Dietary Contaminants and Their Effects on Zebrafish Embryos
Abstract
:1. Introduction
2. Contaminants
2.1. Heavy Metals
2.2. POPs
2.3. Hormones
3. Synergistic or Antagonistic Effects
4. Current Dietary Regulations and Oversight
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- National Research Council. Committee on the Nutrient Requirements of Fish and Shrimp. In Nutrient Requirements of Fish and Shrimp; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Tye, M.T.; Montgomery, J.E.; Hobbs, M.R.; Vanpelt, K.T.; Masino, M.A. An Adult Zebrafish Diet Contaminated with Chromium Reduces the Viability of Progeny. Zebrafish 2018, 15, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Guiney, P.D.; Melancon, M.J., Jr.; Lech, J.J.; Peterson, R.E. Effects of egg and sperm maturation and spawning on the distribution and elimination of a polychlorinated biphenyl in rainbow trout (Salmo gairdneri). Toxicol. Appl. Pharmacol. 1979, 47, 261–272. [Google Scholar] [CrossRef]
- Brown, C.L.; Sullivan, C.V.; Bern, H.A.; Dickhoff, W.W. Occurrence of thyroid hormones in early developmental stages of teleost fish. Am. Fish Soc. Symp. 1987, 2, 144–150. [Google Scholar]
- Westerlund, L.; Billsson, K.; Andersson, P.L.; Tysklind, M.; Olsson, P.E. Early life-stage mortality in zebrafish (Danio rerio) following maternal exposure to polychlorinated biphenyls and estrogen. Environ. Toxicol. Chem. 2000, 19, 1582–1588. [Google Scholar] [CrossRef]
- Heiden, T.K.; Hutz, R.J.; Carvan, M.J., III. Accumulation, tissue distribution, and maternal transfer of dietary 2,3,7,8,-tetrachlorodibenzo-p-dioxin: Impacts on reproductive success of zebrafish. Toxicol. Sci. 2005, 87, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Crump, K.L.; Trudeau, V.L. Mercury-induced reproductive impairment in fish. Environ. Toxicol. Chem. 2009, 28, 895–907. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yu, K.; Huang, C.; Yu, L.; Zhu, B.; Lam, P.K.; Lam, J.C.; Zhou, B. Prenatal transfer of polybrominated diphenyl ethers (PBDEs) results in developmental neurotoxicity in zebrafish larvae. Environ. Sci. Technol. 2012, 46, 9727–9734. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.K.; Janz, D.M. In ovo exposure to selenomethionine via maternal transfer increases developmental toxicities and impairs swim performance in F1 generation zebrafish (Danio rerio). Aquat. Toxicol. 2014, 152, 20–29. [Google Scholar] [CrossRef]
- Chen, H.; Cao, J.; Li, L.; Wu, X.; Bi, R.; Klerks, P.L.; Xie, L. Maternal transfer and reproductive effects of Cr (VI) in Japanese medaka (Oryzias latipes) under acute and chronic exposures. Aquat. Toxicol. 2016, 171, 59–68. [Google Scholar] [CrossRef]
- NTP. Specifications for the Conduct of Studies to Evaluate the Reproductive and Developmental Toxicity of Chemical, Biological, and Physical Agents in Laboratory Animals for the National Toxicology Program (NTP); RTP NC, 2011. Available online: http://ntp.niehs.nih.gov/ntp/test_info/finalntp_reprospecsmay2011_508.pdf (accessed on 23 June 2019).
