 37–66. [Google Scholar] [CrossRef]
- Magneschi, L.; Perata, P. Rice germination and seedling growth in the absence of oxygen. Ann. Bot. 2009, 103, 181–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography, and, Evolution of Dormancy and Germination; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Farnsworth, E. The ecology and physiology of viviparous and recalcitrant seeds. Ann. Rev. Ecol. Syst. 2000, 31, 107–138. [Google Scholar] [CrossRef]
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Gnanamanickam, S.S. Rice and its importance to human life. In Biological Control of Rice Diseases, Progress in Biological Control; Springer: Dordrecht, The Netherlands, 2009; pp. 1–11. [Google Scholar]
- Yu, X.; Chu, M.; Chu, C.; Du, Y.; Shi, J.; Liu, X.; Liu, Y.; Zhang, H.; Zhang, Z.; Yan, N. Wild rice (Zizania spp.): A review of its nutritional constituents, phytochemicals, antioxidant activities, and health-promoting effects. Food Chem. 2020, 331, 127293. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-C.; Huang, H.-C.; Wang, Y.-S.; Yen, J.-H. Effect of benzyl butyl phthalate on physiology and proteome characterization of water celery (Ipomoea aquatica Forsk.). Ecotoxicol. Environ. Saf. 2011, 74, 1325–1330. [Google Scholar] [CrossRef]
- Klimek-Szczykutowicz, M.; Szopa, A.; Ekiert, H. Chemical composition, traditional and professional use in medicine, application in environmental protection, position in food and cosmetics industries, and biotechnological studies of Nasturtium officinale (watercress)—A review. Fitoterapia 2018, 129, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Dua, T.K.; Dewanjee, S.; Gangopadhyay, M.; Khanra, R.; Zia-Ul-Haq, M.; De Feo, V. Ameliorative effect of water spinach, Ipomea aquatica (Convolvulaceae), against experimentally induced arsenic toxicity. J. Transl. Med. 2015, 13, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Atabaki, N.; Shaharuddin, N.A.; Ahmad, S.A.; Nulit, R.; Abiri, R. Assessment of Water Mimosa (Neptunia oleracea Lour.) Morphological, Physiological, and Removal Efficiency for Phytoremediation of Arsenic-Polluted Water. Plants 2020, 9, 1500. [Google Scholar] [CrossRef]
- Xiao, L.; Chen, J.; Wang, X.; Bai, R.; Chen, D.; Liu, J. Structural and physicochemical properties of chemically modified Chinese water chestnut [Eleocharis dulcis (Burm. f.) Trin. ex Hensch] starches. Int. J. Biol. Macromol. 2018, 120, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Hummel, M.; Kiviat, E. Review of world literature on water chestnut with implications for management in North America. J. Aquat. Plant Manag. 2004, 42, 17–27. [Google Scholar]
- Paudel, K.R.; Panth, N. Phytochemical profile and biological activity of Nelumbo nucifera. J. Evid. Based Complementary Altern. Med. 2015, 2015, 789124. [Google Scholar]
- Akwee, P.; Netondo, G.; Kataka, J.; Palapala, V.A. A critical review of the role of taro Colocasia esculenta L. (Schott) to food security: A comparative analysis of Kenya and Pacific Island taro germplasm. Sci. Agric. 2015, 9, 101–108. [Google Scholar]
- Fruet, A.C.; Seito, L.N.; Rall, V.L.M.; Di Stasi, L.C. Dietary intervention with narrow-leaved cattail rhizome flour (Typha angustifolia L.) prevents intestinal inflammation in the trinitrobenzenesulphonic acid model of rat colitis. BMC Complementary Altern. Med. 2012, 12, 62. [Google Scholar] [CrossRef] [Green Version]
- Barros de Medeiros, V.P.; da Costa, W.K.A.; da Silva, R.T.; Pimentel, T.C.; Magnani, M. Microalgae as source of functional ingredients in new-generation foods: Challenges, technological effects, biological activity, and regulatory issues. Crit. Rev. Food Sci. Nutr. 2021, 61, 1–22. [Google Scholar] [CrossRef]
- Edwards, C.A. The importance of integration in sustainable agricultural systems. Agric. Ecosyst. Environ. 1989, 27, 25–35. [Google Scholar] [CrossRef]
- Novotny, V. Diffuse pollution from agriculture—A worldwide outlook. Water Sci. Technol. 1999, 39, 1–13. [Google Scholar] [CrossRef]
- Singh, R. Environmental consequences of agricultural development: A case study from the Green Revolution state of Haryana, India. Agric. Ecosyst. Environ. 2000, 82, 97–103. [Google Scholar] [CrossRef]
