Analysis of Multi-Pesticide Residues and Dietary Risk Assessment in Fresh Tomatoes (Lycopersicum esculentum) from Local Supermarkets of the Metropolitan Region, Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Pesticides
2.3. Pesticide Analysis and Quality Assurance
2.4. Compliance of Chilean Maximum Residue Levels
2.5. Dietary Risk Assessment
3. Results
3.1. Screening of Pesticide Residues and Their Compliance of MRL
3.2. Multi Pesticide Residues Analysis
3.3. Dietary Risk Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malhat, F.M. Persistence of Metalaxyl Residues on Tomato Fruit Using High Performance Liquid Chromatography and QuEChERS Methodology. Arab. J. Chem. 2017, 10, S765–S768. [Google Scholar] [CrossRef] [Green Version]
- Narenderan, S.T.; Meyyanathan, S.N.; Babu, B. Review of Pesticide Residue Analysis in Fruits and Vegetables. Pre-Treatment, Extraction and Detection Techniques. Food Res. Int. 2020, 133, 109141. [Google Scholar] [CrossRef] [PubMed]
- Ingenbleek, L.; Hu, R.; Pereira, L.L.; Paineau, A.; Colet, I.; Koné, A.Z.; Adegboye, A.; Hossou, S.E.; Dembélé, Y.; Oyedele, A.D.; et al. Sub-Saharan Africa Total Diet Study in Benin, Cameroon, Mali and Nigeria: Pesticides Occurrence in Foods. Food Chem. X 2019, 2, 100034. [Google Scholar] [CrossRef]
- Donkor, A.; Osei-Fosu, P.; Dubey, B.; Kingsford-Adaboh, R.; Ziwu, C.; Asante, I. Pesticide Residues in Fruits and Vegetables in Ghana: A Review. Environ. Sci. Pollut. Res. 2016, 23, 18966–18987. [Google Scholar] [CrossRef] [PubMed]
- Minuț, M.; Roșca, M.; Hlihor, R.-M.; Cozma, P.; Gavrilescu, M. Modelling of Health Risk Associated with the Intake of Pesticides from Romanian Fruits and Vegetables. Sustainability 2020, 12, 10035. [Google Scholar] [CrossRef]
- Sakthiselvi, T.; Paramasivam, M.; Vasanthi, D.; Bhuvaneswari, K. Persistence, Dietary and Ecological Risk Assessment of Indoxacarb Residue in/on Tomato and Soil Using GC–MS. Food Chem. 2020, 328, 127134. [Google Scholar] [CrossRef] [PubMed]
- Marete, G.M.; Shikuku, V.O.; Lalah, J.O.; Mputhia, J.; Wekesa, V.W. Occurrence of Pesticides Residues in French Beans, Tomatoes, and Kale in Kenya, and Their Human Health Risk Indicators. Environ. Monit. Assess. 2020, 192, 692. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Zhang, Y.; Qin, D.; Zheng, Z.; Zhu, G.; Lv, Y.; Liu, Z.; Dong, Z.; Liao, X.; et al. The Degradation Behaviour, Residue Distribution, and Dietary Risk Assessment of Malathion on Vegetables and Fruits in China by GC-FPD. Food Control. 2020, 107, 106754. [Google Scholar] [CrossRef]
- Pang, N.; Fan, X.; Fantke, P.; Zhao, S.; Hu, J. Dynamics and Dietary Risk Assessment of Thiamethoxam in Wheat, Lettuce and Tomato Using Field Experiments and Computational Simulation. Environ. Pollut. 2020, 256, 113285. [Google Scholar] [CrossRef]
- Patra, S.; Ganguly, P.; Barik, S.R.; Goon, A.; Mandal, J.; Samanta, A.; Bhattacharyya, A. Persistence Behaviour and Safety Risk Evaluation of Pyridalyl in Tomato and Cabbage. Food Chem. 2020, 309, 125711. [Google Scholar] [CrossRef]
- Bolor, V.K.; Boadi, N.O.; Borquaye, L.S.; Afful, S. Human Risk Assessment of Organochlorine Pesticide Residues in Vegetables from Kumasi, Ghana. J. Chem. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sang, C.; Sørensen, P.B.; An, W.; Andersen, J.H.; Yang, M. Chronic Health Risk Comparison between China and Denmark on Dietary Exposure to Chlorpyrifos. Environ. Pollut. 2020, 257, 113590. [Google Scholar] [CrossRef] [PubMed]
