Review of the Effects of Antibiotics on Nitrogen Cycle and Greenhouse Gas Emissions in Aquaculture Water
Abstract
1. Introduction
2. Antibiotic Pollution in Aquaculture
2.1. Antibiotic Use and Residual Concentration in Aquaculture Pond
2.2. Residues and Risks of Antibiotics in Aquaculture Effluents and Surrounding Environment
3. Overview of Nitrogen Cycling and Greenhouse Gas Emissions in Aquaculture
3.1. Nitrogen-Cycling Processes in Aquaculture Water and Sediments
3.2. Linkages Between Nitrogen Cycling and Greenhouse Gas Emissions
4. Impacts and Mechanisms of Antibiotics on Nitrogen Cycling and Greenhouse Gas Emissions
4.1. Alterations in Microbial Community Structure and Functional Gene Expression
4.2. Mechanisms of Interference with Nitrogen Transition Processes
4.3. Impacts on Greenhouse Gas Emissions
4.4. Conceptual Synthesis of Interacting Mechanisms
5. The Synergistic Effects of Antibiotics and Co-Contaminants on the Nitrogen Cycle
5.1. Interaction Between Carbon-to-Nitrogen Ratio (C/N) and Antibiotics in Aquaculture
5.2. Interaction Between Antibiotics and Co-Pollutants
6. Limitations of Current Research, and Future Prospects
6.1. Disconnect Between Laboratory Models and Reality
6.2. Incomplete Understanding of Underlying Mechanisms
7. Implementing Sustainable Practices and Regulations for Antibiotic Management in Aquaculture
7.1. Sustainable Aquaculture Management Practices
7.2. Regulatory and Policy Approaches for Antibiotic Stewardship
7.3. Integrated Sustainability Framework Incorporating Chemical Risk Control
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adenaya, A.; Berger, M.; Brinkhoff, T.; Ribas-Ribas, M.; Wurl, O. Usage of antibiotics in aquaculture and the impact on coastal waters. Mar. Pollut. Bull. 2023, 188, 114645. [Google Scholar] [CrossRef]
- Chowdhury, S.; Rheman, S.; Debnath, N.; Delamare-Deboutteville, J.; Akhtar, Z.; Ghosh, S.; Chowdhury, F. Antibiotics usage practices in aquaculture in Bangladesh and their associated factors. One Health 2022, 15, 100445. [Google Scholar] [CrossRef]
- Rahayu, S.; Amoah, K.; Huang, Y.; Cai, J.; Wang, B.; Shija, V.M.; Jin, X.; Anokyewaa, M.A.; Jiang, M. Probiotics application in aquaculture: Its potential effects, current status in China and future prospects. Front. Mar. Sci. 2024, 11, 1455905. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, Y.; Wu, J.; Wang, J. Intervention of antimicrobial peptide usage on antimicrobial resistance in aquaculture. J. Hazard. Mater. 2022, 427, 128154. [Google Scholar] [CrossRef]
- Liu, X.; Steele, J.C.; Meng, X.Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environ. Pollut. 2017, 223, 161–169. [Google Scholar] [CrossRef]
- Chen, H.; Liu, S.; Xu, X.R.; Diao, Z.H.; Sun, K.F.; Hao, Q.W.; Liu, S.S.; Ying, G.G. Tissue distribution, bioaccumulation characteristics and health risk of antibiotics in cultured fish from a typical aquaculture area. J. Hazard. Mater. 2018, 343, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Kalantzi, I.; Rico, A.; Mylona, K.; Pergantis, S.A.; Tsapakis, M. Fish farming, metals and antibiotics in the eastern Mediterranean Sea: Is there a threat to sediment wildlife? Sci. Total Environ. 2021, 764, 142843. [Google Scholar] [CrossRef]