- Oetien, K.; Karl, H. Levels of toxaphene indicator compounds in fish meal, fish oil and fish feed. Chemosphere 1998, 37, 1–11. [Google Scholar] [CrossRef]
- Botaro, D.; Torres, J.P.M.; Malm, O.; Rebelo, M.F.; Henkelmann, B.; Schramm, K.-W. Organochlorine pesticides residues in feed and muscle of farmed Nile tilapia from Brazilian fish farms. Food Chem. Toxicol. 2011, 49, 2125–2130. [Google Scholar] [CrossRef] [PubMed]
- Mesnage, R.; Defarge, N.; Rocque, L.-M.; de Vendômois, J.S.; Séralini, G.-E. Laboratory rodent diets contain toxic levels of environmental contaminants: Implications for regulatory tests. PLoS ONE 2015, 10, e0128429. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Pacenka, S.; Wu, J.; Richards, B.K.; Steenhuis, T.; Simpson, K.; Hay, A.G. Detection of glyphosate residues in companion animal feeds. Environ. Pollut. 2018, 243, 1113–1118. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Guide for the Care and Use of Laboratory Animals; National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- McKee, M.J.; Kromrey, G.B.; May, T.W.; Orazio, C.E. Contaminant levels in rainbow trout, Oncorhynchus mykiss, and their diets from Missouri coldwater hatcheries. Bull. Environ. Contam. Toxicol. 2008, 80, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Directive, E. 63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Off. J. Eur. Union 2010. [Google Scholar]
- Home Office. Code of Practice for the Housing and Care of Animals Bred, Supplied or Used for Scientific Purposes; Williams Lea Group: London, UK, 2014. [Google Scholar]
- European Union. Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on Undesirable Substances in Animal Feed. Off. J. Eur. Union 2013, 56, 86–92. [Google Scholar]
- Sloth, J.J.; Julshamn, K.; Lundebye, A.K. Total arsenic and inorganic arsenic content in Norwegian fish feed products. Aquac. Nutr. 2005, 11, 61–66. [Google Scholar] [CrossRef]
- Nachman, K.; Raber, G.; Francesconi, K.; Navas-Acien, A.; Love, D. Arsenic species in poultry feather meal. Sci. Total Environ. 2012, 417, 183–188. [Google Scholar] [CrossRef]
- Berntssen, M.H.; Julshamn, K.; Lundebye, A.-K. Chemical contaminants in aquafeeds and Atlantic salmon (Salmo salar) following the use of traditional-versus alternative feed ingredients. Chemosphere 2010, 78, 637–646. [Google Scholar] [CrossRef]
- Sun, G.-X.; Williams, P.N.; Carey, A.-M.; Zhu, Y.-G.; Deacon, C.; Raab, A.; Feldmann, J.; Islam, R.M.; Meharg, A.A. Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain. Environ. Sci. Technol. 2008, 42, 7542–7546. [Google Scholar] [CrossRef]
- Jacobs, M.; Johnston, P.; Wyatt, C.; Santillo, D.; French, M. Organochlorine pesticide and PCB residues in pharmaceutical, industrial and food grade fish oils. Int. J. Environ. Pollut. 1997, 8, 74–93. [Google Scholar]
- Maule, A.G.; Gannam, A.L.; Davis, J.W. Chemical contaminants in fish feeds used in federal salmonid hatcheries in the USA. Chemosphere 2007, 67, 1308–1315. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, J.D. Adventitious toxins. In Fish Nutrition; Elsevier: Amsterdam, The Netherlands, 2003; pp. 601–649. [Google Scholar]
- Suominen, K.; Hallikainen, A.; Ruokojärvi, P.; Airaksinen, R.; Koponen, J.; Rannikko, R.; Kiviranta, H. Occurrence of PCDD/F, PCB, PBDE, PFAS, and organotin compounds in fish meal, fish oil and fish feed. Chemosphere 2011, 85, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, M.N.; Covaci, A.; Schepens, P. Investigation of selected persistent organic pollutants in farmed Atlantic salmon (Salmo salar), salmon aquaculture feed, and fish oil components of the feed. Environ. Sci. Technol. 2002, 36, 2797–2805. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Kobayashi, M.; Moriwaki, T.; Kawai, S.I.; Watabe, S. Survey of estrogenic activity in fish feed by yeast estrogen-screen assay. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2004, 139, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Brix, K.V.; Deforest, D.K.; Cardwell, R.D.; Adams, W.J. Derivation of a chronic site-specific water quality standard for selenium in the Great Salt Lake, Utah, USA. Environ. Toxicol. Chem. Int. J. 2004, 23, 606–612. [Google Scholar] [CrossRef]
- Utah Department of Environmental Quality. Utah Waterfowl Advisories. Available online: https://deq.utah.gov/water-quality/utah-waterfowl-advisories (accessed on 17 July 2019).