- Houbraken, M.; Habimana, V.; Senaeve, D.; López-Dávila, E.; Spanoghe, P. Multi-Residue Determination and Ecological Risk Assessment of Pesticides in the Lakes of Rwanda. Sci. Total. Environ. 2017, 576, 888–894. [Google Scholar] [CrossRef]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An Extensive Review on the Consequences of Chemical Pesticides on Human Health and Environment. J. Clean. Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- Jankowska, M.; Łozowicka, B.; Kaczyński, P. Comprehensive Toxicological Study over 160 Processing Factors of Pesticides in Selected Fruit and Vegetables after Water, Mechanical and Thermal Processing Treatments and Their Application to Human Health Risk Assessment. Sci. Total. Environ. 2019, 652, 1156–1167. [Google Scholar] [CrossRef]
- Engel, L.S.; Werder, E.; Satagopan, J.; Blair, A.; Hoppin, J.A.; Koutros, S.; Lerro, C.C.; Sandler, D.P.; Alavanja, M.C.; Freeman, L.E.B. Insecticide Use and Breast Cancer Risk among Farmers’ Wives in the Agricultural Health Study. Environ. Health Perspect. 2017, 125, 9. [Google Scholar] [CrossRef]
- Muñoz-Quezada, M.T.; Lucero, B.A.; Iglesias, V.P.; Muñoz, M.P.; Cornejo, C.A.; Achu, E.; Baumert, B.; Hanchey, A.; Concha, C.; Brito, A.M.; et al. Chronic Exposure to Organophosphate (OP) Pesticides and Neuropsychological Functioning in Farm Workers: A Review. Int. J. Occup. Environ. Health 2016, 22, 68–79. [Google Scholar] [CrossRef] [Green Version]
- Philippe, V.; Neveen, A.; Marwa, A.; Ahmad Basel, A.-Y. Occurrence of Pesticide Residues in Fruits and Vegetables for the Eastern Mediterranean Region and Potential Impact on Public Health. Food Control. 2021, 119, 107457. [Google Scholar] [CrossRef]
- Poulsen, M.E.; Andersen, J.H.; Petersen, A.; Jensen, B.H. Results from the Danish Monitoring Programme for Pesticide Residues from the Period 2004–2011. Food Control. 2017, 74, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Regulacion de Plaguicidas Chile, Estados Unidos de Norteamerica y Union Europea. Asesoria Tecnica Parlamentaria. Biblioteca del Congreso Nacional de Chile. Nª sup 11.942. Available online: https://obtienearchivo.bcn.cl/obtienearchivo?id=repositorio/10221/27288/1/Prohibicion_de_plaguicidas_peligrosos.pdf (accessed on 20 December 2020).
- Elgueta, S.; Moyano, S.; Sepúlveda, P.; Quiroz, C.; Correa, A. Pesticide Residues in Leafy Vegetables and Human Health Risk Assessment in North Central Agricultural Areas of Chile. Food Addit. Contam. Part B 2017, 10, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Elgueta, S.; Valenzuela, M.; Fuentes, M.; Meza, P.; Manzur, J.; Liu, S.; Zhao, G.; Correa, A. Pesticide Residues and Helath Risk Assessement in Tomatoes and lettuces from Farms of Metropolitan Region Chile. Molecules 2020, 25, 355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R342-19_RES.EX. N° 4.245, MIN. AGRICULTURA—Cancela Autorizaciones Vigentes de Plaguicidas a Base de Metamidofós y Prohíbe Plaguicidas En Base a Azinfós Metilo a Contar de Fecha Que Indica (D.O.) Pdf. Available online: https://documentos.camaraaduanera.cl/circ/2019/R342-19_RES.%20EX.%20N%C2%B0%204.245,%20MIN.%20AGRICULTURA%20-%20Cancela%20Autorizaciones%20Vigentes%20de%20Plaguicidas%20a%20Base%20de%20Metamidof%C3%B3s%20y%20Proh%C3%ADbe%20Plaguicidas%20en%20Base%20a%20Azinf%C3%B3s%20Metilo%20a%20Contar%20de%20Fecha%20que%20Indica%20(D.O.).pdf (accessed on 10 October 2020).
- RIAL-2014. Chilean Food Safety and Quality Agency (ACHIPIA), RIAL Annual Report 2014, Santiago, Chile. Food Information and Alerts Network ACHIPIA. Chilean Agency for Food Safety and Quality. 2015. Available online: https://www.achipia.gob.cl/wp-content/uploads/2015/12/Reporte-RIAL-2014.pdf (accessed on 20 December 2020).
- RIAL-2015. Chilean Food Safety and Quality Agency (ACHIPIA), RIAL Annual Report 2015, Santiago, Chile. Food Information and Alerts Network ACHIPIA. Chilean Agency for Food Safety and Quality. 2016. Available online: https://www.achipia.gob.cl/wp-content/uploads/2016/03/Reporte-Notificaciones-RIAL-2015.pdf (accessed on 20 December 2020).
