Cadmium Nephrotoxicity Is Associated with Altered MicroRNA Expression in the Rat Renal Cortex
Abstract
:1. Introduction
2. Material and Methods
2.1. Animal Protocol
2.2. Biomarker Determination
2.3. RNA Isolation
2.4. µParafloTM MicroRNA Microarray Assay
2.5. MicroRNA Real-Time PCR
3. Results
3.1. Cd-Induced Kidney Injury in a Sub-Chronic Rat Model
3.2. µParaflo™ MicroRNA Microarray
3.3. Real-Time PCR Validation
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- ATSDR’s Substance Priority List. Available online: https://www.atsdr.cdc.gov/spl/index.html (accessed on 30 January 2018).
- Jarup, L.; Akesson, A. Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol. 2009, 238, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Bridges, C.C.; Zalups, R.K. Molecular and ionic mimicry and the transport of toxic metals. Toxicol. Appl. Pharmacol. 2005, 204, 274–308. [Google Scholar] [CrossRef] [PubMed]
- Jarup, L. Cadmium overload and toxicity. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Renal Assoc. 2002, 17, 35–39. [Google Scholar] [CrossRef]
- Kjellstrom, T. Renal effects. In Cadmium and Health: A Toxicoloogical and Epidemiological Appraisal; Friberg, L., Elinder, C.-G., Kjellstrom, T., Nordberg, G.F., Eds.; CRC Press: Boca Raton, FL, USA, 1986; Volume 2, pp. 21–109. [Google Scholar]
- Prozialeck, W.C.; Edwards, J.R. Mechanisms of cadmium-induced proximal tubule injury: New insights with implications for biomonitoring and therapeutic interventions. J. Pharmacol. Exp. Ther. 2012, 343, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Thevenod, F.; Lee, W.K. Cadmium and cellular signaling cascades: Interactions between cell death and survival pathways. Arch. Toxicol. 2013, 87, 1743–1786. [Google Scholar] [CrossRef] [PubMed]
- Ambros, V. MicroRNAs: Tiny regulators with great potential. Cell 2001, 107, 823–826. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Filipowicz, W.; Bhattacharyya, S.N.; Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat. Rev. Genet. 2008, 9, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Krol, J.; Loedige, I.; Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 2010, 11, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, K.; Karolina, D.S.; Sepramaniam, S.; Armugam, A.; Wintour, E.M.; Bertram, J.F.; Jeyaseelan, K. Role of microRNAs in kidney homeostasis and disease. Kidney Int. 2012, 81, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.; Kreidberg, J.A. MicroRNAs in renal development. Pediatr. Nephrol. 2013, 28, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, T.; Belliere, J.; Bascands, J.L.; Neau, E.; Klein, J.; Schanstra, J.P. MiRNAs in urine: A mirror image of kidney disease? Expert Rev. Mol. Diagn. 2015, 15, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Trionfini, P.; Benigni, A.; Remuzzi, G. MicroRNAs in kidney physiology and disease. Nat. Rev. Nephrol. 2015, 11, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Chen, Z.; Zou, Y.; Wan, X. Roles of non-coding RNAs in acute kidney injury. Kidney Blood Press. Res. 2016, 41, 757–769. [Google Scholar] [CrossRef] [PubMed]
