Methods for the Identification of Outliers and Their Influence on Exposure Assessment in Agricultural Pesticide Applicators: A Proposed Approach and Validation Using Biological Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection Sheet
2.2. Assessment of Skin Exposure
2.3. Assessment of Urine ETU Excretion
2.4. Sample Preparation and Analysis
2.5. Exposure Assessment
2.6. Outlier Detection and Statistical Analyses
2.6.1. Multiplication
2.6.2. Modified Z Score
2.6.3. Boxplot
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mandic-Rajcevic, S.; Rubino, F.M.; Colosio, C. General Approaches and Procedures for Pesticide Legislation. In Environmental Security Assessment and Management of Obsolete Pesticides in Southeast Europe. NATO Science for Peace and Security Series C: Environmental Security; Simeonov, L., Macaev, F., Simeonova, B., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 134, ISBN 9789400764606. [Google Scholar]
- Colosio, C.; Rubino, F.M.; Alegakis, A.; Ariano, E.; Brambilla, G.; Mandic-Rajcevic, S.; Metruccio, F.; Minoia, C.; Moretto, A.; Somaruga, C.; et al. Integration of biological monitoring, environmental monitoring and computational modelling into the interpretation of pesticide exposure data: Introduction to a proposed approach. Toxicol. Lett. 2012, 213, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Colosio, C.; Fustinoni, S.; Birindelli, S.; Bonomi, I.; De Paschale, G.; Mammone, T.; Tiramani, M.; Vercelli, F.; Visentin, S.; Maroni, M. Ethylenethiourea in urine as an indicator of exposure to mancozeb in vineyard workers. Toxicol. Lett. 2002, 134, 133–140. [Google Scholar] [CrossRef]
- Vitali, M.; Protano, C.; Del Monte, A.; Ensabella, F.; Guidotti, M. Operative modalities and exposure to pesticides during open field treatments among a group of agricultural subcontractors. Arch. Environ. Contam. Toxicol. 2009, 57, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Aprea, C.; Terenzoni, B.; De Angelis, V.; Sciarra, G.; Lunghini, L.; Borzacchi, G.; Vasconi, D.; Fani, D.; Quercia, A.; Salvan, A.; et al. Evaluation of skin and respiratory doses and urinary excretion of alkylphosphates in workers exposed to dimethoate during treatment of olive trees. Arch. Environ. Contam. Toxicol. 2004, 48, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Schneider, T.A.; Cherrie, J.W.; Vermeulen, R.; Kromhout, H. Dermal exposure assessment. Ann. Occup. Hyg. 2000, 44, 493–499. [Google Scholar] [CrossRef]
- OECD. Guidance Document for the Conduct of Studies of Occupational Exposure to Pesticides During Agricultural Application; Organisation for Economic Co-operation and Development, Environment Directorate: Paris, France, 1997. [Google Scholar]
- Fustinoni, S.; Mercadante, R.; Polledri, E.; Rubino, F.M.; Mandic-Rajcevic, S.; Vianello, G.; Colosio, C.; Moretto, A. Biological monitoring of exposure to tebuconazole in winegrowers. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 643–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercadante, R.; Polledri, E.; Rubino, F.M.; Mandic-Rajcevic, S.; Vaiani, A.; Colosio, C.; Moretto, A.; Fustinoni, S. Assessment of penconazole exposure in winegrowers using urinary biomarkers. Environ. Res. 2018, 168, 54–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubino, F.M.; Mandic-Rajcevic, S.; Ariano, E.; Alegakis, A.; Bogni, M.; Brambilla, G.; De Paschale, G.; Firmi, A.; Minoia, C.; Micoli, G.; et al. Farmers’ exposure to herbicides in North Italy: Assessment under real-life conditions in small-size rice and corn farms. Toxicol. Lett. 2012, 210, 189–197. [Google Scholar] [CrossRef]