- RIAL-2016. Chilean Food Safety and Quality Agency (ACHIPIA), RIAL Annual Report 2016, Santiago, Chile. Food Information and Alerts Network ACHIPIA. Chilean Agency for Food Safety and Quality. 2017. Available online: https://www.achipia.gob.cl/wp-content/uploads/2017/11/Informe-RIAL-2016.pdf (accessed on 20 December 2020).
- RIAL 2017. Chilean Food Safety and Quality Agency (ACHIPIA), RIAL Annual Report 2017, Santiago, Chile. Food Information and Alerts Network ACHIPIA. Chilean Agency for Food Safety and Quality. 2019. Available online: https://www.achipia.gob.cl/wp-content/uploads/2019/03/OR.Informe-RIAL-2017-baja-corregida.pdf (accessed on 20 December 2020).
- RIAL 2020. Chilean Food Safety and Quality Agency (ACHIPIA), RIAL Annual Report 2018, Santiago, Chile. Food Information and Alerts Network ACHIPIA. Chilean Agency for Food Safety and Quality. 2020. Available online: https://www.achipia.gob.cl/wp-content/uploads/2021/01/RIAL_Reporte_notificaciones_2018-1.pdf (accessed on 20 December 2020).
- Jankowska, M.; Kaczynski, P.; Hrynko, I.; Lozowicka, B. Dissipation of Six Fungicides in Greenhouse-Grown Tomatoes with Processing and Health Risk. Environ. Sci. Pollut. Res. 2016, 23, 11885–11900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badawy, M.E.I.; Ismail, A.M.E.; Ibrahim, A.I.H. Quantitative Analysis of Acetamiprid and Imidacloprid Residues in Tomato Fruits under Greenhouse Conditions. J. Environ. Sci. Health Part B 2019, 54, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Bojacá, C.R.; Arias, L.A.; Ahumada, D.A.; Casilimas, H.A.; Schrevens, E. Evaluation of Pesticide Residues in Open Field and Greenhouse Tomatoes from Colombia. Food Control. 2013, 30, 400–403. [Google Scholar] [CrossRef]
- ODEPA 2021. Boletin de Hortalizas Febrero 2021. Oficina de Estudios y Politicas Agrarias. Available online: https://www.odepa.gob.cl/publicaciones/boletines/boletin-de-hortalizas-febrero-2021 (accessed on 5 March 2021).
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health of Chile (MINSAL) ENS Chile Annual Report 2009–2010. Santiago, Chile. Available online: https://www.minsal.cl/portal/url/item/bcb03d7bc28b64dfe040010165012d23.pdf (accessed on 5 March 2021).
- Elgueta, S.; Fuentes, M.; Valenzuela, M.; Zhao, G.; Liu, S.; Lu, H.; Correa, A. Pesticide residues in ready-to-eat leafy vegetables from markets of Santiago, Chile, and consumer’s risk. Food Addit. Contam. Part. B Surveill. 2019, 12, 1–9. [Google Scholar] [CrossRef]
- European Food Safety Authorithy (EFSA). Conclusion on the peer review of the pesticide risk assessement of the active substance acetamiprid. EFSA J. 2016, 14, 4610–4636. [Google Scholar] [CrossRef]
- European Food Safety Authorithy (EFSA). Conclusion on the peer review of the pesticide risk assessement of the active substance buprofezin in light of confirmatory data. EFSA J. 2015, 13, 4207–4231. [Google Scholar] [CrossRef]
- European Food Safety Authorithy (EFSA). Scientific support for preparing an EU position in the 46th Session of the Codex on Pesiticide Residues (CCPR). EFSA J. 2014, 12, 3737–3919. [Google Scholar] [CrossRef]
- European Food Safety Authorithy (EFSA). Conclusion on the peer review of the pesticide human healt risk assessement of the active substance chlorpyrifos. EFSA J. 2014, 12, 3640–3670. [Google Scholar] [CrossRef]
- EU Pesticide Database. Imidacloprid. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32020R1643&qid=1604918663225 (accessed on 20 December 2020).
- European Food Safety Authorithy (EFSA). Reasoned opinion on the modification of the excisting maximun residue levels for lambda-cyhalothrin in seed and fruit species. EFSA J. 2020, 18, 6110–6138. [Google Scholar] [CrossRef]
- European Food Safety Authorithy (EFSA). The 2018 European Union report on pesticide residues in food. EFSA J. 2020, 18, 6057–6160. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authorithy (EFSA). Reasoned opinion of EFSA prepared by the Pesticide Unit (PRAPeR) on the setting of an importn tolerance for azoxystrobin in passion fruits. EFSA Sci. Rep. 2008, 209, 1–25. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Reasoned opinion on the modification of the existing maximun residue levels for difenoconazole in varios crops. EFSA J. 2018, 16, 5143–5172. [Google Scholar] [CrossRef] [Green Version]
- EU Pesticide Database myclobutanil. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/active-substances/?event=updates (accessed on 20 December 2020).