- Aly, S.M.; Fathi, M. Advancing aquaculture biosecurity: A scientometric analysis and future outlook for disease prevention and environmental sustainability. Aquac. Int. 2024, 32, 8763–8789. [Google Scholar] [CrossRef]
- Vamsi Nagaraju, T.; Sunil, B. Briefing: Intensive inland aquaculture ponds: Challenges and research opportunities. Environ. Geotech. 2025, 12, 178–182. [Google Scholar] [CrossRef]
- Chu, G.; Qi, W.; Chen, W.; Zhang, Y.; Gao, S.; Wang, Q.; Gao, C.; Gao, M. Metagenomic insights into the nitrogen metabolism, antioxidant pathway, and antibiotic resistance genes of activated sludge from a sequencing batch reactor under tetracycline stress. J. Hazard. Mater. 2024, 462, 132788. [Google Scholar] [CrossRef]
- Dalsgaard, T.; Thamdrup, B.; Canfield, D.E. Anaerobic ammonium oxidation (anammox) in the marine environment. Res. Microbiol. 2005, 156, 457–464. [Google Scholar] [CrossRef]
- Deng, M.; Yeerken, S.; Wang, Y.; Li, L.; Li, Z.; Oon, Y.-S.; Oon, Y.-L.; Xue, Y.; He, X.; Zhao, X. Greenhouse gases emissions from aquaculture ponds: Different emission patterns and key microbial processes affected by increased nitrogen loading. Sci. Total Environ. 2024, 926, 172108. [Google Scholar] [CrossRef] [PubMed]
- Dubey, D.; Toppo, K.; Kumar, S.; Dutta, V. Intensive aquaculture affects lake’s trophic status and aquatic floral diversity. Environ. Sci. Adv. 2024, 3, 1628–1642. [Google Scholar] [CrossRef]
- Feng, Y.; Hu, J.; Chen, Y.; Xu, J.; Yang, B.; Jiang, J. Ecological effects of antibiotics on aquaculture ecosystems based on microbial community in sediments. Ocean Coast. Manag. 2022, 224, 106173. [Google Scholar] [CrossRef]
- Li, T.; Li, Y.; Li, M.; Wang, N.; Sun, Z.; Li, X.; Li, B. Effects of sulfamethoxazole on nitrogen transformation and antibiotic resistance genes in short-cut nitrification and denitrification process treating mariculture wastewater. Chem. Eng. J. 2023, 454, 140517. [Google Scholar] [CrossRef]
- Guo, N.; Liu, M.; Yang, Z.; Wu, D.; Chen, F.; Wang, J.; Zhu, Z.; Wang, L. The synergistic mechanism of β-lactam antibiotic removal between ammonia-oxidizing microorganisms and heterotrophs. Environ. Res. 2023, 216, 114419. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Liang, S.; Zhang, J.; Ngo, H.H.; Guo, W.; Yan, Y.; Zou, Y. Nitrous oxide emission in low-oxygen simultaneous nitrification and denitrification process: Sources and mechanisms. Bioresour. Technol. 2013, 136, 444–451. [Google Scholar] [CrossRef]
- Yang, P.; Tang, K.W.; Tong, C.; Lai, D.Y.; Zhang, L.; Lin, X.; Yang, H.; Tan, L.; Zhang, Y.; Hong, Y. Conversion of coastal wetland to aquaculture ponds decreased N2O emission: Evidence from a multi-year field study. Water Res. 2022, 227, 119326. [Google Scholar] [CrossRef]
- Hu, Z.; Lee, J.W.; Chandran, K.; Kim, S.; Khanal, S.K. Nitrous oxide (N2O) emission from aquaculture: A review. Environ. Sci. Technol. 2012, 46, 6470–6480. [Google Scholar] [CrossRef]
- Lee, Y.J.; Lin, B.l.; Lei, Z. Nitrous oxide emission mitigation from biological wastewater treatment—A review. Bioresour. Technol. 2022, 362, 127747. [Google Scholar] [CrossRef]
- Fang, X.; Zhao, J.; Wu, S.; Yu, K.; Huang, J.; Ding, Y.; Hu, T.; Xiao, S.; Liu, S.; Zou, J. A two-year measurement of methane and nitrous oxide emissions from freshwater aquaculture ponds: Affected by aquaculture species, stocking and water management. Sci. Total Environ. 2022, 813, 151863. [Google Scholar] [CrossRef]