- Badal, S.S.; Danesh, F.R. MicroRNAs and their applications in kidney diseases. Pediatr. Nephrol. 2015, 30, 727–740. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.C.; Chen, C.C.; Chen, Y.C.; Chang, Y.S.; Chu, P.H. MicroRNAs in acute kidney injury. Hum. Genom. 2016, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Gerlach, C.V.; Vaidya, V.S. MicroRNAs in injury and repair. Arch. Toxicol. 2017, 91, 2781–2797. [Google Scholar] [CrossRef] [PubMed]
- Pavkovic, M.; Vaidya, V.S. MicroRNAs and drug-induced kidney injury. Pharmacol. Ther. 2016, 163, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Prozialeck, W.C.; Vaidya, V.S.; Liu, J.; Waalkes, M.P.; Edwards, J.R.; Lamar, P.C.; Bernard, A.M.; Dumont, X.; Bonventre, J.V. Kidney injury molecule-1 is an early biomarker of cadmium nephrotoxicity. Kidney Int. 2007, 72, 985–993. [Google Scholar] [CrossRef] [PubMed]
- Prozialeck, W.C.; Lamar, P.C.; Edwards, J.R. Effects of sub-chronic Cd exposure on levels of copper, selenium, zinc, iron and other essential metals in rat renal cortex. Toxicol. Rep. 2016, 3, 740–746. [Google Scholar] [CrossRef] [PubMed]
- Prozialeck, W.C.; Edwards, J.R.; Vaidya, V.S.; Bonventre, J.V. Preclinical evaluation of novel urinary biomarkers of cadmium nephrotoxicity. Toxicol. Appl. Pharmacol. 2009, 238, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Prozialeck, W.C.; Edwards, J.R.; Lamar, P.C.; Liu, J.; Vaidya, V.S.; Bonventre, J.V. Expression of kidney injury molecule-1 (Kim-1) in relation to necrosis and apoptosis during the early stages of Cd-induced proximal tubule injury. Toxicol. Appl. Pharmacol. 2009, 238, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Shoucri, R.M.; Pouliot, M. Some observations on the kinetics of the Jaffe reaction for creatinine. Clin. Chem. 1977, 23, 1527–1530. [Google Scholar] [PubMed]
- Gao, X.; Gulari, E.; Zhou, X. In situ synthesis of oligonucleotide microarrays. Biopolymers 2004, 73, 579–596. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Hong, A.; Sheng, N.; Zhang, X.; Matejko, A.; Jun, K.Y.; Srivannavit, O.; Gulari, E.; Gao, X.; Zhou, X. Microparaflo biochip for nucleic acid and protein analysis. Methods Mol. Biol. 2007, 382, 287–312. [Google Scholar] [PubMed]