- European Food Safety Authority (EFSA). Conclusion on the peer review of the pesticide risk assessement on the active subtance indoxacarb. EFSA J. 2018, 16, 5140–5169. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Reasoned opinion on the modification of the excisting maximun residue level for boscalid in honey. EFSA J. 2019, 17, 5897–5922. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Reasoned opinion on the review of the excisting maximun residue level for methomyl according to Article 12 of Regulation (EC) Nº 396/2005. EFSA J. 2015, 13, 4277–4309. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Modification of the Existing Maximum Residue Level. EFSA J. 2016, 14, 4514. [Google Scholar] [CrossRef] [Green Version]
- Gad Alla, S.A.; Loutfy, N.M.; Shendy, A.H.; Ahmed, M.T. Hazard Index, a Tool for a Long Term Risk Assessment of Pesticide Residues in Some Commodities, a Pilot Study. Regul. Toxicol. Pharmacol. 2015, 73, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Corrias, F.; Atzei, A.; Lai, C.; Dedola, F.; Ibba, E.; Zedda, G.; Canu, F.; Angioni, A. Effects of Industrial Processing on Pesticide Multiresidues Transfer from Raw Tomatoes to Processed Products. Foods 2020, 9, 1497. [Google Scholar] [CrossRef]
- Arias, L.A.; Bojacá, C.R.; Ahumada, D.A.; Schrevens, E. Monitoring of Pesticide Residues in Tomato Marketed in Bogota, Colombia. Food Control. 2014, 35, 213–217. [Google Scholar] [CrossRef]
- Salamzadeh, J.; Shakoori, A.; Moradi, V. Occurrence of Multiclass Pesticide Residues in Tomato Samples Collected from Different Markets of Iran. J. Environ. Health Sci. Eng. 2018, 16, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Hepsağ, F.; Kizildeniz, T. Pesticide Residues and Health Risk Appraisal of Tomato Cultivated in Greenhouse from the Mediterranean Region of Turkey. Environ. Sci. Pollut. Res. 2021, 28 18, 22551–22562. [Google Scholar] [CrossRef]
- Abd-Elhaleem, Z.A. Pesticide Residues in Tomato and Tomato Products Marketed in Majmaah Province, KSA, and Their Impact on Human Health. Environ. Sci. Pollut. Res. 2020, 27, 8526–8534. [Google Scholar] [CrossRef]
- Hongsibsong, S.; Prapamontol, T.; Xu, T.; Hammock, B.D.; Wang, H.; Chen, Z.-J.; Xu, Z.-L. Monitoring of the Organophosphate Pesticide Chlorpyrifos in Vegetable Samples from Local Markets in Northern Thailand by Developed Immunoassay. Int. J. Environ. Res. Public. Health 2020, 17, 4723. [Google Scholar] [CrossRef] [PubMed]
- Akoto, O.; Gavor, S.; Appah, M.K.; Apau, J. Estimation of Human Health Risk Associated with the Consumption of Pesticide-Contaminated Vegetables from Kumasi, Ghana. Environ. Monit. Assess. 2015, 187, 244. [Google Scholar] [CrossRef]
- Ramadan, M.F.A.; Abdel-Hamid, M.M.A.; Altorgoman, M.M.F.; AlGaramah, H.A.; Alawi, M.A.; Shati, A.A.; Shweeta, H.A.; Awwad, N.S. Evaluation of Pesticide Residues in Vegetables from the Asir Region, Saudi Arabia. Molecules 2020, 25, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mac Loughlin, T.M.; Peluso, M.L.; Etchegoyen, M.A.; Alonso, L.L.; de Castro, M.C.; Percudani, M.C.; Marino, D.J.G. Pesticide Residues in Fruits and Vegetables of the Argentine Domestic Market: Occurrence and Quality. Food Control. 2018, 93, 129–138. [Google Scholar] [CrossRef]