- Barko, J.W.; James, W.F. Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, and resuspension. In The Structuring Role of Submerged Macrophytes in Lakes; Ecological Studies (Analysis and Synthesis); Jeppesen, E., Søndergaard, M., Søndergaard, M., Christoffersen, K., Eds.; Springer: New York, NY, USA, 1998; Volume 131, pp. 197–214. [Google Scholar]
- Ali, S.; Abbas, Z.; Rizwan, M.; Zaheer, I.E.; Yavaş, İ.; Ünay, A.; Abdel-Daim, M.M.; Bin-Jumah, M.; Hasanuzzaman, M.; Kalderis, D. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability 2020, 12, 1927. [Google Scholar] [CrossRef] [Green Version]
- Proshad, R.; Kormoker, T.; Mursheed, N.; Islam, M.M.; Bhuyan, M.I.; Islam, M.S.; Mithu, T.N. Heavy metal toxicity in agricultural soil due to rapid industrialization in Bangladesh: A review. Int. J. Adv. Geosci. 2018, 6, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Sahu, Y.K.; Deb, M.K.; Patel, K.S.; Martín-Ramos, P.; Towett, E.K.; Tarkowska-Kukuryk, M. Bioaccumulation of nutrients and toxic elements with macrophytes. J. Hazard. Toxic Radioact. Waste 2020, 24, 05019007. [Google Scholar] [CrossRef]
- Mustafa, H.M.; Hayder, G. Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Eng. J. 2021, 12, 355–365. [Google Scholar] [CrossRef]
- Zavahir, J.S.; Wijepala, P.C.; Seneviratne, G. Role of Microbial Communities in Plant–Microbe Interactions, Metabolic Cooperation, and Self-Sufficiency Leading to Sustainable Agriculture. In Role of Microbial Communities for Sustainability. Microorganisms for Sustainability; Seneviratne, G., Zavahir, J.S., Eds.; Springer: Singapore, 2021; Volume 29, pp. 1–35. [Google Scholar]
- Overall, R.A.; Parry, D.L. The uptake of uranium by Eleocharis dulcis (Chinese water chestnut) in the Ranger Uranium Mine constructed wetland filter. Environ. Pollut. 2004, 132, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kaur, I.; Nagpal, A.K. Contamination of rice crop with potentially toxic elements and associated human health risks—A review. Environ. Sci. Pollut. Res. 2021, 28, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Göthberg, A.; Greger, M.; Bengtsson, B.E. Accumulation of heavy metals in water spinach (Ipomoea aquatica) cultivated in the Bangkok region, Thailand. Environ. Toxicol. Chem. Int. J. 2002, 21, 1934–1939. [Google Scholar] [CrossRef]
- Luo, Y.; Zhao, X.; Xu, T.; Liu, H.; Li, X.; Johnson, D.; Huang, Y. Bioaccumulation of heavy metals in the lotus root of rural ponds in the middle reaches of the Yangtze River. J. Soils Sediments 2017, 17, 2557–2565. [Google Scholar] [CrossRef]
- Duman, F.; Leblebici, Z.; Aksoy, A. Growth and bioaccumulation characteristics of watercress (Nasturtium officinale R. BR.) exposed to cadmium, cobalt and chromium. Chem. Speciat. Bioavailab. 2009, 21, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Graber, A.; Junge, R. Aquaponic Systems: Nutrient recycling from fish wastewater by vegetable production. Desalination 2009, 246, 147–156. [Google Scholar] [CrossRef]
- Luo, W.; Wang, D.; Xu, Z.; Liao, G.; Chen, D.; Huang, X.; Wang, Y.; Yang, S.; Zhao, L.; Huang, H. Effects of cadmium pollution on the safety of rice and fish in a rice-fish coculture system. Environ. Int. 2020, 143, 105898. [Google Scholar] [CrossRef]
- Llobet, J.; Falco, G.; Casas, C.; Teixido, A.; Domingo, J. Concentrations of arsenic, cadmium, mercury, and lead in common foods and estimated daily intake by children, adolescents, adults, and seniors of Catalonia, Spain. J. Agric. Food Chem. 2003, 51, 838–842. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.; Wu, H.; Hao, B.; Huang, W.; Liu, G. Bioaccumulation of heavy metals by submerged macrophytes: Looking for hyperaccumulators in eutrophic lakes. Environ. Sci. Technol. 2013, 47, 4695–4703. [Google Scholar] [CrossRef]
- Valipour, A.; Ahn, Y.-H. Constructed wetlands as sustainable ecotechnologies in decentralization practices: A review. Environ. Sci. Pollut. Res. 2016, 23, 180–197. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, L.; Rajendran, S.; Subramanian, N. Metal stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. In Role of Microbial Communities for Sustainability. Microorganisms for Sustainability; Seneviratne, G., Zavahir, J.S., Eds.; Springer: Singapore, 2021; Volume 29, pp. 317–332. [Google Scholar]
