Vitis vinifera Extract Ameliorate Hepatic and Renal Dysfunction Induced by Dexamethasone in Albino Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grape Seed Extract Preparation
2.2. Drugs and Chemicals
2.3. Animals
2.4. Animal Groups
2.5. Biochemical Examination
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Tovchiga, O.V. The influence of goutweed (Aegopodium podagraria L.) tincture and metformin on the carbohydrate and lipid metabolism in dexamethasone-treated rats. BMC Complement. Altern. Med. 2016, 16, 235. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.D.; Ma, Q.Q.; Ye, L.; Piao, G.C. The traditional medicine and modern medicine from natural products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, V.; Ananga, A.; Tsolova, V. Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients 2014, 6, 391–415. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.K.; Davis, A.; Rodriguez, M.E.; Agron, S.; Hackam, A.S. Protective effects of a grape-supplemented diet in a mouse model of retinal degeneration. Nutrition 2016, 32, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Ali, K.; Maltese, F.; Choi, Y.H.; Verpoorte, R. Metabolic constituents of grapevine and grape-derived products. Phytochem. Rev. 2010, 9, 357–378. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Kaur, K.; Hegde, S.; Kalekhan, F.M.; Baliga, M.S.; Fayad, R. Dietary agents and phytochemicals in the prevention and treatment of experimental ulcerative colitis. J. Tradit. Complement. Med. 2014, 4, 203–217. [Google Scholar] [CrossRef] [PubMed]
- Yen, C.-Y.; Hou, M.-F.; Yang, Z.-W.; Tang, J.-Y.; Li, K.-T.; Huang, H.-W.; Huang, Y.-H.; Lee, S.Y.; Fu, T.F.; Hsieh, C.Y.; et al. Concentration effects of grape seed extracts in anti-oral cancer cells involving differential apoptosis, oxidative stress, and DNA damage. BMC Complement. Altern. Med. 2015, 15, 94. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Ahmet, A.; Ward, L.; Krishnamoorthy, P.; Mandelcorn, E.D.; Leigh, R.; Brown, J.P.; Cohen, A.; Kim, H. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin. Immunol. 2013, 9, 30. [Google Scholar] [CrossRef] [PubMed]
- Hapgood, J.P.; Avenant, C.; Moliki, J.M. Glucocorticoid-independent modulation of GR activity: Implications for immunotherapy. Pharmacol. Ther. 2016, 165, 93–113. [Google Scholar] [CrossRef] [PubMed]
- Luskin, A.T.; Antonova, E.N.; Broder, M.S.; Chang, E.Y.; Omachi, T.A.; Ledford, D.K. Health care resource use and costs associated with possible side effects of high oral corticosteroid use in asthma: a claims-based analysis. ClinicoEconomics Outcomes Res. 2016, 8, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xue, J.; Shen, T.; Mu, S.; Fu, Q. Curcumin alleviates glucocorticoid-induced osteoporosis through the regulation of the Wnt signaling pathway. Int. J. Mol. Med. 2016, 37, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Li, S.G.; Ding, Y.S.; Niu, Q.; Xu, S.Z.; Pang, L.J.; Ma, R.L.; Jing, M.X.; Feng, G.L.; Liu, J.-M.; Guo, S.X. Grape seed proanthocyanidin extract alleviates arsenic-induced oxidative reproductive toxicity in male mice. Biomed. Environ. Sci. 2015, 28, 272–280. [Google Scholar] [PubMed]
- Barham, D.; Trinder, P. An improved colour reagent for the determination of blood glucose by the oxidase system. Analyst 1972, 97, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Reitman, S.; Frankel, S. The colorimetric method for determination of serum glutamic oxaloacetic transaminase and serum glutamic pyruvic transaminase. Am. J. Clin. Pathol. 1957, 28, 56. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, N.R.; King, J.W. Fundamental of Clinical Chemistry, 2nd Edition ed; Saunders: Philadelphia, PA, USA, 1976; pp. 994–998. [Google Scholar]
- Barham, D.; Trinder, P. A colorimetric method for the determination of serum uric acid. Analyst 1972, 97, 142. [Google Scholar] [CrossRef] [PubMed]
- Langdon, R.G. Glucose-6-phosphate dehydrogenase from erythrocytes. In Wood WA; Academic Press: New York, NY, USA, 1966; Volume 9, pp. 126–131. [Google Scholar]