- Mustapha Jallow; Dawood Awadh; Mohammed Albaho; Vimala Devi; Nisar Ahmad Monitoring of Pesticide Residues in Commonly Used Fruits and Vegetables in Kuwait. Int. J. Environ. Res. Public. Health 2017, 14, 833. [CrossRef] [Green Version]
- Lehmann, E.; Turrero, N.; Kolia, M.; Konaté, Y.; de Alencastro, L.F. Dietary Risk Assessment of Pesticides from Vegetables and Drinking Water in Gardening Areas in Burkina Faso. Sci. Total. Environ. 2017, 601–602, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- Montiel-León, J.M.; Duy, S.V.; Munoz, G.; Verner, M.-A.; Hendawi, M.Y.; Moya, H.; Amyot, M.; Sauvé, S. Occurrence of Pesticides in Fruits and Vegetables from Organic and Conventional Agriculture by QuEChERS Extraction Liquid Chromatography Tandem Mass Spectrometry. Food Control. 2019, 104, 74–82. [Google Scholar] [CrossRef]
- Al-Nasir, F.M.; Jiries, A.G.; Al-Rabadi, G.J.; Alu’datt, M.H.; Tranchant, C.C.; Al-Dalain, S.A.; Alrabadi, N.; Madanat, O.Y.; Al-Dmour, R.S. Determination of Pesticide Residues in Selected Citrus Fruits and Vegetables Cultivated in the Jordan Valley. LWT 2020, 123, 109005. [Google Scholar] [CrossRef]
- AlSaikhan, W.H.; Almatroodi, S.A.; Almatroudi, A.; Alsahli, M.A.; Rahmani, A.H. Pesticide Residue Measurement in Commonly Used Vegetables Using the QuEChERS Method. Pharmacogn. J. 2021, 13, 142–149. [Google Scholar] [CrossRef]
- Bhandari, G.; Zomer, P.; Atreya, K.; Mol, H.G.J.; Yang, X.; Geissen, V. Pesticide Residues in Nepalese Vegetables and Potential Health Risks. Environ. Res. 2019, 172, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Mtashobya, L.A. Assessment of Pesticide Residues in Vegetables from the Western Usambara and Uruguru Mountains in Tanzania. Environ. Monit. Assess. 2017, 189, 519. [Google Scholar] [CrossRef] [PubMed]
- Quijano, L.; Yusà, V.; Font, G.; Pardo, O. Chronic Cumulative Risk Assessment of the Exposure to Organophosphorus, Carbamate and Pyrethroid and Pyrethrin Pesticides through Fruit and Vegetables Consumption in the Region of Valencia (Spain). Food Chem. Toxicol. 2016, 89, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Diop, A.; Diop, Y.M.; Thiaré, D.D.; Cazier, F.; Sarr, S.O.; Kasprowiak, A.; Landy, D.; Delattre, F. Monitoring Survey of the Use Patterns and Pesticide Residues on Vegetables in the Niayes Zone, Senegal. Chemosphere 2016, 144, 1715–1721. [Google Scholar] [CrossRef] [PubMed]
