Trends in the Use of Glyphosate Herbicide and Its Relevant Regulations in Taiwan: A Water Contaminant of Increasing Concern
Abstract
:1. Introduction
2. Use and Consumption of Glyphosate in Taiwan
3. Regulatory Management of Glyphosate in Foods and Water Bodies
4. Drinking Water Quality Standards in Taiwan
- -
- Substances that impact health (44 items).Including arsenic, lead, selenium, total chromium, cadmium, barium, antimony, nickel, mercury, cyanide, nitrite-nitrogen, disinfection byproducts (total trihalomethanes, haloacetic acids, bromate, chlorite), volatile organic compounds, agricultural chemicals (endosulfan, lindane, butachlor, dichlorophenoxyacetic acid, paraquat, methomyl, carbofuran, isoprocarb, methamidophos, diazinon, parathion, EPN, monocrotophos), and persistent organic compounds (dioxins).
- -
- Substances with potential health impact (5 items).Including fluoride, nitrate-nitrogen, silver, molybdenum, and indium.
- -
- Contaminants that cause aesthetic, cosmetic, and technical effects (12 items).Including iron, manganese, copper, zinc, sulfate, phenols, anionic surfactants, chloride, ammonia–nitrogen, total hardness as CaCO3, total dissolved solids, and aluminum.
- -
- Residual chlorine
- -
- pH
- The current drinking water quality monitoring situation in Taiwan.
- Drinking water standards adopted by developed nations and organizations, including Australia, Canada, the EU, Japan, New Zealand, the UK, the US, and the WHO.
- Toxicological data and other relevant regulations for emerging contaminants.
- Risk assessment information of each of the drinking water standards used by the above-mentioned countries.
5. Conclusions and Recommendations
- Adopting advanced instruments for analyzing trace levels (i.e., ppbw levels) of residual glyphosate in common crops and drinking water sources.
- Evaluating health risk of exposure to glyphosate through dietary foods and media (especially water), and re-establishing an acceptable daily intake.
- Adding glyphosate to the chemical items of the DWQS or the water quality standards of drinking water sources.
Funding
Conflicts of Interest
References
- Carlile, B. Pesticide Selectivity, Health and the Environment; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Ware, G.W. The Pesticide Book, 3rd ed.; Thomson Publications: Fresno, CA, USA, 1989. [Google Scholar]
- Fong, R.L.P. Herbicide market in Taiwan for 60 years (in Chinese). Weed Sci. Bull. 2017, 37, 63–75. [Google Scholar]
- Richmond, M.E. Glyphosate: A review of its global use, environmental impacts, and potential health effects on humans and other species. J. Environ. Stud. Sci. 2018, 8, 416–434. [Google Scholar] [CrossRef]
- Leyva-Soto, L.A.; Balderrama-Carmona, A.P.; Moran-Palacio, E.F.; Diaz-Tenorio, L.M.; Gortares-Moroyoqui, P. Glyphosate and aminomethylphosphonic acid in population of agricultural fields: Health risk assessment overview. Appl. Ecol. Environ. Res. 2018, 16, 5127–5140. [Google Scholar] [CrossRef]
- Dill, G.M.; Sammons, R.D.; Feng, P.C.C.; Kohn, F.; Kretzmer, K.; Mehrsheikh, A.; Bleeke, M.; Honegger, J.L.; Farmer, D.; Wright, D.; et al. Glyphosate: Discovery, development, applications and properties. In Glyphosate Resistance in Crops and Weeds: History, Development, and Management; Nandula, V.K., Ed.; John Wiley & Sons: Hoboken, USA, 2010; pp. 1–33. [Google Scholar]
- Green, J.M. Evolution of glyphosate-resistant crop technology. Weed Sci. 2009, 57, 108–117. [Google Scholar] [CrossRef]
- Heap, I.; Duke, S.O. Overview of glyphosate-resistant weeds worldwide. Pest. Manag. Sci. 2018, 74, 1040–1049. [Google Scholar] [CrossRef]