- Cohen, G.; Dembiec, D.; Marcus, J. Measurement of catalase activity in tissue. Anal. Biochem. 1970, 34, 30–38. [Google Scholar] [CrossRef]
- Sedlack, J.; Lindsay, R.H. Estimation of total protein bound and non-protein sulfhydryl groups in tissues with Ellman’s reagent. Anal. Biochem. 1968, 25, 192–205. [Google Scholar] [CrossRef]
- Eason, J.M.; Dodd, S.L.; Powers, S.K.; Martin, A.D. Detrimental effects of short-term glucocorticoid use on the rat diaphragm. Phys. Ther. 2000, 80, 160–167. [Google Scholar] [PubMed]
- Prashant, M. Effect of psoralea corylifolia on dexamethasone-induced insulin resistance in mice. J. King Saud Univ. Sci. 2012, 24, 251–255. [Google Scholar]
- Kim, D.S.; Kim, T.W.; Park, I.K.; Kang, J.S.; Om, A.S. Effect of chromium picolinate supplementation on insulin sensitivity, serum lipid, and body weight in dexamethasone-treated rats. Metabolism 2002, 51, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Shalam, M.D.; Harish, M.S.; Farhana, S.A. Prevention of dexamethasone and fructose-induced insulin resistance in rats by SH-01D, a herbal preparation. Indian J. Pharmacol. 2006, 38, 419–422. [Google Scholar] [CrossRef]
- Schmidt, T.J.; Miller-Diener, A.; Litwack, G. Lapachone, a specific competitive inhibitor of ligand binding to the glucocorticoid receptor. J. Biol. Chem. 1984, 259, 9536–9543. [Google Scholar] [PubMed]
- Bastway, M.; Hasona, N.; Selemain, H. Protective effects of extract from dates (Phoenix Dactylifera. L.) and ascorbic acid on thioacetamide-induced hepatotoxicity in rats. Iran. J. Pharm. Res. 2008, 7, 193–201. [Google Scholar]
- Hasona, N.A.; Amer, O.H.; Morsi, A.; Raef, A. Comparative biochemical, parasitological, and histopathological studies on cystic echinococcosis in infected sheep. Comp. Clin. Pathol. 2017. [Google Scholar] [CrossRef]
- Nkono, B.L.N.Y.; Sokeng, S.D.; Désiré, D.D.P.; Kamtchouing, P. Antihyperglycemic and antioxydant properties of alstonia boonei De wild. (Apocynaceae) stem bark aqueous extract in dexamethasone-induced hyperglycemic rats. Int. J. Diabetes Res. 2014, 3, 27–35. [Google Scholar]
- Jackson, E.R.; Kilroy, C.; Joslin, D.L.; Schomaker, S.J.; Pruimboom-Brees, I.; Amacher, D.E. The early effects of short-term dexamethasone administration on hepatic and serum alanine aminotransferase in the rat. Drug Chem. Toxicol. 2008, 31, 427–445. [Google Scholar] [CrossRef] [PubMed]
- Giribabu, N.; Eswar Kumar, K.; Swapna Rekha, S.; Muniandy, S.; Salleh, N. Vitis. vinifera (muscat variety) seed ethanolic extract preserves activity levels of enzymes and histology of the liver in adult male rats with diabetes. Evid. Based Complement. Alternat. Med. 2015, 542026, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, E.; Khorsandi, L.; Abedi, H.A. Antioxidant effects of proanthocyanidin from grape seed on hepatic tissue injury in diabetic rats. Iran. J. Basic Med. Sci. 2014, 17, 460–464. [Google Scholar] [PubMed]
- Bhujbal, S.S.; Providencia, C.A.; Nanda, R.K.; Hadawale, S.S.; Yeola, R.R. Effect of Woodfordia. fruticosa on dexamethasone induced insulin resistance in mice. Rev. Bras. Farmacogn. 2012, 22, 611–616. [Google Scholar] [CrossRef]
- Madi Almajwal, A.; Farouk Elsadek, M. Lipid-lowering and hepatoprotective effects of Vitis. vinifera dried seeds on paracetamol-induced hepatotoxicity in rats. Nutr. Res. Pract. 2015, 9, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Lingaiah, H.B.; Thamaraiselvan, R.; Periyasamy, B. Dexamethasone induced alterations in lipid peroxidation, antioxidants; membrane bound ATPase in wistar albino rats. Int. J. Pharm. Pharm. Sci. 2012, 4, 497–499. [Google Scholar]
- Al-Sowayan, N.S.; Kishore, U. Prophylactic efficacy of a combination of proanthocyanidin and vitamin E on hepatotoxicity induced by doxorubicin in rats. Int. Res. J. Pharm. 2012, 2, 161–169. [Google Scholar]