- Bakırcı, G.T.; Yaman Acay, D.B.; Bakırcı, F.; Ötleş, S. Pesticide Residues in Fruits and Vegetables from the Aegean Region, Turkey. Food Chem. 2014, 160, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Liu, Q.; Liu, J.; Wang, Q.; Wang, Y. Concentrations of Organophosphorus Pesticides in Fresh Vegetables and Related Human Health Risk Assessment in Changchun, Northeast China. Food Control. 2016, 60, 353–360. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, C.; Zheng, C.; Wang, X.; Yang, G.; Wang, Q.; Zhang, Z. Residue of Chlorpyrifos and Cypermethrin in Vegetables and Probabilistic Exposure Assessment for Consumers in Zhejiang Province, China. Food Control. 2014, 36, 63–68. [Google Scholar] [CrossRef]
- Mwanja, M.; Jacobs, C.; Mbewe, A.R.; Munyinda, N.S. Assessment of Pesticide Residue Levels among Locally Produced Fruits and Vegetables in Monze District, Zambia. Int. J. Food Contam. 2017, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Kariathi, V.; Kassim, N.; Kimanya, M. Pesticide Exposure from Fresh Tomatoes and Its Relationship with Pesticide Application Practices in Meru District. Cogent Food Agric. 2016, 2, 1196808. [Google Scholar] [CrossRef]
- Lozowicka, B.; Abzeitova, E.; Sagitov, A.; Kaczynski, P.; Toleubayev, K.; Li, A. Studies of Pesticide Residues in Tomatoes and Cucumbers from Kazakhstan and the Associated Health Risks. Environ. Monit. Assess. 2015, 187, 609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hlihor, R.-M.; Pogăcean, M.O.; Rosca, M.; Cozma, P.; Gavrilescu, M. Modelling the Behavior of Pesticide Residues in Tomatoes and Their Associated Long-Term Exposure Risks. J. Environ. Manag. 2019, 233, 523–529. [Google Scholar] [CrossRef] [PubMed]
Pesticide | Category | Frecuency | % from the Total Pesticide Detected | Mean (mg/kg) | Range min–max, (mg/kg) | Maximun Residue Level MRL (mg/kg) |
---|---|---|---|---|---|---|
λ-cyhalothrin | I | 5 | 8.2 | 0.01 | 0.0025–0.02 | 0.10 |
Buprofezin | I | 5 | 8.2 | 0.05 | 0.027–0.078 | 1.00 |
Indoxacarb | I | 5 | 8.2 | 0.01 | 0.0025–0.022 | 0.50 |
Chlorfenapyr | I | 6 | 9.8 | 0.20 | 0.043–0.589 | 1.00 |
Chlorpyrifos | I | 3 | 4.9 | 0.02 | 0.022–0.036 | 0.50 |
Methamidophos | I | 5 | 8.2 | 0.12 | 0.026–0.459 | 0.01 |
Acetamiprid | I | 13 | 21.3 | 0.09 | 0.015–0.49 | 0.20 |
Imidacloprid | I | 2 | 3.3 | 0.05 | 0.0025–0.045 | 0.50 |
Methomyl | I | 1 | 1.6 | 0.05 | 0.0025 | 0.50 |
Pyrimethanil | F | 1 | 1.6 | 0.23 | 0.0025–0.233 | 0.70 |
Difenoconazole | F | 7 | 11.5 | 0.05 | 0.013–0.151 | 0.50 |
Azoxystrobin | F | 1 | 1.6 | 0.00 | 0.0025 | 3.00 |
Boscalid | F | 6 | 9.8 | 0.03 | 0.022–0.091 | 3.00 |
Myclobutanil | F | 1 | 1.6 | 0.09 | 0.0025–0.085 | 0.30 |
(a) Pesticide | Acceptable Daily Intake (mg/kg) | (a) World Health Organization | (b) Chile | ||||||
15–24 | 25–44 | 44–65 | 65+ | 15–24 | 25–44 | 44–65 | 65+ | ||
Acetamiprid | 2.5 × 10−2 | 1.3 × 10−5 | 1.2 × 10−5 | 1.2 × 10−5 | 1.3 × 10−5 | 1.5 × 10−4 | 1.4 × 10−4 | 1.4 × 10−4 | 1.4 × 10−4 |
Buprofezin | 1.0 × 10−2 | 7.3 × 10−6 | 6.5 × 10−6 | 6.5 × 10−6 | 7.0 × 10−6 | 8.3 × 10−-5 | 7.4 × 10−5 | 7.4 × 10−5 | 8.0 × 10−5 |
Chlorfenapyr | 3.0 × 10−2 | 3.0 × 10−5 | 2.6 × 10−5 | 2.6 × 10−5 | 2.8 × 10−5 | 3.4 × 10−4 | 3.0 × 10−4 | 3.0 × 10−-4 | 3.2 × 10−4 |
Chlorpyrifos | 1.0 × 10−3 | 3.0 × 10−6 | 2.7 × 10−6 | 2.7 × 10−6 | 2.8 × 10−6 | 3.4 × 10−5 | 3.0 × 10−5 | 3.0 × 10−5 | 3.3 × 10−5 |