- Protano, C.; Guidotti, M.; Vitali, M. Performance of different work clothing types for reducing skin exposure to pesticides during open field treatment. Bull. Environ. Contam. Toxicol. 2009, 83, 115–119. [Google Scholar] [CrossRef]
- Mandic-Rajcevic, S.; Rubino, F.M.; Ariano, E.; Cottica, D.; Neri, S.; Colosio, C. Environmental and biological monitoring for the identification of main exposure determinants in vineyard mancozeb applicators. J. Expo. Sci. Environ. Epidemiol. 2018, 28, 289–296. [Google Scholar] [CrossRef]
- Hernández, A.F.; Tsatsakis, A.M. Human exposure to chemical mixtures: Challenges for the integration of toxicology with epidemiology data in risk assessment. Food Chem. Toxicol. 2017, 103, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Tsatsakis, A.M.; Kouretas, D.; Tzatzarakis, M.N.; Stivaktakis, P.; Tsarouhas, K.; Golokhvast, K.S.; Rakitskii, V.N.; Tutelyan, V.A.; Hernandez, A.F.; Rezaee, R.; et al. Simulating real-life exposures to uncover possible risks to human health: A proposed consensus for a novel methodological approach. Hum. Exp. Toxicol. 2017, 36, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Goumenou, M.; Tsatsakis, A. Proposing new approaches for the risk characterisation of single chemicals and chemical mixtures: The Source Related Hazard Quotient (HQS) and Hazard Index (HIS) and the Adversity Specific Hazard Index (HIA). Toxicol. Rep. 2019, 6, 632–636. [Google Scholar] [CrossRef]
- Tsatsakis, A.; Goumenou, M.; Liesivuori, J.; Dekant, W.; Hernández, A.F. Toxicology for real-life risk simulation—Editorial preface to this special issue. Toxicol. Lett. 2019, 309, 33–34. [Google Scholar] [CrossRef] [PubMed]
- Kostoff, R.N.; Goumenou, M.; Tsatsakis, A. The role of toxic stimuli combinations in determining safe exposure limits. Toxicol. Rep. 2018, 5, 1169–1172. [Google Scholar] [CrossRef] [PubMed]
- Mandic-Rajcevic, S.; Rubino, F.M.; Vianello, G.; Fugnoli, L.; Polledri, E.; Mercadante, R.; Moretto, A.; Fustinoni, S.; Colosio, C. Dermal exposure and risk assessment of tebuconazole applicators in vineyards. Med. Lav. 2015, 106, 294–315. [Google Scholar] [PubMed]
- Mandic-Rajcevic, S.; Rubino, F.M.; Ariano, E.; Cottica, D.; Negri, S.; Colosio, C. Exposure duration and absorbed dose assessment in pesticide-exposed agricultural workers: Implications for risk assessment and modeling. Int. J. Hyg. Environ. Health 2019, 222, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Colosio, C.; Visentin, S.; Birindelli, S.; Campo, L.; Fustinoni, S.; Mariani, F.; Tiramani, M.; Tommasini, M.; Brambilla, G.; Maroni, M. Reference values for ethylenethiourea in urine in Northern Italy: Results of a pilot study. Toxicol. Lett. 2006, 162, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Shamsipour, M.; Farzadfar, F.; Gohari, K.; Parsaeian, M.; Amini, H.; Rabiei, K.; Hassanvand, M.S.; Navidi, I.; Fotouhi, A.; Naddafi, K.; et al. A framework for exploration and cleaning of environmental data—Tehran air quality data experience. Arch. Iran. Med. 2014, 17, 821–829. [Google Scholar] [PubMed]