- Zhou, S.; Borjigin, S.; Riya, S.; Terada, A.; Hosomi, M. The relationship between anammox and denitrification in the sediment of an inland river. Sci. Total Environ. 2014, 490, 1029–1036. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, X.; Lang, X.; Qiao, X.; Li, X.; Chen, J. Insights into aquatic toxicities of the antibiotics oxytetracycline and ciprofloxacin in the presence of metal: Complexation versus mixture. Environ. Pollut. 2012, 166, 48–56. [Google Scholar] [CrossRef]
- Gonzalez-Martinez, A.; Margareto, A.; Rodriguez-Sanchez, A.; Pesciaroli, C.; DiazCruz, S.; Barcelo, D.; Vahala, R. Linking the effect of antibiotics on partialnitritation biofilters: Performance, microbial communities and microbial activities. Front. Microbiol. 2018, 9, 354. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, S.; Xu, X.R.; Liu, S.S.; Zhou, G.J.; Sun, K.Y.; Zhao, J.L.; Ying, G.G. Antibiotics in typical marine aquaculture farms surrounding Hailing Island, South China: Occurrence, bioaccumulation and human dietary exposure. Mar. Pollut. Bull. 2015, 90, 181–187. [Google Scholar] [CrossRef]
- Mkulo, E.M.; Wang, B.; Amoah, K.; Huang, Y.; Cai, J.; Jin, X.; Wang, Z. The current status and development forecasts of vaccines for aquaculture and its effects on bacterial and viral diseases. Microb. Pathog. 2024, 196, 106971. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Huang, F.; Chen, L.; Liu, F.; Wang, B.; Tang, J. Effects of antibiotics on microbial nitrogen cycling and N2O emissions: A review. Chemosphere 2024, 357, 142034. [Google Scholar] [CrossRef]
- Fazio, F.; Kesbiç, O.S. Fish Health in Aquaculture. In Aquaculture: Enhancing Food Security and Nutrition; Springer: Cham, Switzerland, 2025; p. 139. [Google Scholar]
- Thiang, E.L.; Lee, C.W.; Takada, H.; Seki, K.; Takei, A.; Suzuki, S.; Wang, A.J.; Bong, C.W. Antibiotic residues from aquaculture farms and their ecological risks in Southeast Asia: A case study from Malaysia. Ecosyst. Health Sustain. 2021, 7, 1926337. [Google Scholar] [CrossRef]
- Zhang, R.; Xu, X.; Jia, D.; Lyu, Y.; Hu, J.; Chen, Q.; Sun, W. Sediments alleviate the inhibition effects of antibiotics on denitrification: Functional gene, microbial community, and antibiotic resistance gene analysis. Sci. Total Environ. 2022, 804, 150092. [Google Scholar] [CrossRef] [PubMed]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-year retrospective review of global aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2022: Towards Blue Transformation; The State of World Fisheries and Aquaculture (SOFIA); FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Salma, U.; Hossain, A.; Shafiujjaman, M.; Nishimura, Y.; Tokumura, M.; Tanoue, R.; Makino, M. Occurrence, risks, and mitigation of antibiotic pollution in Bangladeshi aquaculture systems. Environ. Chem. Ecotoxicol. 2025, 7, 351–363. [Google Scholar] [CrossRef]
- Su, Z.; Liu, F.; Zhao, L.; Zou, H.; Li, X. Spatial distribution and source apportionment of antibiotics in aquaculture and reserve zones of Yellow River Delta: Risk assessments and priority ranking. J. Environ. Chem. Eng. 2025, 13, 119813. [Google Scholar] [CrossRef]