- Torretta, V.; Katsoyiannis, I.A.; Viotti, P.; Rada, E.C. Critical review of the effects of glyphosate exposure to the environment and humans through the food supply chain. Sustainability 2018, 10, 950. [Google Scholar] [CrossRef]
- Farmer, D. Inhibitors of aromatic acid biosynthesis. In Hayes’ Handbook of Pesticide Toxicology, 3rd ed.; Krieger, R., Ed.; Elsevier: San Diego, CA, USA, 2010; Volume 2, pp. 1967–1972. [Google Scholar]
- Baer, K.N.; Marcel, B.J. Glyphosate. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Elsevier: San Diego, CA, USA, 2014; Volume 2, pp. 767–769. [Google Scholar]
- Silva, V.; Montanarella, L.; Jones, A.; Fernandez-Ugalde, O.; Mol, H.G.J.; Ritsema, C.J.; Geissen, V. Distribution of glyphosate and aminomethylphosphonic acid (AMPA) in agricultural topsoils of the European Union. Sci. Total Environ. 2018, 621, 1352–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vereecken, H. Mobility and leaching of glyphosate: A review. Pest. Manag. Sci. 2005, 61, 1139–1151. [Google Scholar] [CrossRef] [PubMed]
- Borggaard, O.K.; Gimsing, A.L. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: A review. Pest. Manag. Sci. 2008, 64, 441–456. [Google Scholar] [CrossRef] [PubMed]
- Sviridov, A.V.; Shushkova, T.V.; Ermakova, I.T.; Ivanova, E.V.; Epiktetov, D.O.; Leontievsky, A.A. Microbial degradation of glyphosate herbicides (Review). Appl. Biochem. Microbiol. 2015, 51, 188–195. [Google Scholar] [CrossRef]
- Noori, J.S.; Dimaki, M.; Mortensen, J.; Svendsen, W.E. Detection of glyphosate in drinking water: A fast and direct detection method without sample pretreatment. Sensors 2018, 18, 2961. [Google Scholar] [CrossRef]
- Josson, J.; Camm, R.; Hall, T. Removal and degradation of glyphosate in water treatment: A review. J. Water Supply Res. Technol. AQUA 2013, 62, 395–408. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). IARC Monographs Volume 112: Evaluation of Five Organophosphate Insecticides and Herbicides. Available online: https://monographs.iarc.fr/wp-content/uploads/2018/06 /mono112-10.pdf (accessed on 5 December 2018).
- Mink, P.J.; Mandel, J.S.; Sceurman, B.K.; Lundin, J.I. Epidemiologic studies of glyphosate and cancer: A review. Regul. Toxicol. Pharmcol. 2012, 63, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Brusick, D.; Aardema, M.; Kier, L.; Kirkland, D.; Williams, G. Genotoxicity Expert Panel review: Weight of evidence evaluation of the genotoxicity of glyphosate, glyphosate-based formulations, and aminomethylphosphonic acid. Crit. Rev. Toxicol. 2016, 46, 56–74. [Google Scholar] [CrossRef]
- Williams, G.M.; Aardema, M.; Acquavella, J.; Berry, S.C.; Brusick, D.; Burns, M.M.; de Camargo, J.L.V.; Garabrant, D.; Greim, H.A.; Kier, L.D.; et al. A review of the carcinogenic potential of glyphosate by four independent expert panels and comparison to the IARC assessment. Crit. Rev. Toxicol. 2016, 46, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Tarazona, J.V.; Court-Marques, D.; Tiramani, M.; Reich, H.; Pfeil, R.; Istace, F.; Crivellente, F. Glyphosate toxicity and carcinogenicity: A review of scientific basis of the European Union assessment and its differences with IARC. Arch. Toxicol. 2017, 91, 2723–2743. [Google Scholar] [CrossRef] [PubMed]
- Davoren, M.J.; Schiestl, R.H. Glyphosate-based herbicides and cancer risk: A post-IARC decision review of potential mechanisms, policy and avenues of research. Carcinogenesis 2018, 39, 1207–1215. [Google Scholar] [CrossRef]