- Lee, S.; Kang, D.-W.; Yoo, J.-H.; Park, S.-W.; Oh, K.-S.; Lee, J.-H.; Cho, I.K.; Moon, B.-C.; Kim, W.-I. Determination of bioconcentration factor of heavy metal (loid)s in rice grown on soils vulnerable to heavy metal (loid)s contamination. Korean J. Soil. Sci. Fert. 2017, 50, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Raskin, I.; Smith, R.D.; Salt, D.E. Phytoremediation of metals: Using plants to remove pollutants from the environment. Curr. Opin. Biotechnol. 1997, 8, 221–226. [Google Scholar] [CrossRef]
- Nyquist, J.; Greger, M. Uptake of Zn, Cu, and Cd in metal loaded Elodea canadensis. Environ. Exp. Bot. 2007, 60, 219–226. [Google Scholar] [CrossRef]
- Greger, M. Metal availability and bioconcentration in plants. In Heavy Metal Stress in Plants; Springer: Berlin/Heidelberg, Gremany, 1999; pp. 1–27. [Google Scholar]
- Gallego, S.M.; Benavides, M.P.; Tomaro, M.L. Effect of heavy metal ion excess on sunflower leaves: Evidence for involvement of oxidative stress. Plant Sci. 1996, 121, 151–159. [Google Scholar] [CrossRef]
- Salt, D.E.; Blaylock, M.; Kumar, N.P.; Dushenkov, V.; Ensley, B.D.; Chet, I.; Raskin, I. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Bio/Technology 1995, 13, 468–474. [Google Scholar] [CrossRef]
- Maurya, P.K.; Malik, D.; Yadav, K.K.; Kumar, A.; Kumar, S.; Kamyab, H. Bioaccumulation and potential sources of heavy metal contamination in fish species in River Ganga basin: Possible human health risks evaluation. Toxicol. Rep. 2019, 6, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. [Google Scholar] [CrossRef]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.-H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef]
- Laskowski, R. Are the top carnivores endangered by heavy metal biomagnification? Oikos 1991, 60, 387–390. [Google Scholar] [CrossRef]
- Neeratanaphan, L.; Khamma, S.; Benchawattananon, R.; Ruchuwararak, P.; Appamaraka, S.; Intamat, S. Heavy metal accumulation in rice (Oryza sativa) near electronic waste dumps and related human health risk assessment. Hum. Ecol. Risk Assess. Int. J. 2017, 23, 1086–1098. [Google Scholar] [CrossRef]
- Fan, Y.; Li, Y.; Li, H.; Cheng, F. Evaluating heavy metal accumulation and potential risks in soil-plant systems applied with magnesium slag-based fertilizer. Chemosphere 2018, 197, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Edelstein, M.; Ben-Hur, M. Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Sci. Hortic. 2018, 234, 431–444. [Google Scholar] [CrossRef]
- Masindi, V.; Muedi, K.L. Environmental contamination by heavy metals. Heavy Met. 2018, 10, 115–132. [Google Scholar]
- Ali, H.; Khan, E. Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs—Concepts and implications for wildlife and human health. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 1353–1376. [Google Scholar] [CrossRef]
- Peralta-Videa, J.R.; Lopez, M.L.; Narayan, M.; Saupe, G.; Gardea-Torresdey, J. The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. Int. J. Biochem. Cell Biol. 2009, 41, 1665–1677. [Google Scholar] [CrossRef] [PubMed]
- FAO/WHO. Evaluation of Certain Food Additives and Contaminants: Sixty-Eighth Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2007; Volume 68. [Google Scholar]
- Annex, I. Report of the Tenth Meeting of the OIE Animal Production Food Safety Working Group; World Organisation for Animal Health: Paris, France, 2010. [Google Scholar]
- Robinson, B.; Duwig, C.; Bolan, N.; Kannathasan, M.; Saravanan, A. Uptake of arsenic by New Zealand watercress (Lepidium sativum). Sci. Total Environ. 2003, 301, 67–73. [Google Scholar] [CrossRef]
- Liu, W.-X.; Shen, L.-F.; Liu, J.-W.; Wang, Y.-W.; Li, S.-R. Uptake of toxic heavy metals by rice (Oryza sativa L.) cultivated in the agricultural soil near Zhengzhou City, People’s Republic of China. Bull. Environ. Contam. Toxicol. 2007, 79, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Song, Y.; Chen, L.; Ji, J.; Li, J.; Yuan, X.; Yang, Z.; Ayoko, G.A.; Frost, R.L.; Theiss, F. Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. Catena 2019, 175, 339–348. [Google Scholar] [CrossRef]
- Song, T.; An, Y.; Cui, G.; Tong, S.; He, J. Bioconcentrations and health risk assessment of heavy metals in crops in the Naoli River Basin agricultural area, Sanjiang Plain, China. Environ. Earth Sci. 2021, 80, 1–10. [Google Scholar] [CrossRef]
- Chary, N.S.; Kamala, C.; Raj, D.S.S. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol. Environ. Saf. 2008, 69, 513–524. [Google Scholar] [CrossRef]