- Vest, J.L.; Conover, M.R. Food habits of wintering waterfowl on the Great Salt Lake, Utah. Waterbirds 2011, 34, 40–51. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A.; Gardberg, J.; Izdepski, C. Biostrome communities and mercury and selenium bioaccumulation in the Great Salt Lake (Utah, USA). Sci. Total Environ. 2011, 409, 4425–4434. [Google Scholar] [CrossRef]
- Lemly, A.D. A teratogenic deformity index for evaluating impacts of selenium on fish populations. Ecotoxicol. Environ. Saf. 1997, 37, 259–266. [Google Scholar] [CrossRef]
- Wu, S.M.; Tsai, P.R.; Yan, C.J. Maternal cadmium exposure induces mt2 and smtB mRNA expression in zebrafish (Danio rerio) females and their offspring. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2012, 156, 1–6. [Google Scholar] [CrossRef]
- Hammerschmidt, C.R.; Sandheinrich, M.B. Maternal diet during oogenesis is the major source of methylmercury in fish embryos. Environ. Sci. Technol. 2005, 39, 3580–3584. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.M.; Tsai, P.J.; Chou, M.Y.; Wang, W.-D. Effects of maternal cadmium exposure on female reproductive functions, gamete quality, and offspring development in zebrafish (Danio rerio). Arch. Environ. Contam. Toxicol. 2013, 65, 521–536. [Google Scholar] [CrossRef] [PubMed]
- Mora-Zamorano, F.X.; Klingler, R.; Murphy, C.A.; Basu, N.; Head, J.; Carvan, M.J., III. Parental whole life cycle exposure to dietary methylmercury in zebrafish (Danio rerio) affects the behavior of offspring. Environ. Sci. Technol. 2016, 50, 4808–4816. [Google Scholar] [CrossRef] [PubMed]
- Del Carmen Alvarez, M.; Murphy, C.A.; Rose, K.A.; McCarthy, I.D.; Fuiman, L.A. Maternal body burdens of methylmercury impair survival skills of offspring in Atlantic croaker (Micropogonias undulatus). Aquat. Toxicol. 2006, 80, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Weber, D. Dose-dependent effects of developmental mercury exposure on C-start escape responses of larval zebrafish Danio rerio. J. Fish Biol. 2006, 69, 75–94. [Google Scholar] [CrossRef]
- Chow, E.S.H.; Hui, M.N.Y.; Lin, C.C.; Cheng, S.H. Cadmium inhibits neurogenesis in zebrafish embryonic brain development. Aquat. Toxicol. 2008, 87, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Lu, C.; Wang, J.; Hu, W.; Cao, Z.; Sun, D.; Xia, H.; Ma, X. Developmental mechanisms of arsenite toxicity in zebrafish (Danio rerio) embryos. Aquat. Toxicol. 2009, 91, 229–237. [Google Scholar] [CrossRef]
- Yang, L.; Ho, N.Y.; Müller, F.; Strähle, U. Methyl mercury suppresses the formation of the tail primordium in developing zebrafish embryos. Toxicol. Sci. 2010, 115, 379–390. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Y.; Liu, W.; Bai, C.; Liu, X.; Liu, K.; Li, R.; Zhu, J.-H.; Huang, C. Developmental lead acetate exposure induces embryonic toxicity and memory deficit in adult zebrafish. Neurotoxicol. Teratol. 2012, 34, 581–586. [Google Scholar] [CrossRef]
- Dou, C.; Zhang, J. Effects of lead on neurogenesis during zebrafish embryonic brain development. J. Hazard. Mater. 2011, 194, 277–282. [Google Scholar] [CrossRef]
- McCollum, C.W.; Hans, C.; Shah, S.; Merchant, F.A.; Gustafsson, J.-Å.; Bondesson, M. Embryonic exposure to sodium arsenite perturbs vascular development in zebrafish. Aquat. Toxicol. 2014, 152, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Liu, Z.; Liu, F.; Ye, Y.; Peng, T.; Fu, Z. Embryonic exposure to cadmium (II) and chromium (VI) induce behavioral alterations, oxidative stress and immunotoxicity in zebrafish (Danio rerio). Neurotoxicol. Teratol. 