- O’Leary, B.; Reiners, J.J.; Xu, X.; Lemke, L.D. Identification and influence of spatio-temporal outliers in urban air quality measurements. Sci. Total Environ. 2016, 573, 55–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Wang, J.; Zheng, Y.; Lei, M.; Yang, J.; Wan, X.; Chen, T. Method for identifying outliers of soil heavy metal data. Environ. Sci. Pollut. Res. Int. 2018, 25, 12868–12875. [Google Scholar] [CrossRef] [PubMed]
- Durkin, P.R.; Rubin, L.; Withey, J.; Meylan, W. Methods of assessing dermal absorption with emphasis on uptake from contaminated vegetation. Toxicol. Ind. Health 1995, 11, 63–79. [Google Scholar] [CrossRef] [PubMed]
- Grover, R.; Franklin, C.A.; Muir, N.I.; Cessna, A.J.; Riedel, D. Dermal exposure and urinary metabolite excretion in farmers repeatedly exposed to 2,4-D amine. Toxicol. Lett. 1986, 33, 73–83. [Google Scholar] [CrossRef]
- Fargnoli, M.; Lombardi, M.; Puri, D.; Casorri, L.; Masciarelli, E.; Mandić-Rajčević, S.; Colosio, C. The Safe Use of Pesticides: A Risk Assessment Procedure for the Enhancement of Occupational Health and Safety (OHS) Management. Int. J. Environ. Res. Public Health 2019, 16, 310. [Google Scholar] [CrossRef] [PubMed]
- Mosteller, R.D. Simplified calculation of body-surface area. N. Engl. J. Med. 1987, 317, 1098. [Google Scholar] [PubMed]
- Moore, R.A.; Waheed, A.; Burns, B. Rule of Nines; StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 30 May 2019. [Google Scholar]
- Jones, K.; Patel, K.; Cocker, J.; Bevan, R.; Levy, L. Determination of ethylenethiourea in urine by liquid chromatography-atmospheric pressure chemical ionisation-mass spectrometry for monitoring background levels in the general population. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2010, 878, 2563–2566. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: http//www.R-project.org/ (accessed on 1 June 2019).
- Iglewicz, B.; Hoaglin, D.C. How to Detect and Handle Outliers; Asq Press: Milwuakee, WI, USA, 1993; Volume 16, ISBN 087389247X. [Google Scholar]
- De Cock, J.; Heederik, D.; Boleij, J.S.M.; Kromhout, H.; Hoek, F.; Wegh, H.; Ny, E.T. Exposure to Captan in Fruit Growing. Am. Ind. Hyg. Assoc. J. 1998, 59, 158–165. [Google Scholar] [CrossRef]
- Hines, C.J.; Deddens, J.A.; Coble, J.; Kamel, F.; Alavanja, M.C.R. Determinants of captan air and dermal exposures among orchard pesticide applicators in the agricultural health study. Ann. Occup. Hyg. 2011, 55, 620–633. [Google Scholar]
- Coble, J.; Arbuckle, T.; Lee, W.; Alavanja, M.; Dosemeci, M. The validation of a pesticide exposure algorithm using biological monitoring results. J. Occup. Environ. Hyg. 2005, 2, 194–201. [Google Scholar] [CrossRef]
- Yoshida, K.; Fuzesi, I.; Suzan, M.; Nagy, L. Measurements of surface contamination of spray equipment with pesticides after various methods of application. J. Environ. Sci. Health Part B 1990, 25, 169–183. [Google Scholar] [CrossRef]
- Sanco, E. Review Report for the Active Substance Mancozeb; EFSA: Parma, Italy, 2009.