- Bolstad, B.M.; Irizarry, R.A.; Astrand, M.; Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Baxter, S.S.; Carlson, L.A.; Mayer, A.M.; Hall, M.L.; Fay, M.J. Granulocytic differentiation of HL-60 promyelocytic leukemia cells is associated with increased expression of Cul5. In Vitro Cell. Dev. Biol. Anim. 2009, 45, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Prozialeck, W.C.; VanDreel, A.; Ackerman, C.D.; Stock, I.; Papaeliou, A.; Yasmine, C.; Wilson, K.; Lamar, P.C.; Sears, V.L.; Gasiorowski, J.Z.; et al. Evaluation of cystatin C as an early biomarker of cadmium nephrotoxicity in the rat. Biometals Int. J. Role Metal Ions Biol. Biochem. Med. 2016, 29, 131–146. [Google Scholar] [CrossRef] [PubMed]
- Piscator, M. The nephropathy of chronic cadmium poisoning. In Cadmium, Handbook of Experimental Pharmocology; Faulkes, E.C., Ed.; Springer: New York, NY, USA, 1986; Volume 80, pp. 194–197. [Google Scholar]
- Bernard, A. Renal dysfunction induced by cadmium: Biomarkers of critical effects. Biometals Int. J. Role Metal Ions Biol. Biochem. Med. 2004, 17, 519–523. [Google Scholar] [CrossRef]
- Lauwerys, R.R.; Bernard, A.M.; Roels, H.A.; Buchet, J.P. Cadmium: Exposure markers as predictors of nephrotoxic effects. Clin. Chem. 1994, 40, 1391–1394. [Google Scholar] [PubMed]
- Kobayashi, E.; Suwazono, Y.; Uetani, M.; Inaba, T.; Oishi, M.; Kido, T.; Nishijo, M.; Nakagawa, H.; Nogawa, K. Estimation of benchmark dose as the threshold levels of urinary cadmium, based on excretion of total protein, beta2-microglobulin, and N-acetyl-beta-D-glucosaminidase in cadmium nonpolluted regions in Japan. Environ. Res. 2006, 101, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Prozialeck, W.C.; Edwards, J.R. Early biomarkers of cadmium exposure and nephrotoxicity. Biometals Int. J. Role Metal Ions Biol. Biochem. Med. 2010, 23, 793–809. [Google Scholar] [CrossRef] [PubMed]
- Saikumar, J.; Hoffmann, D.; Kim, T.M.; Gonzalez, V.R.; Zhang, Q.; Goering, P.L.; Brown, R.P.; Bijol, V.; Park, P.J.; Waikar, S.S.; et al. Expression, circulation, and excretion profile of microRNA-21, -155, and -18a following acute kidney injury. Toxicol. Sci. Off. J. Soc. Toxicol. 2012, 129, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Liu, X.; Zhang, S.; Lin, Y.; Yang, J.; Zhang, C. MicroRNA-21 protects against the H2O2-induced injury on cardiac myocytes via its target gene PDCD4. J. Mol. Cell. Cardiol. 2009, 47, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.F.; Jing, Y.; Hao, J.; Frankfort, N.C.; Zhou, X.; Shen, B.; Liu, X.; Wang, L.; Li, R. MicroRNA-21 in the pathogenesis of acute kidney injury. Protein Cell 2013, 4, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, K.; Zhou, L.; Mi, Q.S.; Huang, S.; She, J.X.; Dong, Z. MicroRNA-34a is induced via p53 during cisplatin nephrotoxicity and contributes to cell survival. Mol. Med. 2010, 16, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.G.; Kim, J.G.; Kim, H.J.; Kwon, H.K.; Cho, I.J.; Choi, D.W.; Lee, W.H.; Kim, W.D.; Hwang, S.J.; Choi, S.; et al. Discovery of an integrative network of microRNAs and transcriptomics changes for acute kidney injury. Kidney Int. 2014, 86, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Pavkovic, M.; Riefke, B.; Ellinger-Ziegelbauer, H. Urinary microRNA profiling for identification of biomarkers after cisplatin-induced kidney injury. Toxicology 2014, 324, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.J.; Hong, Q.; Wang, Z.; Yu, Y.Y.; Zou, X.; Xu, L.H. MicroRNA-34a suppresses autophagy in tubular epithelial cells in acute kidney injury. Am. J. Nephrol. 