- Tang, L.; Luo, W.J.; He, Z.L.; Gurajala, H.K.; Hamid, Y.; Khan, K.Y.; Yang, X.E. Variations in cadmium and nitrate co-accumulation among water spinach genotypes and implications for screening safe genotypes for human consumption. J. Zhejiang Univ. Sci. B 2018, 19, 147–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otitoju, O.; Otitoju, G.; Iyeghe, L.; Onwurah, I. Quantification of heavy metals in some locally produced rice (Oryza sativa) from the northern region of Nigeria. J. Environ. Earth Sci. 2014, 4, 67–71. [Google Scholar]
- Ng, C.C.; Rahman, M.M.; Boyce, A.N.; Abas, M.R. Heavy metals phyto-assessment in commonly grown vegetables: Water spinach (I. aquatica) and okra (A. esculentus). SpringerPlus 2016, 5, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leitenmaier, B.; Küpper, H. Compartmentation and complexation of metals in hyperaccumulator plants. Front. Plant Sci. 2013, 4, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazir, R.; Khan, M.; Masab, M.; Rehman, H.U.; Rauf, N.U.; Shahab, S.; Ameer, N.; Sajed, M.; Ullah, M.; Rafeeq, M. Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam Kohat. J. Pharm. Sci. Res. 2015, 7, 89. [Google Scholar]
- Gladyshev, M.; Gribovskaya, I.; Ivanova, E.; Moskvichova, A.; Muchkina, E.Y.; Chuprov, S. Metal concentrations in the ecosystem and around recreational and fish-breeding pond Bugach. Water Resour. 2001, 28, 288–296. [Google Scholar] [CrossRef]
- Hapke, H.-J. Heavy metal transfer in the food chain to humans. In Fertilizers and Environment. Developments in Plant and Soil Sciences; Springer: Dordrecht, The Netherlands, 1996; Volume 66, pp. 431–436. [Google Scholar]
- Kasiulienė, A.; Paulauskas, V.; Marozas, V.; Waara, S. Accumulation of heavy metals in forest dwarf shrubs and dominant mosses as bioindicators of atmospheric pollution. J. Elem. Olszt. Pol. Tow. Magnezol. 2019, 24, 1079–1090. [Google Scholar] [CrossRef]
- Windham-Myers, L.; Fleck, J.A.; Ackerman, J.T.; Marvin-DiPasquale, M.; Stricker, C.A.; Heim, W.A.; Bachand, P.A.; Eagles-Smith, C.A.; Gill, G.; Stephenson, M. Mercury cycling in agricultural and managed wetlands: A synthesis of methylmercury production, hydrologic export, and bioaccumulation from an integrated field study. Sci. Total Environ. 2014, 484, 221–231. [Google Scholar] [CrossRef]
- Rahman, Z.; Singh, V.P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 2019, 191, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Gunn, L.; Wall, P.; Fanning, S. Antimicrobial resistance and its association with tolerance to heavy metals in agriculture production. Food Microbiol. 2017, 64, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Xi, S. The effects of heavy metals on human metabolism. Toxicol. Mech. Methods 2020, 30, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, L.; Wang, W.; Li, T.; He, Z.; Yang, X. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis. Sci. Total Environ. 2019, 651, 3034–3042. [Google Scholar] [CrossRef]
- Engwa, G.A.; Ferdinand, P.U.; Nwalo, F.N.; Unachukwu, M.N. Mechanism and health effects of heavy metal toxicity in humans. In Poisoning in the Modern World-New Tricks for an Old Dog; BoD–Books on Demand: Norderstedt, Germany, 2019; Volume 10. [Google Scholar]
- Ugulu, I.; Ahmad, K.; Khan, Z.I.; Munir, M.; Wajid, K.; Bashir, H. Effects of organic and chemical fertilizers on the growth, heavy metal/metalloid accumulation, and human health risk of wheat (Triticum aestivum L.). Environ. Sci. Pollut. Res. 2021, 28, 12533–12545. [Google Scholar] [CrossRef] [PubMed]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Izah, S.C.; Chakrabarty, N.; Srivastav, A.L. A review on heavy metal concentration in potable water sources in Nigeria: Human health effects and mitigating measures. Expos. Health 2016, 8, 285–304. [Google Scholar] [CrossRef]
- Vigneri, R.; Malandrino, P.; Gianì, F.; Russo, M.; Vigneri, P. Heavy metals in the volcanic environment and thyroid cancer. Mol. Cell. Endocrinol. 2017, 457, 73–80. [Google Scholar] [CrossRef]
- Sabath, E.; Robles-Osorio, M.L. Renal health and the environment: Heavy metal nephrotoxicity. Nefrología 2012, 32, 279–286. [Google Scholar] [PubMed]
- Dapul, H.; Laraque, D. Lead poisoning in children. Adv. Pediatr. 2014, 61, 313–333. [Google Scholar] [CrossRef]