Imidacloprid | 6.0 × 10−2 | 6.7 × 10−6 | 5.9 × 10−6 | 5.9 × 10−6 | 6.4 × 10−6 | 7.6 × 10−5 | 6.8 × 10−5 | 6.8 × 10−5 | 7.3 × 10−5 |
λ-cyhalothrin | 2.5 × 10−3 | 1.5 × 10−6 | 1.3 × 10−6 | 1.3 × 10−6 | 1.4 × 10−6 | 1.7 × 10−5 | 1.5 × 10−5 | 1.5 × 10−5 | 1.6 × 10−5 |
Methamidophos | 1.0 × 10−3 | 1.8 × 10−5 | 1.6 × 10−5 | 1.6 × 10−5 | 1.7 × 10−5 | 2.1 × 10−4 | 1.8 × 10-4 | 1.8 × 10−4 | 2.0 × 10−4 |
Azoxystrobin | 1.0 × 10−1 | 3.7 × 10−7 | 3.3 × 10−7 | 3.3 × 10−7 | 3.5 × 10−7 | 4.2 × 10−6 | 3.8 × 10−6 | 3.8 × 10−4 | 4.0 × 10−6 |
Difenoconazole | 1.0 × 10−2 | 6.8 × 10−6 | 6.1 × 10−6 | 6.1 × 10−6 | 6.5 × 10−6 | 7.8 × 10−5 | 7.0 × 10−5 | 7.0 x 10-5 | 7.5 × 10−5 |
Miclobutanil | 2.5 × 10−2 | 1.3 × 10−5 | 1.1 × 10−5 | 1.1 × 10−5 | 1.2 × 10−5 | 1.4 × 10−4 | 1.3 × 10−4 | 1.3 × 10−4 | 1.4 × 10−4 |
Indoxacarb | 5.0 × 10−3 | 9.5 × 10−7 | 8.4 × 10−7 | 8.4 × 10−7 | 9.0 × 10−7 | 1.1 × 10−5 | 9.6 × 10−6 | 9.6 × 10−6 | 1.0 × 10−5 |
Boscalid | 4.0 × 10−-2 | 4.8 × 10−6 | 4.3 × 10−6 | 4.3 × 10−6 | 4.6 × 10−6 | 5.5 × 10−5 | 4.9 × 10−5 | 4.9 × 10−5 | 5.3 × 10−5 |
Methomyl | 2.5 × 10−3 | 3.7 × 10−7 | 3.3 × 10−7 | 3.3 × 10−7 | 3.5 × 10−7 | 4.2 × 10−6 | 3.8 × 10−6 | 3.8 × 10−6 | 4.0 × 10−6 |
Pirimetanil | 1.7 × 10−1 | 3.4 × 10−5 | 3.1 × 10−5 | 3.1 × 10−5 | 3.3 × 10−5 | 3.9 × 10−4 | 3.5 × 10−4 | 3.5 × 10−4 | 3.8 × 10−4 |
(b) Pesticide | Acceptable Daily Intake (mg/kg) | (c)World Health Organization | (d) Chile | ||||||
15–24 | 25–44 | 44–65 | 65+ | 15–24 | 25–44 | 44–65 | 65+ | ||
Acetamiprid | 2.5 × 10−2 | 1.5 × 10−5 | 1.4 × 10−5 | 1.3 × 10−5 | 1.4 × 10−5 | 1.7 × 10−4 | 1.6 × 10−4 | 1.5 × 10−4 | 1.6 × 10−4 |
Buprofezin | 1.0 × 10−2 | 8.4 × 10−6 | 7.6 × 10−6 | 7.3 × 10−6 | 7.8 × 10−6 | 9.6 × 10−5 | 8.6 × 10−5 | 8.4 × 10−5 | 8.9 × 10−5 |
Chlorfenapyr | 3.0 × 10−2 | 3.4 × 10−5 | 3.1 × 10−5 | 3.0 × 10−5 | 3.2 × 10−5 | 3.9 × 10−4 | 3.5 × 10−4 | 3.4 × 10−4 | 3.6 × 10−4 |
Chlorpyrifos | 1.0 × 10−3 | 3.4 × 10−6 | 3.1 × 10−6 | 3.0 × 10−6 | 3.2 × 10−6 | 3.9 × 10−5 | 3.5 × 10−5 | 3.4 × 10−5 | 3.7 × 10−5 |
Imidacloprid | 6.0 × 10−2 | 7.6 × 10−6 | 6.9 × 10−6 | 6.7 × 10−6 | 7.1 × 10−6 | 8.7 × 10−5 | 7.9 × 10−5 | 7.6 × 10−5 | 8.1 × 10−5 |
λ-cyhalothrin | 2.5 × 10−3 | 1.7 × 10−6 | 1.5 × 10−6 | 1.5 × 10−6 | 1.6 × 10−6 | 1.9 × 10−5 | 1.7 × 10−5 | 1.7 × 10−5 | 1.8 × 10−5 |
Methamidophos | 1.0 × 10−3 | 2.1 × 10−5 | 1.9 × 10−5 | 1.8 × 10−5 | 1.9 × 10−5 | 2.4 × 10−4 | 2.1 × 10−4 | 2.1 × 10−4 | 2.2 × 10−4 |
Azoxystrobin | 1.0 × 10−1 | 4.2 × 10−7 | 3.8 × 10−6 | 3.7 × 10−7 | 4.0 × 10−7 | 4.9 × 10−6 | 4.4 × 10−6 | 4.2 × 10−6 | 4.5 × 10−6 |
Difenoconazole | 1.0 × 10−2 | 7.9 × 10−6 | 7.1 × 10−5 | 6.9 × 10−6 | 7.3 × 10−6 | 9.0 × 10−5 | 8.1 × 10−5 | 7.9 × 10−5 | 8.4 × 10−5 |
Miclobutanil | 2.5 × 10−2 | 1.4 × 10−5 | 1.3 × 10−5 | 1.3 × 10−5 | 1.3 × 10−5 | 1.7 × 10−4 | 1.5 × 10−4 | 1.4 × 10−-4 | 1.5 × 10−4 |
Indoxacarb | 5.0 × 10−3 | 1.1 × 10−6 | 9.8 × 10−7 | 9.5 × 10−7 | 1.0 × 10−6 | 1.2 × 10−5 | 1.1 × 10−5 | 1.1 × 10−5 | 1.2 × 10−5 |