2015, 42, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, K.L.; Gerlach, C.V.; Craciun, F.L.; Ramachandran, K.; Bijol, V.; Kissick, H.T.; Vaidya, V.S. Application of small RNA sequencing to identify microRNAs in acute kidney injury and fibrosis. Toxicol. Appl. Pharmacol. 2016, 312, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Shin, C.H.; Lee, H.; Kim, H.R.; Choi, K.H.; Joung, J.G.; Kim, H.H. Regulation of PLK1 through competition between hnRNPK, miR-149–3p and miR-193b-5p. Cell Death Differ. 2017, 24, 1861–1871. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Du, G.; Xu, A.; Xi, X.; Li, D. Expression of miR-149–3p inhibits proliferation, migration, and invasion of bladder cancer by targeting S100A4. Am. J. Cancer Res. 2017, 7, 2209–2219. [Google Scholar] [PubMed]
- Yu, D.; Wu, L.; Gill, P.; Tolleson, W.H.; Chen, S.; Sun, J.; Knox, B.; Jin, Y.; Xiao, W.; Hong, H.; et al. Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch. Toxicol. 2018, 92, 845–858. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.; Singh, R.S.; Kumari, M.; Garg, D.; Upadhyay, A.; Ecelbarger, C.M.; Tripathy, S.; Tiwari, S. Urinary exosomal microRNA-451–5p is a potential early biomarker of diabetic nephropathy in rats. PLoS ONE 2016, 11, e0154055. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Gu, T.; Shi, E.; Wang, Y.; Fang, Q.; Wang, C. Dysregulation of renal microRNA expression after deep hypothermic circulatory arrest in rats. Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg. 2016, 49, 1725–1731. [Google Scholar] [CrossRef] [PubMed]
- Svensson, J.; Molne, J.; Forssell-Aronsson, E.; Konijnenberg, M.; Bernhardt, P. Nephrotoxicity profiles and threshold dose values for [177Lu]-DOTATATE in nude mice. Nucl. Med. Biol. 2012, 39, 756–762. [Google Scholar] [CrossRef] [PubMed]
- Schuler, E.; Parris, T.Z.; Helou, K.; Forssell-Aronsson, E. Distinct microRNA expression profiles in mouse renal cortical tissue after 177Lu-octreotate administration. PLoS ONE 2014, 9, e112645. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, I.S.; Chang, K.C.; Tsai, Y.T.; Ke, J.Y.; Lu, P.J.; Lee, K.H.; Yeh, S.D.; Hong, T.M.; Chen, Y.L. MicroRNA-320 suppresses the stem cell-like characteristics of prostate cancer cells by downregulating the Wnt/beta-catenin signaling pathway. Carcinogenesis 2013, 34, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Prozialeck, W.C.; Niewenhuis, R.J. Cadmium (Cd2+) disrupts intercellular junctions and actin filaments in LLC-PK1 cells. Toxicol. Appl. Pharmacol. 1991, 107, 81–97. [Google Scholar] [CrossRef]