- Seidler, A.; Hellenbrand, W.; Robra, B.-P.; Vieregge, P.; Nischan, P.; Joerg, J.; Oertel, W.; Ulm, G.; Schneider, E. Possible environmental, occupational, and other etiologic factors for Parkinson’s disease: A case-control study in Germany. Neurology 1996, 46, 1275. [Google Scholar] [CrossRef]
- Rahman, M.M.; Owens, G.; Naidu, R. Arsenic levels in rice grain and assessment of daily dietary intake of arsenic from rice in arsenic-contaminated regions of Bangladesh—Implications to groundwater irrigation. Environ. Geochem. Health 2009, 31, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Oberoi, S.; Barchowsky, A.; Wu, F. The global burden of disease for skin, lung, and bladder cancer caused by arsenic in food. Cancer Epidemiol. Prev. Biomark. 2014, 23, 1187–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandal, P. An insight of environmental contamination of arsenic on animal health. Emerg. Contam. 2017, 3, 17–22. [Google Scholar] [CrossRef]
- Karagas, M.R.; Punshon, T.; Davis, M.; Bulka, C.M.; Slaughter, F.; Karalis, D.; Argos, M.; Ahsan, H. Rice intake and emerging concerns on arsenic in rice: A review of the human evidence and methodologic challenges. Curr. Environ. Health Rep. 2019, 6, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Ötleş, S.; Çağındı, Ö. Health importance of arsenic in drinking water and food. Environ. Geochem. Health 2010, 32, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Jenisova, Z.; Feszterova, M.; Baros, S.; Liska, J.; Hudecova, D.; Rhodes, C.; Valko, M. Arsenic: Toxicity, oxidative stress and human disease. J. Appl. Toxicol. 2011, 31, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Rahimzadeh, M.R.; Rahimzadeh, M.R.; Kazemi, S.; Moghadamnia, A.A. Cadmium toxicity and treatment: An update. Casp. J. Intern. Med. 2017, 8, 135. [Google Scholar]
- Himeno, S.; Aoshima, K. Cadmium Toxicity: New Aspects in Human Disease, Rice Contamination, and Cytotoxicity; Springer: Singapore, 2019. [Google Scholar]
- Dattilo, A.M.; Miguel, S.G. Chromium in health and disease. Nut. Today 2003, 38, 121–133. [Google Scholar] [CrossRef]
- Onakpa, M.M.; Njan, A.A.; Kalu, O.C. A review of heavy metal contamination of food crops in Nigeria. Ann. Glob. Health 2018, 84, 488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papanikolaou, N.C.; Hatzidaki, E.G.; Belivanis, S.; Tzanakakis, G.N.; Tsatsakis, A.M. Lead toxicity update. A brief review. Med. Sci. Monit. 2005, 11, RA329. [Google Scholar]
- Wani, A.; Ara, A.; Usmani, J. Lead toxicity: A review. Interdiscipl. Toxicol. 2015, 8, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Zahir, F.; Rizwi, S.J.; Haq, S.K.; Khan, R.H. Low dose mercury toxicity and human health. Environ. Toxicol. Pharmacol. 2005, 20, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, A.; Chávez, R.D.; Ali, A.-M.S.; Cabaniss, S.E. Mercury in natural waters: A mini-review. Environ. Forensics 2011, 12, 14–18. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Da Silva, M.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Chin, N.P. Environmental toxins: Physical, social, and emotional. Breastfeed. Med. 2010, 5, 223–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhunia, P. Environmental Toxicants and Hazardous Contaminants: Recent Advances in Technologies for Sustainable Development. J. Hazard. Toxic Radioact. Waste 2017, 21, 02017001. [Google Scholar] [CrossRef]
- Cho-Ruk, K.; Kurukote, J.; Supprung, P.; Vetayasuporn, S. Perennial plants in the phytoremediation of lead-contaminated soils. Biotechnology 2006, 5, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Tangahu, B.V.; Sheikh Abdullah, S.R.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. 2011, 2011, 939161. [Google Scholar] [CrossRef]
- Kumar, A.; Prasad, M.; Achary, V.M.M.; Panda, B.B. Elucidation of lead-induced oxidative stress in Talinum triangulare roots by analysis of antioxidant responses and DNA damage at cellular level. Environ. Sci. Pollut. Res. 2013, 20, 4551–4561. [Google Scholar] [CrossRef]
- Gichner, T.; Žnidar, I.; Száková, J. Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants. Mut. Res. Gen. Toxicol. Environ. Mutagen. 2008, 652, 186–190. [Google Scholar] [CrossRef]
- Sharma, A.; Sidhu, G.P.S.; Araniti, F.; Bali, A.S.; Shahzad, B.; Tripathi, D.K.; Brestic, M.; Skalicky, M.; Landi, M. The role of salicylic acid in plants exposed to heavy metals. Molecules 2020, 25, 540. [Google Scholar] [CrossRef] [Green Version]