- Ali, D.A.; El-Din, N.A.B.; Abou-El-magd, R.F. Antioxidant and hepatoprotective activities of grape seeds and skin against Ehrlich solid tumor induced oxidative stress in mice. Egypt. J. Basic Appl. Sci. 2015, 2, 98–109. [Google Scholar] [CrossRef]
- Hasona, A.N.; Qumani, M.A.; Alghassab, T.A.; Alghassab, M.A.; Alghabban, A.A. Ameliorative properties of iranian trigonella foenum-graecum L. seeds and punica granatum L. peel extracts in streptozotocin-induced experimental diabetic guinea pigs. Asian Pac. J. Trop. Biomed. 2017, 7, 234–239. [Google Scholar] [CrossRef]
- Stumpo, D.J.; Prostko, C.R.; Kletzien, R.F. Ethanol-glucocorticoid regulation of hepatic glucose-6-phosphate dehydrogenase. Alcohol 1985, 2, 173–176. [Google Scholar] [CrossRef]
- Gupte, R.S.; Floyd, B.C.; Kozicky, M.; George, S.; Ungvari, Z.I.; Neito, V.; Wolin, M.S.; Gupte, S.A. Synergistic activation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase by Src kinase elevates superoxide in type 2 diabetic, Zucker fa/fa, rat liver. Free Radic. Biol. Med. 2009, 47, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Choi, A.H.; Ham, M.; Kim, J.W.; Choe, S.S.; Park, J.; Lee, G.Y.; Yoon, K.H.; Kim, J.B. G6PD up-regulation promotes pancreatic beta-cell dysfunction. Endocrinology 2011, 152, 793–803. [Google Scholar] [CrossRef] [PubMed]
Groups | Body Weight Gain (g) | Relative Liver Weight (g/100 BW) | Relative Kidney Weight (g/100 BW) |
---|---|---|---|
Group (1) | 32.64 d ± 10.21 | 3.84 b ± 0.27 | 0.68 ± 0.05 |
Group (2) | −60.87 a ± 17.40 | 4.68 c ± 1.23 | 1.09 ± 0.19 |
Group (3) | −9.86 b ± 16.01 | 2.99 a ± 0.41 | 0.94 ± 0.15 |
Group (4) | 7.30 c ± 6.57 | 3.36 a,b ± 0.36 | 0.81 ± 0.08 |
F-ratio | 61.88 | 7.88 | 12.34 |
p-value | 0.00 | 0.00 | 0.00 |
Groups | ALT (U/L) | AST (U/L) | Albumin (g/L) |
---|---|---|---|
Group (1) | 55.57 a ± 8.92 | 80.14 a ± 4.85 | 28.29 d ± 2.98 |
Group (2) | 124.29 d ± 6.52 | 175.29 c ± 12.26 | 11.34 a ±1.76 |
Group (3) | 79.43 c ± 4.50 | 123 b ± 6.68 | 18.07 b ± 1.88 |
Group (4) | 69.71 b ± 9.86 | 114.86 b ± 6.36 | 24.14 c ± 3.44 |
F-ratio | 102.94 | 167.17 | 55.87 |
p-value | 0.00 | 0.00 | 0.00 |
Groups | Fasting Blood Glucose (mmol/L) | Uric Acid (µmol/L) | Creatinine (µmol/L) |
---|---|---|---|
Group (1) | 4.79 a ± 0.53 | 116.14 a ± 13.26 | 50 a ± 11.49 |
Group (2) | 9.37 d ± 0.98 | 176.43 b ± 11.28 | 128.57 c ± 5.47 |
Group (3) | 6.64 c ± 0.25 | 124 a ± 6.22 | 76.86 b ± 7.40 |
Group (4) | 5.71 b ± 0.47 | 122.14 a ± 5.64 | 57.43 a ± 5.62 |
F-ratio | 72.01 | 58.91 | 142.04 |
p-value | 0.00 | 0.00 | 0.00 |
Groups | Catalase (UI/mg Protein) | GSH (μg/mg Protein) | Total Protein (g/dL) |
---|---|---|---|
Group (1) | 0.88 d ± 0.05 | 3.77 d ± 0.37 | 2.78 d ± 0.11 |
Group (2) | 0.42 a ± 0.04 | 1.03 a ± 0.19 | 1.78 a ± 0.13 |
Group (3) | 0.54 b ± 0.03 | 1.66 b ± 0.18 | 2.11 b ± 0.10 |
Group (4) | 0.70 c ± 0.07 | 2.44 c ± 0.18 | 2.44 c ± 0.12 |
F-ratio | 111.01 | 166.31 | 97.77 |
p-value | 0.00 | 0.00 | 0.00 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasona, N.A.; Alrashidi, A.A.; Aldugieman, T.Z.; Alshdokhi, A.M.; Ahmed, M.Q. Vitis vinifera Extract Ameliorate Hepatic and Renal Dysfunction Induced by Dexamethasone in Albino Rats. Toxics 2017, 5, 11. https://doi.org/10.3390/toxics5020011
Hasona NA, Alrashidi AA, Aldugieman TZ, Alshdokhi AM, Ahmed MQ. Vitis vinifera Extract Ameliorate Hepatic and Renal Dysfunction Induced by Dexamethasone in Albino Rats. Toxics. 2017; 5(2):11. https://doi.org/10.3390/toxics5020011
Chicago/Turabian StyleHasona, Nabil A., Ahmed A. Alrashidi, Thamer Z. Aldugieman, Ali M. Alshdokhi, and Mohammed Q. Ahmed. 2017. "Vitis vinifera Extract Ameliorate Hepatic and Renal Dysfunction Induced by Dexamethasone in Albino Rats" Toxics 5, no. 2: 11. https://doi.org/10.3390/toxics5020011
APA StyleHasona, N. A., Alrashidi, A. A., Aldugieman, T. Z., Alshdokhi, A. M., & Ahmed, M. Q. (2017). Vitis vinifera Extract Ameliorate Hepatic and Renal Dysfunction Induced by Dexamethasone in Albino Rats. Toxics, 5(2), 11. https://doi.org/10.3390/toxics5020011