Antioxidant and Cytoprotective Effect of Piper aduncum L. against Sodium Fluoride (NaF)-Induced Toxicity in Albino Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.3. Experimentation Animals
2.4. Extract Preparation
2.5. Antioxidant Activity
2.5.1. Ferric Reducing ability of plasma (FRAP)
2.5.2. 2-Diphenil-1-picrilhidracil (DPPH)
2.5.3. Thiobarbituric Acid Reactive Substances (TBARS)
2.6. Determination of Flavonoids and Polyphenols
2.7. Acute Oral Toxicity
2.8. Genotoxicity Study
2.8.1. Micronucleus Test
2.8.2. Comet Assay
2.9. Statistical Analysis
3. Results
3.1. Antioxidant Activity
3.2. Acute Oral Toxicity Study
3.3. Genotoxicity Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Herrera-Calderon, O.; Alvarado-Puray, C.; Arroyo-Acevedo, J.L.; Rojas-Armas, J.P.; Chumpitaz-Cerrate, V.; Hañari-Quispe, R.; Valenzuela-Herrera, R. Phytochemical screening, total phenolic content, antioxidant and cytotoxic activity of five peruvian plants on human tumor cell lines. Pharmacogn. Res. 2018, 10, 161–165. [Google Scholar] [CrossRef]
- Thao, N.P.; Luyen, B.T.; Widowati, W.; Fauziah, N.; Maesaroh, M.; Herlina, T.; Manzoor, Z.; Ali, I.; Koh, Y.S.; Kim, Y.H. Anti-inflammatory flavonoid C-glycosides from Piper aduncum leaves. Planta Med. 2016, 82, 1475–1481. [Google Scholar] [CrossRef]
- Okunade, A.L.; Hufford, C.D.; Clark, A.M.; Lentz, D. Antimicrobial properties of the constituents of Piper aduncum. Phytother. Res. 1997, 11, 142–144. [Google Scholar] [CrossRef]
- Morandi-Ade, A.; Bergamo, D.C.B.; Kato, M.J.; Cavalheiro, A.J.; Bolzan-Vda, S.; Furlan, M. Circadian rhythm of anti-fungal prenylated chromene in leaves of Piper aduncum. Phytochem. Anal. 2005, 16, 282–286. [Google Scholar] [CrossRef]
- Morandim, A.D.A.; Kato, M.J.; Cavalheiro, A.J.; Furlan, M. Intraspecific variability of dihydrochalcone, chromenes and benzoic acid derivatives in leaves of Piper aduncum L. (Piperaceae). Afr. J. Biotechnol. 2009, 8, 2157–2162. [Google Scholar]
- Orjala, J.; Wright, A.D.; Behrends, H.; Folkers, G.; Sticher, O.; Rüegger, H.; Rali, T. Cytotoxic and antibacterial dihydrochalcones from Piper aduncum. J. Nat. Prod. 1994, 57, 18–26. [Google Scholar] [CrossRef]
- Marques, A.M.; de Paiva, R.A.; da Fonseca, L.M.; Capella, M.A.; Guimarães, E.F.; Kaplan, M.A.C. Preliminary anticancer potency evaluation and phytochemical investigation of methanol extract of Piper claussenianum (Miq.) C. DC. J. Appl. Pharm. Sci. 2013, 3, 13–18. [Google Scholar]
- Majdalawieh, A.F.; Carr, R.I. In vitro investigation of the potential immunomodulatory and anticancer activities of black pepper (Piper nigrum) and cardamom (Elettaria cardamomum). J. Med. Food. 2010, 13, 371–381. [Google Scholar] [CrossRef]
- Orjala, J.; Erdelmeier, C.A.; Wright, A.D.; Rali, T.; Sticher, O. Five new prenylated p-hydroxybenzoic acid derivatives with antimicrobial and molluscicidal activity from Piper aduncum leaves. Planta Med. 1993, 59, 546–551. [Google Scholar] [CrossRef]