- Gasnier, C.; Dumont, C.; Benachour, N.; Clair, E.; Chagnon, M.C.; Séralini, G.E. Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology 2009, 262, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Mnif, W.; Hassine, A.I.H.; Bouaziz, A.; Bartegi, A.; Thomas, O.; Roig, B. Effect of endocrine disruptor pesticides: A review. Int. J. Environ. Res. Public Health 2011, 8, 2265–2303. [Google Scholar] [CrossRef]
- Van Bruggen, A.H.C.; He, M.M.; Shin, K.; Mai, V.; Jeong, K.C.; Finckh, M.R.; Morris, J.G., Jr. Environmental and health effects of the herbicide glyphosate. Sci. Total Environ. 2018, 616–617, 255–268. [Google Scholar] [CrossRef]
- Steimer, M.; Gerbl-Rieger, S.; Schaff, P.; Parlar, H. Current situation of the application and identification of pesticides in EU bordering countries with respect to the implementation of a monitoring system. Fresenius Environ. Bull. 2007, 16, 443–451. [Google Scholar]
- Starrett, S.K.; Klein, J. Glyphosate runoff when applied to Zoysiagrass under golf course fairway conditions. In The Fate of Nutrients and Pesticides in the Urban Environment; Nett, M.T., Carroll, M.J., Horgan, B.P., Petrovic, A.M., Eds.; American Chemical Society: Washington DC, USA, 2008; pp. 237–253. [Google Scholar]
- Fawell, J.; Ong, C.N. Emerging contaminants and the implications for drinking water. In Water Quality Policy and Management in Asia; Tortajada, C., Ed.; Routledge: New York, NY, USA, 2013; pp. 61–77. [Google Scholar]
- Cerdeira, A.L.; Duke, S.O. The current status and environmental impacts of glyphosate-resistant crops: A review. J. Environ. Qual. 2006, 35, 1633–1658. [Google Scholar] [CrossRef] [PubMed]
- Solomon, K.R.; Marshall, E.J.P.; Carrasquilla, G. Human health and environmental risks from the use of glyphosate formulations to control the production of coca in Colombia: Overview and conclusions. J. Toxicol. Environ. Health A 2009, 72, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Von Merey, G.; Manson, P.S.; Mehrsheikh, A.; Sutton, P.; Levine, S.L. Glyphosate and aminomethylphosphonic acid chronic risk assessment for soil biota. Environ. Toxicol. Chem. 2016, 35, 2742–2752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Japan Food Chemical Research Foundation. Maximum Residue Limits (MRLs) List of Agricultural Chemicals in Foods. Available online: http://db.ffcr.or.jp/front/ (accessed on 26 December 2018).
- Stewart, M.; Olsen, G.; Hickey, C.W.; Ferreira, B.; Jelic, A.; Petrovic, M.; Barcelo, D. A survey of emerging contaminants in the estuarine receiving environment around Auckland, New Zealand. Sci. Total Environ. 2014, 468–469, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Alonso, L.L.; Demetrio, P.M.; Etchegoyen, M.A.; Marino, D.J. Glyphosate and atrazine in rainfall and soils in agroproductive areas of the pampas region in Argentina. Sci. Total Environ. 2018, 645, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Demonte, L.D.; Michlig, N.; Gaggiotti, M.; Adam, C.G.; Beldomenico, H.R.; Repetti, M.R. Determination of glyphosate, AMPA and glufosinate in dairy farm water from Argentina using a simplified UHPLC-MS/MS method. Sci. Total Environ. 2018, 645, 34–43. [Google Scholar] [CrossRef]
- Masiol, M.; Gianni, B.; Prete, M. Herbicides in river water across the northeastern Italy: Occurrence and spatial patterns of glyphosate, aminomethylphosphonic acid, and glufosinate ammonium. Environ. Sci Pollut. Res. 2018, 25, 24368–24378. [Google Scholar] [CrossRef]
- Mink, P.J.; Mandel, J.S.; Lundin, J.I.; Sceurman, B.K. Epidemiologic studies of glyphosate and non-cancer health outcomes: A review. Regul. Toxicol. Pharmcol. 2011, 61, 172–184. [Google Scholar] [CrossRef]
- Ministry of Environment (Korea). Drinking Water Management. Available online: http://eng.me.go.kr/eng/web/index.do?menuId=299&findDepth=1 (accessed on 7 December 2018).