- Yuan, J.; Ni, M.; Liu, M.; Zheng, Y.; Gu, Z. Occurrence of antibiotics and antibiotic resistance genes in a typical estuary aquaculture region of Hangzhou Bay, China. Mar. Pollut. Bull. 2019, 138, 376–384. [Google Scholar] [CrossRef]
- Chen, H.; Liu, S.; Xu, X.R.; Zhou, G.J.; Liu, S.S.; Yue, W.Z.; Sun, K.F.; Ying, G.G. Antibiotics in the coastal environment of the Hailing Bay region, South China Sea: Spatial distribution, source analysis and ecological risks. Mar. Pollut. Bull. 2015, 95, 365–373. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Y.; Liu, S.; Wen, X.; Huang, Y.; Li, K.; Li, Q. The removal performances and evaluation of heavy metals, antibiotics, and resistomes driven by peroxydisulfate amendment during composting. J. Hazard. Mater. 2023, 457, 131819. [Google Scholar] [CrossRef]
- Ren, X.; Qin, Y.; Zhang, Y.; Xie, J.; Diao, X.; Altaf, M.M. Regional distribution differences of antibiotics in tropical marine aquaculture area: Insights into antibiotic management and risk assessment. Sci. Total Environ. 2024, 954, 176391. [Google Scholar] [CrossRef]
- Han, Q.F.; Zhang, X.R.; Xu, X.Y.; Wang, X.L.; Yuan, X.Z.; Ding, Z.J.; Zhao, S.; Wang, S.G. Antibiotics in marine aquaculture farms surrounding Laizhou Bay, Bohai Sea: Distribution characteristics considering various culture modes and organism species. Sci. Total Environ. 2021, 760, 143863. [Google Scholar] [CrossRef]
- Wen, L.; Dai, J.; Song, J.; Ma, J.; Li, X.; Yuan, H.; Duan, L.; Wang, Q.; Zhao, C. Unveiling the characteristics of fluoroquinolones in China marginal seas: Spatiotemporal distribution, environmental fate, and mass inventory. Mar. Pollut. Bull. 2025, 218, 118161. [Google Scholar] [CrossRef]
- Peng, S.; He, S.; Li, W.; Feng, W.; Hu, M.; Yang, Z.; Xiong, W.; Li, H. Unraveling the combined impacts of pristine and aged polyethylene microplastics and the ciprofloxac in antibiotic on sediment microbial communities and ecological functions. Environ. Pollut. 2025, 384, 127025. [Google Scholar] [CrossRef]
- Kuang, Z.; Zheng, W.; Song, W.; Zhao, P.; Wang, X. Occurrence, distribution, and risk assessment of antibiotics in typical aquaculture environment of Southern Jiangsu. J. Environ. Sci. 2025; in press. [Google Scholar] [CrossRef]
- Chen, Z.; He, G.; You, T.; Zhang, T.; Liu, B.; Wang, Y. Complex pollution of Fluoroquinolone antibiotics and metal oxides/metal ions in water: A review on occurrence, formation mechanisms, removal and ecotoxicity. J. Environ. Chem. Eng. 2024, 12, 112191. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhang, R.; Wang, Y.; Pan, X.; Tang, J.; Zhang, G. Occurrence and distribution of antibiotics in the Beibu Gulf, China: Impacts of river discharge and aquaculture activities. Mar. Environ. Res. 2012, 78, 26–33. [Google Scholar] [CrossRef]
- Zou, S.; Xu, W.; Zhang, R.; Tang, J.; Chen, Y.; Zhang, G. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: Impacts of river discharge and aquaculture activities. Environ. Pollut. 2011, 159, 2913–2920. [Google Scholar] [CrossRef]
- Kingsbury, M.V.; Hamoutene, D.; Kraska, P.; Lacoursière-Roussel, A.; Page, F.; Coyle, T.; Sutherland, T.; Gibb, O.; McKindsey, C.W.; Hartog, F.; et al. Relationship between in feed drugs, antibiotics and organic enrichment in marine sediments at Canadian Atlantic salmon aquaculture sites. Mar. Pollut. Bull. 2023, 188, 114654. [Google Scholar] [CrossRef] [PubMed]