- Prozialeck, W.C.; Niewenhuis, R.J. Cadmium (Cd2+) disrupts Ca(2+)-dependent cell-cell junctions and alters the pattern of E-cadherin immunofluorescence in LLC-PK1 cells. Biochem. Biophys. Res. Commun. 1991, 181, 1118–1124. [Google Scholar] [CrossRef]
- Prozialeck, W.C.; Lamar, P.C. Cadmium (Cd2+) disrupts E-cadherin-dependent cell-cell junctions in MDCK cells. In Vitro Cell. Dev. Biol. Anim. 1997, 33, 516–526. [Google Scholar] [CrossRef] [PubMed]
- Prozialeck, W.C.; Lamar, P.C.; Lynch, S.M. Cadmium alters the localization of N-cadherin, E-cadherin, and beta-catenin in the proximal tubule epithelium. Toxicol. Appl. Pharmacol. 2003, 189, 180–195. [Google Scholar] [CrossRef]
- Edwards, J.R.; Kolman, K.; Lamar, P.C.; Chandar, N.; Fay, M.J.; Prozialeck, W.C. Effects of cadmium on the sub-cellular localization of beta-catenin and beta-catenin-regulated gene expression in NRK-52E cells. Biometals Int. J. Role Metal Ions Biol. Biochem. Med. 2013, 26, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, M.; Urani, C.; Sacco, M.G.; Procaccianti, C.; Gribaldo, L. Whole genome analysis and microRNAs regulation in HepG2 cells exposed to cadmium. Altex 2012, 29, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Boyerinas, B.; Park, S.M.; Hau, A.; Murmann, A.E.; Peter, M.E. The role of let-7 in cell differentiation and cancer. Endocr.-Relat. Cancer 2010, 17, F19–F36. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Deng, J.; Sun, Z.M.; Pan, A.P.; Xiang, X.J.; Zhang, L.; Yu, F.; Chen, J.; Sun, Z.; Feng, M.; et al. Interference with the beta-catenin gene in gastric cancer induces changes to the miRNA expression profile. Tumour Biol. J. Int. Soci. Oncodev. Biol. Med. 2015, 36, 6973–6983. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, Y.; Chen, X.; Wei, Q.; Cao, B.; Shang, H. Downregulation of microRNA-193b-3p promotes autophagy and cell survival by targeting TSC1/mTOR signaling in NSC-34 cells. Front. Mol. Neurosci. 2017, 10, 160. [Google Scholar] [CrossRef] [PubMed]
- Denaro, M.; Ugolini, C.; Poma, A.M.; Borrelli, N.; Materazzi, G.; Piaggi, P.; Chiarugi, M.; Miccoli, P.; Vitti, P.; Basolo, F. Differences in miRNA expression profiles between wild-type and mutated NIFTPs. Endocr.-Relat. Cancer 2017, 24, 543–553. [Google Scholar] [CrossRef] [PubMed]
MicroRNA | p-Value | Control Mean (RFS *) | Cadmium Mean (RFS *) | Log 2 (Cadmium/Control) |
---|---|---|---|---|
miR-3084a-3p | 1.05 × 10−6 | 1019 | 3016 | 1.57 |
miR-34a-5p | 4.57 × 10−6 | 99 | 612 | 2.62 |
miR-1949 | 1.10 × 10−5 | 41 | 326 | 2.98 |
miR-224-5p | 3.75 × 10−5 | 12 | 390 | 5.06 |
miR-222-3p | 3.00 × 10−4 | 622 | 1127 | 0.86 |
miR-221-3p | 3.95 × 10−4 | 968 | 1643 | 0.76 |
miR-146b-5p | 8.79 × 10−4 | 200 | 558 | 1.48 |