- Song, G.; Wang, R.L.; Chen, Z.Y.; Zhang, B.; Wang, H.L.; Liu, M.L.; Gao, J.P.; Yan, X.Y. Toxic effects of sodium fluoride on cell proliferation and apoptosis of Leydig cells from young mice. J. Physiol. Biochem. 2014, 70, 761–768. [Google Scholar] [CrossRef]
- Evariste, L.; Lagier, L.; Gonzalez, P.; Mottier, A.; Mouchet, F.; Cadarsi, S.; Lonchambon, P.; Daffe, G.; Chimowa, G.; Sarrieu, C.; et al. Thermal Reduction of Graphene Oxide Mitigates Its in vivo Genotoxicity toward Xenopus laevis Tadpoles. Nanomaterials 2019, 9, 584. [Google Scholar] [CrossRef] [PubMed]
- Beranek, M.; Malkova, A.; Fiala, Z.; Kremlacek, J.; Hamakova, K.; Zaloudkova, L.; Borsky, P.; Adamus, T.; Palicka, V.; Borska, L. Goeckerman Therapy of Psoriasis: Genotoxicity, Dietary Micronutrients, Homocysteine, and MTHFR Gene Polymorphisms. Int. J. Mol. Sci. 2019, 20, 1908. [Google Scholar] [CrossRef]
- Arroyo-Acevedo, J.; Chávez-Asmat, R.J.; Anampa-Guzmán, A.; Donaires, R.; Ráez-Gonzáles, J. Protective Effect of Piper aduncum Capsule on DMBA-induced Breast Cancer in Rats. Breast Cancer. 2015, 9, 41–48. [Google Scholar] [CrossRef]
- Arroyo-Acevedo, J.L.; Herrera-Calderon, O.; Rojas-Armas, J.P.; Chumpitaz-Cerrate, V.; Franco-Quino, C.; Hañari-Quispe, R. Chuquiraga spinosa Lessing: A Medicinal Plant for Gastric Cancer Induced By N-Methyl-N-Nitroso-Urea (NMU). Pharmacogn. J. 2018, 10, 20–24. [Google Scholar] [CrossRef]
- Rao, A.R.; Sinha, A.; Selvan, R.S. Inhibitory action of Piper betle on the initiation of 7,12-dimethylbenz[a]anthracene-induced mammary carcinogenesis in rats. Cancer Lett. 1985, 26, 207–214. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Draper, H.H.; Hadley, M. Malondialdehyde determination as index of lipid Peroxidation. Methods Enzymol. 1990, 186, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, K.L.; Liu, R.H. Structure-activity relationships of flavonoids in the cellular antioxidant activity assay. J. Agric. Food Chem. 2008, 56, 8404–8411. [Google Scholar] [CrossRef]
- OECD. Guideline for Testing of Chemicals. Acute oral Toxicity-Acute Toxic Class Method, Guideline No. 423. Adopted 2001; Organization for Economic Cooperation and Development: Rome, Italy, 2001; pp. 1–14. [Google Scholar]
- OECD. Guideline for the Testing of Chemicals Tg 474 Mammalian erythrocyte micronucelus test. In OECD Guidelines; Organization for Economic Cooperation and Development: Rome, Italy, 2014; pp. 1–16. [Google Scholar]
- OECD. Test No. 489: In Vivo Mammalian Alkaline Comet Assay, OECD Guidelines for the Testing of Chemicals; Organization for Economic Cooperation and Development: Rome, Italy, 2014; pp. 1–21. [Google Scholar]
- Insanu, M.; Marliani, L.; Dinilah, N.P. Comparison of antioxidant activities from four species of piper. Pharmaciana 2017, 7, 305–312. [Google Scholar] [CrossRef]
- Ramos, M.; Ramos, D.F.; Remsberg, C.M.; Takemotoc, J.K.; Daviesc, N.M.; Yáñez, J.A. Identification of Polyphenols and Anti-Oxidant Capacity of Piper aduncum L. Curr. Bioact. Compd. 2008, 1, 18–21. [Google Scholar]