- Duxbury, J.M.; Panaullah, G.; Zavala, Y.J.; Loeppert, R.H.; Ahmed, Z.U. Impact of use of As-contaminated groundwater on soil as content and paddy rice production in Bangladesh. Food Fertil. Technol. Cent. Tech Bull 2009, 180, 1–11. [Google Scholar]
- Saha, G.C.; Ali, M.A. Dynamics of arsenic in agricultural soils irrigated with arsenic contaminated groundwater in Bangladesh. Sci. Total Environ. 2007, 379, 180–189. [Google Scholar] [CrossRef]
- Samal, A.C.; Kar, S.; Bhattacharya, P.; Santra, S.C. Human exposure to arsenic through foodstuffs cultivated using arsenic contaminated groundwater in areas of West Bengal, India. J. Environ. Sci. Health Part A 2011, 46, 1259–1265. [Google Scholar] [CrossRef]
- Moulick, D.; Santra, S.C.; Ghosh, D. Effect of selenium induced seed priming on arsenic accumulation in rice plant and subsequent transmission in human food chain. Ecotoxicol. Environ. Saf. 2018, 152, 67–77. [Google Scholar] [CrossRef]
- Arunakumara, K.; Walpola, B.C.; Yoon, M.-H. Current status of heavy metal contamination in Asia’s rice lands. Rev. Environ. Sci. Bio/Technol. 2013, 12, 355–377. [Google Scholar] [CrossRef]
- Gimeno-García, E.; Andreu, V.; Boluda, R. Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environ. Pollut. 1996, 92, 19–25. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Ni, Z.; Qu, M.; Zhong, D.; Ye, C.; Tang, F. Pesticides in persimmons, jujubes and soil from China: Residue levels, risk assessment and relationship between fruits and soils. Sci. Total Environ. 2016, 542, 620–628. [Google Scholar] [CrossRef]
- Wickerham, E.L.; Lozoff, B.; Shao, J.; Kaciroti, N.; Xia, Y.; Meeker, J.D. Reduced birth weight in relation to pesticide mixtures detected in cord blood of full-term infants. Environ. Int. 2012, 47, 80–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Zheng, C.; Tu, C.; Shen, Z. Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere 2000, 41, 229–234. [Google Scholar] [CrossRef]
- Perera, T.A.; Tirimanne, S. Role of Microbial Communities in Sustainable Rice Cultivation. In Role of Microbial Communities for Sustainability. Microorganisms for Sustainability; Seneviratne, G., Zavahir, J.S., Eds.; Springer: Singapore, 2021; Volume 29, pp. 189–223. [Google Scholar]
- European Community. Directive 86/276/EEC: Directive on the protection of the environment and in particular of soil, when sewage sludge is used in agriculture, Brussels. Off. J. Eur. Community 1986, 181, 0006–0012. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:31986L0278 (accessed on 18 December 2021).
- Rastetter, N.; Gerhardt, A. Toxic potential of different types of sewage sludge as fertiliser in agriculture: Ecotoxicological effects on aquatic, sediment and soil indicator species. J. Soils Sediments 2017, 17, 106–121. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Int. Sch. Res. Not. 2011, 2011, 402647. [Google Scholar] [CrossRef] [Green Version]
- Bhagwat, V.R. Safety of Water Used in Food Production. In Food Safety and Human Health; Elsevier: Amsterdam, The Netherlands, 2019; pp. 219–247. [Google Scholar]
- Stoop, W.A.; Uphoff, N.; Kassam, A. A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar: Opportunities for improving farming systems for resource-poor farmers. Agric. Syst. 2002, 71, 249–274. [Google Scholar] [CrossRef]
- Lawler, S.P. Rice fields as temporary wetlands: A review. Isr. J. Zool. 2001, 47, 513–528. [Google Scholar] [CrossRef]
- Roba, C.; Roşu, C.; Piştea, I.; Ozunu, A.; Baciu, C. Heavy metal content in vegetables and fruits cultivated in Baia Mare mining area (Romania) and health risk assessment. Environ. Sci. Pollut. Res. 2016, 23, 6062–6073. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, A.D.; Pal, D.; Penta, S.; Kumar, A. Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem. World J. Microbiol. Biotechnol. 2015, 31, 1595–1603. [Google Scholar] [CrossRef]
- Hejna, M.; Gottardo, D.; Baldi, A.; Dell’Orto, V.; Cheli, F.; Zaninelli, M.; Rossi, L. Nutritional ecology of heavy metals. Animal 2018, 12, 2156–2170. [Google Scholar] [CrossRef] [Green Version]