2015, 48, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Serrano, R.; Blanes, M.A.; López, F.J. Biomagnification of organochlorine pollutants in farmed and wild gilthead sea bream (Sparus aurata) and stable isotope characterization of the trophic chains. Sci. Total Environ. 2008, 389, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Péan, S.; Daouk, T.; Vignet, C.; Lyphout, L.; Leguay, D.; Loizeau, V.; Bégout, M.-L.; Cousin, X. Long-term dietary-exposure to non-coplanar PCBs induces behavioral disruptions in adult zebrafish and their offspring. Neurotoxicol. Teratol. 2013, 39, 45–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Wu, Q.; Sun, Q.; Coffin, S.; Gui, W.; Zhu, G. Parental exposure to tebuconazole causes thyroid endocrine disruption in zebrafish and developmental toxicity in offspring. Aquat. Toxicol. 2019, 211, 116–123. [Google Scholar] [CrossRef]
- Cao, F.; Li, H.; Zhao, F.; Wu, P.; Qian, L.; Huang, L.; Pang, S.; Martyniuk, C.J.; Qiu, L. Parental exposure to azoxystrobin causes developmental effects and disrupts gene expression in F1 embryonic zebrafish (Danio rerio). Sci. Total Environ. 2019, 646, 595–605. [Google Scholar] [CrossRef]
- Nyholm, J.R.; Norman, A.; Norrgren, L.; Haglund, P.; Andersson, P.L. Maternal transfer of brominated flame retardants in zebrafish (Danio rerio). Chemosphere 2008, 73, 203–208. [Google Scholar] [CrossRef]
- Deng, J.; Yu, L.; Liu, C.; Yu, K.; Shi, X.; Yeung, L.W.; Lam, P.K.; Wu, R.S.; Zhou, B. Hexabromocyclododecane-induced developmental toxicity and apoptosis in zebrafish embryos. Aquat. Toxicol. 2009, 93, 29–36. [Google Scholar] [CrossRef]
- Pradhan, A.; Kharlyngdoh, J.B.; Asnake, S.; Olsson, P.-E. The brominated flame retardant TBECH activates the zebrafish (Danio rerio) androgen receptor, alters gene transcription and causes developmental disturbances. Aquat. Toxicol. 2013, 142, 63–72. [Google Scholar] [CrossRef]
- Yu, L.; Lam, J.C.; Guo, Y.; Wu, R.S.; Lam, P.K.; Zhou, B. Parental transfer of polybrominated diphenyl ethers (PBDEs) and thyroid endocrine disruption in zebrafish. Environ. Sci. Technol. 2011, 45, 10652–10659. [Google Scholar] [CrossRef]
- Quesada-García, A.; Valdehita, A.; Fernández-Cruz, M.L.; Leal, E.; Sánchez, E.; Martín-Belinchón, M.; Cerdá-Reverter, J.M.; Navas, J.M. Assessment of estrogenic and thyrogenic activities in fish feeds. Aquaculture 2012, 338, 172–180. [Google Scholar] [CrossRef]
- Davis, L.K.; Fox, B.K.; Lim, C.; Lerner, D.T.; Hirano, T.; Grau, E.G. Effects of 11-ketotestosterone and fishmeal in the feed on growth of juvenile tilapia (Oreochromis mossambicus). Aquaculture 2010, 305, 143–149. [Google Scholar] [CrossRef]
- Hoga, C.A.; Almeida, F.L.; Reyes, F.G. A review on the use of hormones in fish farming: Analytical methods to determine their residues. CyTA-J. Food 2018, 16, 679–691. [Google Scholar] [CrossRef] [Green Version]
- Ishibashi, H.; Kobayashi, M.; Koshiishi, T.; Moriwaki, T.; Tachibana, K.; Tsuchimoto, M.; Soyano, K.; Iguchi, T.; Mori, C.; Arizono, K. Induction of plasma vitellogenin synthesis by the commercial fish diets in male goldfish (Carassius auratus) and dietary phytoestrogens. J. Health Sci. 2002, 48, 427–434. [Google Scholar] [CrossRef]
- Inudo, M.; Ishibashi, H.; Matsumura, N.; Matsuoka, M.; Mori, T.; Taniyama, S.; Kadokami, K.; Koga, M.; Shinohara, R.; Hutchinson, T. Effect of estrogenic activity, and phytoestrogen and organochlorine pesticide contents in an experimental fish diet on reproduction and hepatic vitellogenin production in medaka (Oryzias latipes). Comp. Med. 2004, 54, 673–680. [Google Scholar] [PubMed]