miR-210-5p | 1.81 × 10−3 | 1140 | 1740 | 0.61 |
miR-20a-5p | 1.87 × 10−3 | 1179 | 1756 | 0.58 |
miR-146a-5p | 2.89 × 10−3 | 3840 | 5884 | 0.62 |
miR-3084c-3p | 4.34 × 10−3 | 1174 | 3419 | 1.54 |
miR-92a-3p | 6.52 × 10−3 | 1083 | 1926 | 0.83 |
miR-21-5p | 6.98 × 10−3 | 10,943 | 22,388 | 1.03 |
miR-466b-2-3p | 7.25 × 10−3 | 2101 | 3143 | 0.58 |
miR-320-3p | 1.18 × 10−2 | 1377 | 1882 | 0.45 |
miR-15b-5p | 1.29 × 10−2 | 1032 | 1647 | 0.67 |
miR-466c-3p | 1.29 × 10−2 | 3427 | 5220 | 0.61 |
miR-214-3p | 1.64 × 10−2 | 1582 | 2094 | 0.40 |
miR-483-5p | 1.74 × 10−2 | 711 | 1184 | 0.74 |
miR-149-3p | 1.78 × 10−2 | 1573 | 3796 | 1.27 |
let-7i-5p | 2.67 × 10−2 | 3498 | 4619 | 0.40 |
miR-762 | 2.84 × 10−2 | 915 | 1702 | 0.90 |
miR-466d | 3.47 × 10−2 | 370 | 675 | 0.87 |
miR-346 | 3.57 × 10−2 | 315 | 440 | 0.48 |
miR-17-5p | 3.60 × 10−2 | 877 | 1269 | 0.53 |
miR-451-5p | 3.63 × 10−2 | 552 | 1177 | 1.09 |
miR-92b-3p | 3.81 × 10−2 | 471 | 759 | 0.69 |
miR-466c-5p | 3.83 × 10−2 | 229 | 389 | 0.76 |
miR-32-3p | 4.07 × 10−2 | 622 | 1144 | 0.88 |
Statistically significant transcripts with low signals (signal < 500) | ||||
miR-138-5p | 4.00 × 10−4 | 43 | 140 | 1.71 |
miR-130b-3p | 7.36 × 10−4 | 12 | 59 | 2.25 |
miR-187-3p | 3.82 × 10−3 | 84 | 242 | 1.53 |
miR-155-5p | 6.57 × 10−3 | 33 | 197 | 2.57 |
miR-1839-3p | 7.09 × 10−3 | 293 | 417 | 0.51 |
miR-187-5p | 8.23 × 10−3 | 66 | 114 | 0.79 |
miR-132-3p | 9.57 × 10−3 | 59 | 189 | 1.66 |
miR-34a-3p | 1.08 × 10−2 | 7 | 24 | 1.86 |
miR-452-3p | 1.71 × 10−2 | 5 | 27 | 2.36 |
miR-511-5p | 1.99 × 10−2 | 36 | 90 | 1.32 |
miR-758-5p | 2.08 × 10−2 | 203 | 281 | 0.47 |
miR-487b-5p | 2.13 × 10−2 | 29 | 69 | 1.22 |
miR-327 | 2.19 × 10−2 | 28 | 51 | 0.84 |
miR-504 | 4.10 × 10−2 | 98 | 136 | 0.47 |
miR-6332 | 4.30 × 10−2 | 16 | 28 | 0.82 |
MicroRNA | p-Value | Control Mean (RFS *) | Cadmium Mean (RFS *) | Log 2 (Cadmium/Control) |
---|---|---|---|---|
miR-193b-3p | 2.29 × 10−5 | 445 | 137 | −1.70 |
miR-185-5p | 2.81 × 10−5 | 1150 | 628 | −0.87 |
miR-455-3p | 2.06 × 10−4 | 764 | 258 | −1.57 |
miR-195-5p | 4.76 × 10−4 | 4374 | 3035 | −0.53 |
miR-200a-3p | 2.31 × 10−3 | 5998 | 3725 | −0.69 |
miR-101b-3p | 2.56 × 10−3 | 465 | 285 | −0.71 |
miR-194-5p | 2.72 × 10−3 | 13,390 | 7697 | −0.80 |
miR-99a-5p | 2.79 × 10−3 | 5468 | 3596 | −0.60 |
miR-505-3p | 3.59 × 10−3 | 539 | 371 | −0.54 |
miR-342-3p | 4.25 × 10−3 | 1871 | 845 | −1.15 |
miR-203a-3p | 5.21 × 10−3 | 1327 | 730 | −0.86 |
miR-378a-3p | 6.43 × 10−3 | 2576 | 1616 | −0.67 |
miR-378a-5p | 6.67 × 10−3 | 416 | 233 | −0.83 |
miR-140-5p | 7.56 × 10−3 | 403 | 228 | −0.82 |
miR-378b | 9.43 × 10−3 | 1985 | 1298 | −0.61 |
miR-103-3p | 1.73 × 10−2 | 2717 | 2000 | −0.44 |
miR-107-3p | 1.74 × 10−2 | 2781 | 2052 | −0.44 |
miR-192-5p | 2.31 × 10−2 | 13,962 | 11,183 | −0.32 |
miR-152-3p | 2.98 × 10−2 | 971 | 683 | −0.51 |