- Zwolak, A.; Sarzyńska, M.; Szpyrka, E.; Stawarczyk, K. Sources of soil pollution by heavy metals and their accumulation in vegetables: A review. Water Air Soil Pollut. 2019, 230, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Sumiahadi, A.; Acar, R. A review of phytoremediation technology: Heavy metals uptake by plants. In IOP Conference Series: Earth and Environmental Science, Proceedings of the 4th International Conference on Sustainable Agriculture and Environment (4th ICSAE) Surakarta, Indonesia, 10–12 August 2017; IOP Publishing: Bristol, UK, 2018; Volume 142, p. 012023. [Google Scholar]
- Fatima, F.; Hashim, A.; Anees, S. Efficacy of nanoparticles as nanofertilizer production: A review. Environ. Sci. Pollut. Res. 2021, 28, 1292–1303. [Google Scholar] [CrossRef]
- Gu, H.-H.; Qiu, H.; Tian, T.; Zhan, S.-S.; Chaney, R.L.; Wang, S.-Z.; Tang, Y.-T.; Morel, J.-L.; Qiu, R.-L. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil. Chemosphere 2011, 83, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, C.; Yong, R.; Gibbs, B. Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Eng. Geol. 2001, 60, 193–207. [Google Scholar] [CrossRef]
- Dermont, G.; Bergeron, M.; Richer-Laflèche, M.; Mercier, G. Remediation of metal-contaminated urban soil using flotation technique. Sci. Total Environ. 2010, 408, 1199–1211. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.-l.; Saigusa, M. Fractionation and solubility of cadmium in paddy soils amended with porous hydrated calcium silicate. J. Environ. Sci. 2007, 19, 343–347. [Google Scholar] [CrossRef]
- Geebelen, W.; Sappin-Didier, V.; Ruttens, A.; Carleer, R.; Yperman, J.; Bongué-Boma, K.; Mench, M.; Van der Lelie, N.; Vangronsveld, J. Evaluation of cyclonic ash, commercial Na-silicates, lime and phosphoric acid for metal immobilisation purposes in contaminated soils in Flanders (Belgium). Environ. Pollut. 2006, 144, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-X.; Liu, Y.-M.; Zhao, Q.-Y.; Cao, W.-Q.; Chen, X.-P.; Zou, C.-Q. Health risk assessment associated with heavy metal accumulation in wheat after long-term phosphorus fertilizer application. Environ. Pollut. 2020, 262, 114348. [Google Scholar] [CrossRef] [PubMed]
Common Name | Scientific Name | Edible Part | Reference |
---|---|---|---|
Rice | Oryza sativa | Grain | [15] |
Wild rice | Zizania spp. | Grain | [16] |
Water celery/Chinese celery/Japanese parsley | Oenanthe javanica | Leaves | [17] |
Watercress | Nasturtium officinale | Leaves | [18] |
Water spinach/Kang kong | Ipomoea aquatica | Leaves, stems | [19] |
Water mimosa | Neptunia oleracea | Leaves | [20] |
Chinese water chestnut | Eleocharis dulcis | Corm, nuts, leaves | [21] |
Water chestnut/Water caltrop | Trapa natans | Seeds | [22] |
Indian lotus | Nelumbo nucifera | Roots, rhizome, stamen, seeds, flowers, leaves | [23] |
Taro | Colocasia esculanta | Rhizome, leaves, stalks, cormels, inflorescence | [24] |
Cattail/Cossack asparagus/Lesser bulrush | Typha spp. | Rhizomes, interior of tender shoots, seeds, pollen, flower spike, subterranean baby shoots | [25] |
Blue-green algae | Spirulina spp. | Biomass | [26] |
Heavy Metal | Permissible Limit in Cereals and Vegetables (mg kg−1) | Amount Present (mg kg−1 Wet Produce) | References | |||
---|---|---|---|---|---|---|
Rice | Water Spinach | Indian Lotus | Watercress | |||
As | 0.1–0.2 | 0.09–0.13 | - | 0.1–1.3 * | 2.0 * | [39,65,66,67,68] |
Cd | 0.05–0.4 | 0.003–0.06 | 0.06–1.10 * | 0.04–0.09 | 0.10 | [38,39,66,67,68,69,70] |
Co | 0.01 | - | - | - | 0.30 * | [69] |
Cr | 1.3 | 0.12–0.37 | - | 1.6–2.2 * | 0.34 | [39,66,67,68,69] |
Cu | 20.0 | 2.6–5.3 | - | 4.4–7.4 | [39,67,68] | |
Hg | 0.03 | 0.002–0.034 * | 1.44 * | [38,66,67,68] | ||
Ni | 0.1 | 0.25 * | - | 0.34 * | [38,68,69] | |
Pb | 0.05–0.3 | 0.01–0.53 * | 0.28 | 0.3–0.8 * | 0.86 * | [38,39,66,67,68,69,71] |
Zn | 60.0 | 16–36 | - | 9.8–15.4 | [39,67,68,72] |
Element | Main Oxidising States | Natural and Lithogenic Sources | Anthropogenic Sources | Effects on Humans |
---|---|---|---|---|
Arsenic | As(III), As(V) | Weathering of rocks, volcanic eruptions, microbial colonization, As bearing minerals in the lithosphere (e.g., FeAsS, CoAsS, NiAs, AsS, As2S, As2O3) | Fossil fuel combustion, mining, smelting, fertilisers, glass production, chemotherapeutic drug production | Carcinogenic and neurotoxic |