- Beresford, N.; Brian, J.V.; Runnalls, T.J.; Sumpter, J.P.; Jobling, S. Estrogenic activity of tropical fish food can alter baseline vitellogenin concentrations in male fathead minnow (Pimephales promelas). Environ. Toxicol. Chem. 2011, 30, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- Davis, L.K.; Fox, B.K.; Lim, C.; Hiramatsu, N.; Sullivan, C.V.; Hirano, T.; Grau, E.G. Induction of vitellogenin production in male tilapia (Oreochromis mossambicus) by commercial fish diets. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2009, 154, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Dong, Y.; Cui, P. Vitellogenin is an immunocompetent molecule for mother and offspring in fish. Fish Shellfish Immunol. 2015, 46, 710–715. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, S. Functions of vitellogenin in eggs. In Oocytes; Springer: Cham, Switzerland, 2017; pp. 389–401. [Google Scholar]
- Lubzens, E.; Bobe, J.; Young, G.; Sullivan, C.V. Maternal investment in fish oocytes and eggs: The molecular cargo and its contributions to fertility and early development. Aquaculture 2017, 472, 107–143. [Google Scholar] [CrossRef]
- Garcia, J.; Munro, E.S.; Monte, M.M.; Fourrier, M.C.; Whitelaw, J.; Smail, D.A.; Ellis, A.E. Atlantic salmon (Salmo salar L.) serum vitellogenin neutralises infectivity of infectious pancreatic necrosis virus (IPNV). Fish Shellfish Immunol. 2010, 29, 293–297. [Google Scholar] [CrossRef]
- Liu, M.; Pan, J.; Ji, H.; Zhao, B.; Zhang, S. Vitellogenin mediates phagocytosis through interaction with FcγR. Mol. Immunol. 2011, 49, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, Y.; Ma, J.; Ding, Y.; Zhang, S. Phosvitin plays a critical role in the immunity of zebrafish embryos via acting as a pattern recognition receptor and an antimicrobial effector. J. Biol. Chem. 2011, 286, 22653–22664. [Google Scholar] [CrossRef] [PubMed]
- Banni, M.; Chouchene, L.; Said, K.; Kerkeni, A.; Messaoudi, I. Mechanisms underlying the protective effect of zinc and selenium against cadmium-induced oxidative stress in zebrafish Danio rerio. Biometals 2011, 24, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, M.; Yamashita, Y.; Suzuki, T.; Kani, Y.; Mizusawa, N.; Imamura, S.; Takemoto, K.; Hara, T.; Hossain, M.A.; Yabu, T. Selenoneine, a novel selenium-containing compound, mediates detoxification mechanisms against methylmercury accumulation and toxicity in zebrafish embryo. Mar. Biotechnol. 2013, 15, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Penglase, S.; Hamre, K.; Ellingsen, S. Selenium and mercury have a synergistic negative effect on fish reproduction. Aquat. Toxicol. 2014, 149, 16–24. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, Q.; Wang, X.; Zhou, B. Impact of co-exposure with lead and decabromodiphenyl ether (BDE-209) on thyroid function in zebrafish larvae. Aquat. Toxicol. 2014, 157, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Wang, Q.; Shi, X.; Guo, Y.; Xu, T.; Zhou, B. Effect of combined exposure to lead and decabromodiphenyl ether on neurodevelopment of zebrafish larvae. Chemosphere 2016, 144, 1646–1654. [Google Scholar] [CrossRef]
- Ren, X.; Lu, F.; Cui, Y.; Wang, X.; Bai, C.; Chen, J.; Huang, C.; Yang, D. Protective effects of genistein and estradiol on PAHs-induced developmental toxicity in zebrafish embryos. Hum. Exp. Toxicol. 2012, 31, 1161–1169. [Google Scholar] [CrossRef]
- Kong, D.; Xing, L.; Liu, R.; Jiang, J.; Wang, W.; Shang, L.; Wei, X.; Hao, W. Individual and combined developmental toxicity assessment of bisphenol A and genistein using the embryonic stem cell test in vitro. Food Chem. Toxicol. 2013, 60, 497–505. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. FDA’s Regulation of Pet Food. Available online: http://www.fda.gov/animal-veterinary/animal-health-literacy/fdas-regulation-pet-food (accessed on 25 July 2019).