miR-100-5p | 3.39 × 10−2 | 2133 | 1318 | −0.70 |
miR-30a-3p | 3.73 × 10−2 | 837 | 552 | −0.60 |
miR-30a-5p | 3.81 × 10−2 | 15,805 | 12,197 | −0.37 |
miR-22-5p | 3.84 × 10−2 | 939 | 812 | −0.21 |
miR-30b-5p | 3.93 × 10−2 | 14,704 | 11,704 | −0.33 |
miR-196b-5p | 4.03 × 10−2 | 464 | 318 | −0.54 |
miR-489-3p | 4.21 × 10−2 | 485 | 311 | −0.64 |
miR-30e-5p | 4.68 × 10−2 | 10,074 | 6429 | −0.65 |
Statistically significant transcripts with low signals (signal < 500) | ||||
miR-203b-3p | 6.03 × 10−5 | 146 | 31 | −2.25 |
miR-192-3p | 7.66 × 10−5 | 299 | 105 | −1.50 |
miR-193a-3p | 2.05 × 10−4 | 328 | 104 | −1.65 |
miR-455-5p | 3.55 × 10−4 | 70 | 17 | −2.05 |
miR-184 | 6.06 × 10−4 | 27 | 5 | −2.52 |
miR-375-3p | 7.44 × 10−4 | 39 | 11 | −1.86 |
miR-345-5p | 1.04 × 10−3 | 183 | 103 | −0.82 |
miR-29b-5p | 2.03 × 10−3 | 148 | 78 | −0.92 |
miR-301a-3p | 3.09 × 10−3 | 122 | 60 | −1.03 |
miR-3559-5p | 5.48 × 10−3 | 298 | 161 | −0.89 |
miR-582-5p | 9.16 × 10−3 | 165 | 99 | −0.73 |
miR-345-3p | 9.25 × 10−3 | 58 | 36 | −0.70 |
miR-24-1-5p | 1.07 × 10−2 | 98 | 53 | −0.88 |
miR-29c-5p | 1.07 × 10−2 | 274 | 161 | −0.77 |
miR-24-2-5p | 1.12 × 10−2 | 276 | 181 | −0.61 |
miR-10b-3p | 1.54 × 10−2 | 200 | 121 | −0.72 |
miR-3068-5p | 1.86 × 10−2 | 162 | 113 | −0.52 |
miR-200a-5p | 1.87 × 10−2 | 133 | 73 | −0.86 |
miR-201-5p | 2.26 × 10−2 | 67 | 33 | −1.00 |
miR-141-3p | 2.41 × 10−2 | 171 | 83 | −1.05 |
miR-194-3p | 2.63 × 10−2 | 83 | 44 | −0.92 |
miR-324-5p | 2.73 × 10−2 | 243 | 180 | −0.43 |
miR-26b-3p | 3.38 × 10−2 | 27 | 10 | −1.47 |
miR-193a-5p | 3.45 × 10−2 | 20 | 5 | −2.12 |
miR-3585-5p | 3.50 × 10−2 | 67 | 34 | −0.98 |
let-7e-3p | 4.06 × 10−2 | 47 | 23 | −1.00 |
miR-103-1-5p | 4.71 × 10−2 | 32 | 22 | −0.52 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fay, M.J.; Alt, L.A.C.; Ryba, D.; Salamah, R.; Peach, R.; Papaeliou, A.; Zawadzka, S.; Weiss, A.; Patel, N.; Rahman, A.; Stubbs-Russell, Z.; Lamar, P.C.; Edwards, J.R.; Prozialeck, W.C. Cadmium Nephrotoxicity Is Associated with Altered MicroRNA Expression in the Rat Renal Cortex. Toxics 2018, 6, 16. https://doi.org/10.3390/toxics6010016
Fay MJ, Alt LAC, Ryba D, Salamah R, Peach R, Papaeliou A, Zawadzka S, Weiss A, Patel N, Rahman A, Stubbs-Russell Z, Lamar PC, Edwards JR, Prozialeck WC. Cadmium Nephrotoxicity Is Associated with Altered MicroRNA Expression in the Rat Renal Cortex. Toxics. 2018; 6(1):16. https://doi.org/10.3390/toxics6010016
Chicago/Turabian StyleFay, Michael J., Lauren A. C. Alt, Dominika Ryba, Ribhi Salamah, Ryan Peach, Alexander Papaeliou, Sabina Zawadzka, Andrew Weiss, Nil Patel, Asad Rahman, Zyaria Stubbs-Russell, Peter C. Lamar, Joshua R. Edwards, and Walter C. Prozialeck. 2018. "Cadmium Nephrotoxicity Is Associated with Altered MicroRNA Expression in the Rat Renal Cortex" Toxics 6, no. 1: 16. https://doi.org/10.3390/toxics6010016