Cadmium | Cd(II) | Volcanic activities, weathering, erosion, wildfire, sea salt spray, dust storm, Cd bearing compounds in the lithosphere (e.g., CdS, CdCO3, Cu4Cd(SO4)2(OH)6.4H2O, CdSe) | Ni–Cd batteries, fossil fuel combustions, mining, cement production, plastic stabilisers, coatings industry, phosphate fertiliser | Carcinogenic |
Chromium | Cr(III), Cr(VI) | Tectonic and hydrothermal events, in the lithosphere as FeCr2O4 and PbCrO4 | Aircraft industry, electroplating, wood preservation, tanning, mining, textile dyes manufacturing, metal corrosion inhibition, and cleaning of glassware | Carcinogenic and Mutagenic |
Lead | Pb(II), Pb(IV) | Natural fires, natural deposits, sea salt spray, and volcanic eruptions and over 100 Pb-containing minerals in the lithosphere (e.g., PbS, PbCrO4, PbSO4, Pb5(PO4)3Cl, PbMn8O16, PbCO3) | Pb–acid battery recycling (PABC), Pb-containing gasoline in petrol, pipes, pesticides, ammunition, electronic wastes, mining, ore processing, pigment in paints, dyes, and ceramic glazes | Neurotoxic |
Mercury | Hg, Hg(I), Hg(II) | Weathering of rock, volcanic eruptions, degassing and wildfire. In the lithosphere as metallic form (Hg)(0) (rare) or as HgS, Hg3S2Cl2, HgSb4S8 | Coal combustion, production of non-ferrous and ferrous metals, artisanal and small-scale gold mining (ASGM), cement production, pesticides, and fertilisers production | Neurotoxic |
Heavy Metal | Target Organ | Disease Condition/Clinical Effect | References |
---|---|---|---|
Arsenic | Nervous system, skin, pulmonary, gastrointestinal | Nausea, vomiting, multi-organ dysfunction syndrome, long QT syndrome, ‘rice water’ diarrhoea, nasal septum perforation, peripheral neuropathy, encephalopathy, respiratory cancer, skin cancer, prostate cancer, hypopigmentation, | [95,96] |
Cadmium | Skeletal, renal, pulmonary | Osteomalacia, proteinuria, glucosuria, emphysema, pneumonitis, inhibition of progesterone and oestradiol, alterations in uterus, ovaries and oviduct, progesterone synthesis of ovaries, endocrine disruption, acting as estrogen in breast cancer, excess risk of cardiovascular mortality | [97,98] |
Chromium | Pulmonary, gastrointestinal | Nasal septum perforation, respiratory cancer, ulcers, gastrointestinal haemorrhage, haemolysis, acute renal failure, pulmonary fibrosis, DNA damage | [99,100] |
Lead | Nervous system, renal, hematopoietic system, gastrointestinal | Encephalopathy, anaemia, central nervous disorders, peripheral neuropathy, nausea, vomiting, abdominal pain, nephropathy, foot-drop/wrist-drop, damages circulatory system and cardiovascular system | [101,102] |
Mercury | Nervous system, renal, gastrointestinal | Proteinuria, fever, vomiting, diarrhea, acute lung injury, nausea, metallic taste, gingivo-stomatitis, tremor, neurasthenia, nephrotic syndrome; hypersensitivity, cough, fever, tremor, malaise, motor neuropathy, gum disease, delusions and hallucinations | [103,104] |
Technique | Purpose/Outcome | References |
---|---|---|
Chemical washing | Remediation of heavy metals | [136,137] |
Electro-remediation | Remediation of heavy metals | [136,137] |
Phytoremediation | Remediation of heavy metals | [136,137] |
Immobilisation/phytostabilisation | Remediation of heavy metals | [136,137,138] |
Amendments (limestone, zeolite) | Stabilisation of heavy metals | [139,140] |
Application of fly ash (FA) and steel slag (SS) | Increase soil pH and decrease heavy metal phytoavailability | [135] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uddin, M.M.; Zakeel, M.C.M.; Zavahir, J.S.; Marikar, F.M.M.T.; Jahan, I. Heavy Metal Accumulation in Rice and Aquatic Plants Used as Human Food: A General Review. Toxics 2021, 9, 360. https://doi.org/10.3390/toxics9120360
Uddin MM, Zakeel MCM, Zavahir JS, Marikar FMMT, Jahan I. Heavy Metal Accumulation in Rice and Aquatic Plants Used as Human Food: A General Review. Toxics. 2021; 9(12):360. https://doi.org/10.3390/toxics9120360
Chicago/Turabian StyleUddin, Mohammad Main, Mohamed Cassim Mohamed Zakeel, Junaida Shezmin Zavahir, Faiz M. M. T. Marikar, and Israt Jahan. 2021. "Heavy Metal Accumulation in Rice and Aquatic Plants Used as Human Food: A General Review" Toxics 9, no. 12: 360. https://doi.org/10.3390/toxics9120360
APA StyleUddin, M. M., Zakeel, M. C. M., Zavahir, J. S., Marikar, F. M. M. T., & Jahan, I. (2021). Heavy Metal Accumulation in Rice and Aquatic Plants Used as Human Food: A General Review. Toxics, 9(12), 360. https://doi.org/10.3390/toxics9120360