- U.S. Food and Drug Administration. Guidance for Industry: Action Levels for Poisonous or Deleterious Substances in Human Food and Animal Feed; U.S. Food and Drug Administration: Washington, DC, USA, 2000. [Google Scholar]
Contaminant Group | Specific Contaminant | Found in Fish Feeds | Feedstuff Found In |
---|---|---|---|
Heavy Metals [2,17,18,19,20,21,22,23,24] | Yes | Fish meal, fish oil, poultry feather meal, plant meal, rice bran | |
Arsenic [18,19,20,21] | Yes | Fish meal, fish oil, poultry feather meal, plant meal, rice bran | |
Selenium [22] | Yes | ||
Mercury [17,23,24] | Yes | Fish meal | |
Lead [17] | Yes | ||
Chromium [2] | Yes | ||
Cadmium [17,20] | Yes | Plant meal | |
Persistent Organic Pollutants (POPs) [13,17,20,25,26] | Yes | Fish meal, fish oil, plant meal | |
Polychlorinated biphenyls (PCBs) [20,23,25,26,27,28] | Yes | Fish meal, fish oil, plant meal | |
Brominated Flame Retardants (BFRs) [20,23,28,29] | Yes | Fish meal, fish oil, plant meal | |
Hormones * [30] | Yes | Soybean oil cake, corn-gluten meal, cottonseed meal, wheat flour | |
Phytoestrogens [1,31] | Yes | Soybean meal, lupin seed meal, cottonseed meal, alfalfa leaf meal |
Contaminant Group | Specific Contaminant | Parental Diet | Embryonic Exposure | Maternal Exposure | Effects |
---|---|---|---|---|---|
Heavy Metals | |||||
Chromium [2,48] | 69.6 mg/kg | Orange coloration, cardial edema, mishapen yolk sacs, developmental delay | |||
3–30 μM | Altered behavior, oxidative stress, immunotoxicity | ||||
Cadmium [38,42,48] | 35.6 μM | Altered gene expression, retarded development, pericardial edema | |||
100 μM | Reduced head size, reduced gene expression, impaired neurogenesis | ||||
1–10 μM | Altered behavior, oxidative stress, immunotoxicity | ||||
Mercury [39,41,44] | 1 ppm | Increased hyperactivity | |||
25 ppb | Delayed response to stimulus | ||||
6 μg/L | Impaired tail development | ||||
Arsenic [43,47] | 0.5–1.0 mg/L | Reduced survival, delayed hatching, retarded growth, malformation of spinal cord, abnormal cardiac function, altered cell proliferation | |||
Lead [45,46] | 0.21–1.0 mg/L | Uninflated swim bladder, bent spine, yolk-sac edema, hyperactivity | |||
0.2 mM | Impaired neurogenesis | ||||
Persistent Organic Pollutants | |||||
Polychlorinated biphenyls (PCBs) [5,50] | 1 umol/kg injection | Increased mortality | |||
515 ng/g | Increased activity, altered behavioral response | ||||
Tebuconazole [51] | 0.20 mg/L | Decreased survival, decreased hatching rate, developmental toxicity | |||
Azoxystrobin [52] | 20 μg/L | Decreased survival, delayed development, altered gene expression | |||
Brominated Flame Retardants (BFRs) [8,54,55,56] | 0.16 μg/L | Inhibition of acetylcholinesterase activity, downregulation of genes | |||
0.5 mg/L | Increased mortality, increased malformation | ||||
1–10 μM | Delayed hatching, morphilogical abnormalities, increased mortality | ||||
3 μg/L | Decreased hatching rate, inhibition of growth |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tye, M.; Masino, M.A. Dietary Contaminants and Their Effects on Zebrafish Embryos. Toxics 2019, 7, 46. https://doi.org/10.3390/toxics7030046
Tye M, Masino MA. Dietary Contaminants and Their Effects on Zebrafish Embryos. Toxics. 2019; 7(3):46. https://doi.org/10.3390/toxics7030046
Chicago/Turabian StyleTye, Marc, and Mark A. Masino. 2019. "Dietary Contaminants and Their Effects on Zebrafish Embryos" Toxics 7, no. 3: 46. https://doi.org/10.3390/toxics7030046