- Li, F.F.; Wen, D.H.; Bao, Y.Y.; Huang, B.; Mu, Q.L.; Chen, L.J. Insights into the distribution, partitioning and influencing factors of antibiotics concentration and ecological risk in typical bays of the East China Sea. Chemosphere 2022, 288, 132566. [Google Scholar] [CrossRef] [PubMed]
- Mai, Z.; Xiong, X.; Hu, H.J.; Jia, J.; Wu, C.X.; Wang, G.T. Occurrence, distribution, and ecological risks of antibiotics in Honghu Lake and surrounding aquaculture ponds, China. Environ. Sci. Pollut. Res. 2023, 30, 50732–50742. [Google Scholar] [CrossRef]
- Wang, L.; Hu, T.; Li, Y.; Zhao, Z.; Zhu, M. Unraveling the interplay between antibiotic resistance genes and microbial communities in water and sediments of the intensive tidal flat aquaculture. Environ. Pollut. 2023, 339, 122734. [Google Scholar] [CrossRef]
- Shi, X.; Shen, Z.; Shao, B.; Shen, J.; Wu, Y.; Wang, S. Antibiotic resistance genes profile in the surface sediments of typical aquaculture areas across 15 major lakes in China. Environ. Pollut. 2024, 347, 123709. [Google Scholar] [CrossRef]
- Jara, B.; Srain, B.M.; Aranda, M.; Fernández, C.; Pantoja-Gutiérrez, S.; Méjanelle, L. Water-sediment partitioning of flumequine and florfenicol, two antibiotics used in salmon aquaculture in Chile. Mar. Pollut. Bull. 2022, 177, 113480. [Google Scholar] [CrossRef] [PubMed]
- Suyamud, B.; Lohwacharin, J.; Yang, Y.; Sharma, V.K. Antibiotic resistant bacteria and genes in shrimp aquaculture water: Identification and removal by ferrate (VI). J. Hazard. Mater. 2021, 420, 126572. [Google Scholar] [CrossRef]
- Ding, Y.; Dong, S.; Ding, D.; Chen, X.; Xu, F.; Niu, H.; Xu, J.; Fan, Y.; Chen, R.; Xia, Y.; et al. Overlooked risk of dissemination and mobility of antibiotic resistance genes in freshwater aquaculture of the Micropterus salmoides in Zhejiang, China. J. Hazard. Mater. 2025, 494, 138604. [Google Scholar] [CrossRef]
- Gonzalez-Gaya, B.; García-Bueno, N.; Buelow, E.; Marin, A.; Rico, A. Effects of aquaculture waste feeds and antibiotics on marine benthic ecosystems in the Mediterranean Sea. Sci. Total Environ. 2022, 806, 151190. [Google Scholar] [CrossRef]
- Bai, Y.; Li, H.; Chen, B.; Xie, H.; Wang, Y. Managing nitrogen metabolism of animal husbandry and aquaculture could mitigate nitrogen threat in the Main Cities of Yellow River Delta. Clean. Environ. Syst. 2025, 17, 100273. [Google Scholar] [CrossRef]
- Bakken, L.R.; Bergaust, L.; Liu, B.; Frostegård, Å. Regulation of denitrification at the cellular level: A clue to the understanding of N2O emissions from soils. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 1226–1234. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Mang, Q.; Li, Q.; Sun, Y.; Xu, G. Microbial-algal symbiotic system drives reconstruction of nitrogen, phosphorus, and methane cycles for purification of pollutants in aquaculture water. Bioresour. Technol. 2025, 430, 132531. [Google Scholar] [CrossRef]