- Sunila, E.S.; Kuttan, G. Immunomodulatory and antitumor activity of Piper longum Linn. and piperine. J. Ethnopharmacol. 2004, 90, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Feng, C.; Chen, Q.; Li, W.; Wang, H.; Lv, L.; Smith, G.W.; Wang, J. Effects of sodium fluoride treatment in vitro on cell proliferation, apoptosis and caspase-3 and caspase-9 mRNA expression by neonatal rat osteoblasts. Arch. Toxicol. 2009, 83, 451–458. [Google Scholar] [CrossRef] [PubMed]
Methanolic Extract | Polyphenols (mg GAE/g) | Flavonoids (mg CE/g) | FRAP (µmol Fe+2/g) | DPPH (µmol TEAC/g) | TBARS (µg MDA/g) |
---|---|---|---|---|---|
19.00 ± 0.8 | 4.10 ± 0.11 | 40.63 ± 0.65 | 0.790 ± 0.5 | 260.0 ± 0.56 | |
Other reports of antioxidant activity | 4.94 ± 0.05 (ethanol extract) [22] | 3.8 ± 0.03 (n-hexane extract) 6.7 ± 0.02 (ethyl acetate extract) 8.3 ± 0.01 (ethanol extract) [22] | 121.03 ± 0.27 (µg ascorbic acid equivalent/mL) [22] | 1248.82 ± 17.14 µg/g (n-hexane extract) 1454.7 ± 0.38 µg/g (ethyl acetate extract) 129.54 ± 0.41 µg/g (ethanol extract) [22] | |
85.24 ± 0.60 (ethanol extract) [23] |
Experimental Group | Micronucleus Test | Comet Assay | |||||
---|---|---|---|---|---|---|---|
MNPCE/1000PCE (median ± SD) | CTI PCE/NCE | Reduction (%) | Number of Cells Expressed as AU | Reduction (%) | Tail DNA (%) | Tail Moment (%) | |
PA 150 mg/Kg + PC | 9.05 ± 0.707 a,b | 2.041 ± 0.408 | 52.4% | 104.23 ± 10.93 a,b | 65.58% | 0.15 ± 0.01 | 0.14 ± 0.01 |
PA 300 mg/Kg + PC | 6.42 ± 1.817 a,b | 3.27 ± 1.13 | 67.9% | 82.40 ± 22.54 a,b | 75.4% | 0.17 ± 0.02 | 0.11 ± 0.05 |
PA 600 mg/Kg + PC | 3.81 ± 0.837 b | 7.96 ± 2.58 | 83.3% | 69.20 ± 10.56 b | 82.65% | 0.25 ± 0.01 | 0.16 ± 0.02 |
PA 1200 mg/Kg + PC | 1.42 ± 0.894 b | 14.69 ± 8.50 | 97.6% | 42.40 ± 24.13 b | 95.9% | 0.36 ± 0.005 | 0.20 ± 0.01 |
DMSO 10% (NC) | 1.04 ± 0.707 | 10.66 ± 7.81 | - | 32.80 ± 12.56 | - | 0.11 ± 0.01 | 0.16 ± 0.01 |
NaF 20 mg/Kg (PC) | 17.81 ± 6.140 a | 0.104 ± 0.33 | - | 242.60 ± 37.47 a | - | 8.10 ± 1.00 | 7.00 ± 0.50 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera-Calderon, O.; Chacaltana-Ramos, L.; Yuli-Posadas, R.Á.; Pari-Olarte, B.; Enciso-Roca, E.; Tinco-Jayo, J.A.; Rojas-Armas, J.P.; Felix-Veliz, L.M.V.; Franco-Quino, C. Antioxidant and Cytoprotective Effect of Piper aduncum L. against Sodium Fluoride (NaF)-Induced Toxicity in Albino Mice. Toxics 2019, 7, 28. https://doi.org/10.3390/toxics7020028
Herrera-Calderon O, Chacaltana-Ramos L, Yuli-Posadas RÁ, Pari-Olarte B, Enciso-Roca E, Tinco-Jayo JA, Rojas-Armas JP, Felix-Veliz LMV, Franco-Quino C. Antioxidant and Cytoprotective Effect of Piper aduncum L. against Sodium Fluoride (NaF)-Induced Toxicity in Albino Mice. Toxics. 2019; 7(2):28. https://doi.org/10.3390/toxics7020028
Chicago/Turabian StyleHerrera-Calderon, Oscar, Luz Chacaltana-Ramos, Ricardo Ángel Yuli-Posadas, Bertha Pari-Olarte, Edwin Enciso-Roca, Johnny Aldo Tinco-Jayo, Juan Pedro Rojas-Armas, Luis Miguel Visitación Felix-Veliz, and Cesar Franco-Quino. 2019. "Antioxidant and Cytoprotective Effect of Piper aduncum L. against Sodium Fluoride (NaF)-Induced Toxicity in Albino Mice" Toxics 7, no. 2: 28. https://doi.org/10.3390/toxics7020028