- Ministry of Health, Labour and Welfare (Japan). Water Supply in Japan. Available online: https://www.mhlw.go.jp/english/policy/health/water_supply/menu.html (accessed on 7 December 2018).
- Whang, L.M. Examination and evaluation of drinking water sources and drinking water quality standard items (in Chinese). In Proceedings of the Environmental Technology Forum, Taipei, Taiwan, 26 June 2017; Environmental Protection Administration: Taipei, Taiwan, 2017. [Google Scholar]
Residue Limits | ||||
---|---|---|---|---|
Crop | Value (ppm) | Residual Tissue | Animal Species | Value (ppmw) |
Almonds | 1.0 | Muscle | Cattle, pig, poultry | 0.1 |
Asparaguses | 0.5 | Edible offal | Cattle | 2 |
Citrus | 0.1 | Milk | Cattle | 0.1 |
Corns | 1.0 | Edible offal | Pig | 1 |
Drupe | 0.2 | Egg | -- | 0.1 |
Other dry beans a | 2.0 | -- | -- | -- |
Large berries | 0.2 | -- | -- | -- |
Lentil (dry) | 5.0 | -- | -- | -- |
Pea (dry) | 5.0 | -- | -- | -- |
Peppers | 0.1 | -- | -- | -- |
Pome | 0.2 | -- | -- | -- |
Potatoes | 0.2 | -- | -- | -- |
Prunes | 0.1 | -- | -- | -- |
Rice | 0.1 | -- | -- | -- |
Small berries | 0.2 | -- | -- | -- |
Soybeans | 10 | -- | -- | -- |
Sugarcane | 0.1 | -- | -- | -- |
Sunflower seed | 7.0 | -- | -- | -- |
Tea | 0.1 | -- | -- | -- |
Vegetable soybeans | 0.2 | -- | -- | -- |
Wheat | 5 | -- | -- | -- |
Water Bodies | Standards/Limits (mg/L) |
---|---|
Discharge water (Effluent) a | 1.0 |
Groundwater (Injection) a | 0.1 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, W.-T. Trends in the Use of Glyphosate Herbicide and Its Relevant Regulations in Taiwan: A Water Contaminant of Increasing Concern. Toxics 2019, 7, 4. https://doi.org/10.3390/toxics7010004
Tsai W-T. Trends in the Use of Glyphosate Herbicide and Its Relevant Regulations in Taiwan: A Water Contaminant of Increasing Concern. Toxics. 2019; 7(1):4. https://doi.org/10.3390/toxics7010004
Chicago/Turabian StyleTsai, Wen-Tien. 2019. "Trends in the Use of Glyphosate Herbicide and Its Relevant Regulations in Taiwan: A Water Contaminant of Increasing Concern" Toxics 7, no. 1: 4. https://doi.org/10.3390/toxics7010004
APA StyleTsai, W.-T. (2019). Trends in the Use of Glyphosate Herbicide and Its Relevant Regulations in Taiwan: A Water Contaminant of Increasing Concern. Toxics, 7(1), 4. https://doi.org/10.3390/toxics7010004