- Kennedy, M.C.; Glass, C.R.; Fustinoni, S.; Moretto, A.; Mandic-Rajcevic, S.; Riso, P.; Turrini, A.; van der Voet, H.; Hetmanski, M.T.; Fussell, R.J.; et al. Testing a cumulative and aggregate exposure model using biomonitoring studies and dietary records for Italian vineyard spray operators. Food Chem. Toxicol. 2015, 79, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, M.; Huss, A.; Vermeulen, R.; Nijssen, P.; De Snoo, G.; Kromhout, H. Expert assessment of historical crop specific pesticide use in the Netherlands. Occup. Environ. Med. 2014, 71, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Acquavella, J.F.; Alexander, B.H.; Mandel, J.S.; Burns, C.J.; Gustin, C. Exposure misclassification in studies of agricultural pesticides: Insights from biomonitoring. Epidemiology 2006, 17, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Aprea, C.; Betta, A.; Catenacci, G.; Colli, A.; Lotti, A.; Minoia, C.; Olivieri, P.; Passini, V.; Pavan, I.; Roggi, C.; et al. Urinary excretion of ethylenethiourea in five volunteers on a controlled diet (multicentric study). Sci. Total Environ. 1997, 203, 167–179. [Google Scholar] [CrossRef]
Position | Type of Tractor | |||||
---|---|---|---|---|---|---|
All Median (IQR) | Open Median (IQR) | Filtered Median (IQR) | ||||
Back | 7.51 | (2.89–21.35) | 2.40 | (2.00–51.80) | 9.23 | (4.40–18.25) |
Chest | 6.90 | (4.00–24.30) | 4.80 | (2.85–56.35) | 13.90 | (4.43–23.77) |
Left arm | 29.00 | (11.50–166.00) | 84.00 | (23.65–183.25) | 15.85 | (6.87–151.00) |
Right arm | 60.00 | (9.70–216.45) | 119.00 | (48.00–1128.35) | 19.90 | (9.44–145.75) |
Left leg | 7.90 | (3.50–38.90) | 16.30 | (8.60–39.00) | 4.60 | (3.40–38.60) |
Right leg | 17.40 | (5.93–38.47) | 35.00 | (29.10–45.00) | 8.42 | (5.35–28.25) |
Method | Type of Tractor | ||
---|---|---|---|
All | Open | Filtered | |
Median × 10 | 20 (11.90%) | 7 (14.58%) | 13 (10.83%) |
Median × 100 | 4 (2.38%) | 1 (2.08%) | 3 (2.50%) |
Modified Z score | 26 (17.33%) | 8 (19.05%) | 18 (16.67%) |
Q3 + 1.5 IQR | 11 (6.55%) | 3 (6.25%) | 8 (6.67%) |
Q3 + 2.5 IQR | 7 (4.17%) | 2 (4.17%) | 5 (4.17%) |
Method | Type of Tractor | |||||
---|---|---|---|---|---|---|
All Median (IQR) | Open Median (IQR) | Filtered Median (IQR) | ||||
Median × 10 | 251.95 | (69.75–1802.88) | 1737.00 | (101.50–33,796.25) | 228.00 | (24.10–615.00) |
Median × 100 | 3440.25 | (1531.10–14,306.00) | 4880.00 | N/A | 2000.50 | (1061.70–22,292.25) |
Modified Z score | 159.25 | (24.98–874.72) | 949.25 | (110.25–19,338.12) | 139.95 | (16.38–365.60) |
Q3 + 1.5 IQR | 122.90 | (25.55–1868.75) | 1737.00 | (882.00–3308.50) | 112.85 | (22.55–961.38) |
Q3 + 2.5 IQR | 615.00 | (112.85–3308.50) | 3308.50 | (2522.75–4094.25) | 122.90 | (102.80–615.00) |
Method | Type of Tractor | |||
---|---|---|---|---|
All Median (IQR) | Open Median (IQR) | Filtered Median (IQR) | ||
Skin Exposure (ng) | ||||
No outlier detection | 3219.56 (939.73–14,393.91) | 4595.57 (1006.27–65,793.22) | 2066.12 (921.81–9521.81) | |
Median × 10 | 1238.42 (439.58–5749.27) | 3079.00 (558.78–10,068.12) | 1238.42 (381.39–5332.08) | |