Boscalid | 4.0 × 10−2 | 5.6 × 10−6 | 5.0 × 10−6 | 5.2 × 10−6 | 5.2 × 10−6 | 6.4 × 10−5 | 5.7 × 10−5 | 5.9 × 10−5 | 5.9 × 10−5 |
Methomyl | 2.5 × 10−3 | 4.2 × 10−7 | 3.8 × 10−7 | 3.7 × 10−7 | 4.0 × 10−7 | 4.9 × 10−6 | 4.4 × 10−6 | 4.2 × 10−6 | 4.5 × 10−6 |
Pirimetanil | 1.7 × 10−1 | 4.0 × 10−5 | 3.6 × 10−5 | 3.5 × 10−5 | 3.7 × 10−5 | 4.5 × 10−4 | 4.1 × 10−4 | 4.0 × 10−4 | 4.2 × 10−4 |
Scenario | Age Group | Reproduction Development Effects | Acetyl Cholinesterase Inhibitor | Neurotoxicant | Respiratory Tract Irritant | Skin Irritant | Skin Sensitiser | Eye Irritant |
---|---|---|---|---|---|---|---|---|
(a) Men WHO | 15–24 | 0.01 | 2.13 | 2.13 | 0.07 | 0.12 | 0.08 | 0.19 |
25–44 | 0.01 | 1.90 | 1.90 | 0.07 | 0.11 | 0.07 | 0.17 | |
44–65 | 0.01 | 1.90 | 1.90 | 0.07 | 0.11 | 0.07 | 0.17 | |
65+ | 0.01 | 2.03 | 2.04 | 0.07 | 0.12 | 0.07 | 0.18 | |
(b) Men Chile | 15–24 | 0.13 | 24.33 | 24.38 | 0.84 | 1.39 | 0.89 | 2.20 |
25–44 | 0.11 | 21.68 | 21.72 | 0.75 | 1.24 | 0.79 | 1.96 | |
44–65 | 0.11 | 21.68 | 21.72 | 0.75 | 1.24 | 0.79 | 1.96 | |
65+ | 0.12 | 23.22 | 23.27 | 0.80 | 1.33 | 0.85 | 2.10 | |
(c) Woman WHO | 15–24 | 0.01 | 2.45 | 2.45 | 0.08 | 0.14 | 0.09 | 0.22 |
25–44 | 0.01 | 2.20 | 2.21 | 0.08 | 0.13 | 0.08 | 0.20 | |
44–65 | 0.01 | 2.14 | 2.15 | 0.07 | 0.12 | 0.08 | 0.19 | |
65+ | 0.01 | 2.28 | 2.28 | 0.08 | 0.13 | 0.08 | 0.21 | |
(d) Woman Chile | 15–24 | 0.15 | 27.95 | 28.01 | 0.96 | 1.60 | 1.02 | 2.53 |
25–44 | 0.13 | 25.18 | 25.23 | 0.87 | 1.44 | 0.92 | 2.28 | |
44–65 | 0.13 | 24.47 | 24.52 | 0.84 | 1.40 | 0.89 | 2.21 | |
65+ | 0.14 | 26.06 | 26.11 | 0.90 | 1.49 | 0.95 | 2.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elgueta, S.; Valenzuela, M.; Fuentes, M.; Ulloa, P.E.; Ramos, C.; Correa, A.; Molinett, S. Analysis of Multi-Pesticide Residues and Dietary Risk Assessment in Fresh Tomatoes (Lycopersicum esculentum) from Local Supermarkets of the Metropolitan Region, Chile. Toxics 2021, 9, 249. https://doi.org/10.3390/toxics9100249
Elgueta S, Valenzuela M, Fuentes M, Ulloa PE, Ramos C, Correa A, Molinett S. Analysis of Multi-Pesticide Residues and Dietary Risk Assessment in Fresh Tomatoes (Lycopersicum esculentum) from Local Supermarkets of the Metropolitan Region, Chile. Toxics. 2021; 9(10):249. https://doi.org/10.3390/toxics9100249
Chicago/Turabian StyleElgueta, Sebastian, Marcela Valenzuela, Marcela Fuentes, Pilar E. Ulloa, Cecilia Ramos, Arturo Correa, and Sebastian Molinett. 2021. "Analysis of Multi-Pesticide Residues and Dietary Risk Assessment in Fresh Tomatoes (Lycopersicum esculentum) from Local Supermarkets of the Metropolitan Region, Chile" Toxics 9, no. 10: 249. https://doi.org/10.3390/toxics9100249
APA StyleElgueta, S., Valenzuela, M., Fuentes, M., Ulloa, P. E., Ramos, C., Correa, A., & Molinett, S. (2021). Analysis of Multi-Pesticide Residues and Dietary Risk Assessment in Fresh Tomatoes (Lycopersicum esculentum) from Local Supermarkets of the Metropolitan Region, Chile. Toxics, 9(10), 249. https://doi.org/10.3390/toxics9100249