Median × 100 | 2719.80 (822.17–8606.93) | 4595.57 (1006.27–18,142.38) | 1507.39 (703.23–8606.93) | |
Modified Z score | 1188.70 (391.59–5225.99) | 1904.60 (558.78–9728.87) | 1188.70 (362.61–3757.98) | |
Q3 + 1.5 IQR | 2672.78 (544.87–7640.25) | 4595.57 (778.54–10,068.12) | 1507.39 (381.99–7640.25) | |
Q3 + 2.5 IQR | 2672.78 (822.17–7640.25) | 4595.57 (1006.27–10,068.12) | 1507.39 (675.77–7640.25) | |
Biological monitoring | ||||
24-h post-exposure ETU levels (μg) | 2.59 (1.29–7.45) | 3.02 (1.38–11.53) | 2.39 (1.29–4.78) | |
24-h post-exposure ETU level corrected for creatinine (μg/g creat.) | 2.07 (1.14–5.03) | 3.02 (1.33–8.21) | 1.95 (1.11–4.05) | |
Difference between 24-h pre- and post-exposure ETU levels (μg) | 1.53 (0.06–6.46) | 1.83 (0.32–7.68) | 1.17 (<0.01–3.93) |
Method | Type of Tractor | |||||
---|---|---|---|---|---|---|
All Median (IQR) | Open Median (IQR) | Filtered Median (IQR) | ||||
Median × 10 | 12,480.43 | (1465.16–51,033.02) | 32,297.06 | (3419.75–91,626.20) | 7477.60 | (1266.78–24,476.48) |
Median × 100 | 54,768.74 | (13,991.33–657,371.13) | 91,626.20 | N/A | 17,911.28 | (10,071.38–1,186,258.61) |
Modified Z score | 3798.88 | (974.61–36,981.05) | 32,297.06 | (3419.75–94,427.33) | 2474.77 | (873.62–14,052.36) |
Q3 + 1.5 IQR | 2231.48 | (462.77–25,104.17) | 32,297.06 | (16,382.42–61,961.63) | 1823.82 | (405.08–13,744.19) |
Q3 + 2.5 IQR | 12,355.15 | (1823.82–61,961.63) | 61,961.63 | (47,129.34–76,793.91) | 2231.48 | (1416.15–12,355.15) |
Method | 24-h Post-Exposure ETU Levels | 24-h Post-Exposure ETU Level Corrected for Creatinine | Difference between 24-h Pre- and Post-Exposure ETU Levels |
---|---|---|---|
No outlier detection | 0.46 | 0.46 | 0.39 |
Median × 10 | 0.68 | 0.65 | 0.49 |
Median × 100 | 0.50 | 0.47 | 0.37 |
Modified Z score | 0.71 | 0.68 | 0.52 |
Q3 + 1.5 IQR | 0.50 | 0.46 | 0.43 |
Q3 + 2.5 IQR | 0.51 | 0.47 | 0.43 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandić-Rajčević, S.; Colosio, C. Methods for the Identification of Outliers and Their Influence on Exposure Assessment in Agricultural Pesticide Applicators: A Proposed Approach and Validation Using Biological Monitoring. Toxics 2019, 7, 37. https://doi.org/10.3390/toxics7030037
Mandić-Rajčević S, Colosio C. Methods for the Identification of Outliers and Their Influence on Exposure Assessment in Agricultural Pesticide Applicators: A Proposed Approach and Validation Using Biological Monitoring. Toxics. 2019; 7(3):37. https://doi.org/10.3390/toxics7030037
Chicago/Turabian StyleMandić-Rajčević, Stefan, and Claudio Colosio. 2019. "Methods for the Identification of Outliers and Their Influence on Exposure Assessment in Agricultural Pesticide Applicators: A Proposed Approach and Validation Using Biological Monitoring" Toxics 7, no. 3: 37. https://doi.org/10.3390/toxics7030037
APA StyleMandić-Rajčević, S., & Colosio, C. (2019). Methods for the Identification of Outliers and Their Influence on Exposure Assessment in Agricultural Pesticide Applicators: A Proposed Approach and Validation Using Biological Monitoring. Toxics, 7(3), 37. https://doi.org/10.3390/toxics7030037