- Queiroz, H.M.; Ferreira, T.O.; Taniguchi, C.A.K.; Barcellos, D.; do Nascimento, J.C.; Nóbrega, G.N.; Otero, X.L.; Artur, A.G. Nitrogen mineralization and eutrophication risks in mangroves receiving shrimp farming effluents. Environ. Sci. Pollut. Res. 2020, 27, 34941–34950. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, L.; Li, R.; Li, B.; Wang, Q.; Song, K. Nitrogen cycling and resource recovery from aquaculture wastewater treatment systems: A review. Environ. Chem. Lett. 2024, 22, 2467–2482. [Google Scholar] [CrossRef]
- Ray, N.E.; Bonaglia, S.; Cavan, E.L.; Sampaio, F.G.; Gephart, J.A.; Hillman, J.R.; Hornborg, S.; Paradis, S.; Petrik, C.M.; Tiano, J. Biogeochemical consequences of marine fisheries and aquaculture. Nat. Rev. Earth Environ. 2025, 6, 163–177. [Google Scholar] [CrossRef]
- Wu, S.; Tan, Z.; Fu, Y.; Gao, N.; Ni, S.; Zhao, R.; Shi, P.; Han, L.; Su, J.; Zheng, Z. Impacts of river inputs and aquaculture on nutrient dynamics in Qinglan Bay and adjacent coastal waters in East Hainan, China. Mar. Pollut. Bull. 2025, 214, 117729. [Google Scholar] [CrossRef]
- Avnimelech, Y. Bio-filters: The need for an new comprehensive approach. Aquac. Eng. 2006, 34, 172–178. [Google Scholar] [CrossRef]
- Crab, R.; Avnimelech, Y.; Defoirdt, T.; Bossier, P.; Verstraete, W. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture 2007, 270, 1–14. [Google Scholar] [CrossRef]
- Devol, A.H. Denitrification, anammox, and N2 production in marine sediments. Annu. Rev. Mar. Sci. 2015, 7, 403–423. [Google Scholar] [CrossRef]
- Wang, M.; Yu, Y.; Ren, Y.; Wang, J.; Chen, H. Effect of antibiotic and/or heavy metal on nitrogen cycle of sediment-water interface in aquaculture system: Implications from sea cucumber culture. Environ. Pollut. 2023, 325, 121453. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, J.; Du, C.; Yang, Q.; Huang, J.; Wang, Z.; Xu, J.; Zhang, M. Relationship between nitrogen dynamics and key microbial nitrogen-cycling genes in an intensive freshwater aquaculture pond. Microorganisms 2024, 12, 266. [Google Scholar] [CrossRef]
- Intrator, N.; Jayakumar, A.; Ward, B.B. Aquatic nitrous oxide reductase gene (nosZ) phylogeny and environmental distribution. Front. Microbiol. 2024, 15, 1407573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bleeker, A.; Liu, J. Nutrient discharge from China’s aquaculture industry and associated environmental impacts. Environ. Res. Lett. 2015, 10, 045002. [Google Scholar] [CrossRef]
- Williams, J.; Crutzen, P. Nitrous oxide from aquaculture. Nat. Geosci. 2010, 3, 143. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, J.; Huang, Y.; Cheng, C.; Lin, Z.; Liu, G.; Guo, Z.; Feng, J. Hypoxia triggers the proliferation of antibiotic resistance genes in a marine aquaculture system. Sci. Total Environ. 2023, 859, 160305. [Google Scholar] [CrossRef]
- Wang, F.; Xiong, J.; Lin, L.; Xu, W.; Liu, L.; Yang, S.; Cao, W. Antibiotic resistance genes link to nitrogen removal potential via co-hosting preference for denitrification genes in a subtropical estuary. J. Hazard. Mater. 2025, 498, 139801. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Cao, X.; Wu, Z.; Liu, J.; Hu, B.; Chen, H.; Li, B. Biotransformation of nitrogen and tetracycline by counter-diffusion biofilm system: Multiple metabolic pathways, mechanism, and slower resistance genes enrichment. Chem. Eng. J. 2023, 474, 145637. [Google Scholar] [CrossRef]
- Li, Z.L.; Cheng, R.; Chen, F.; Lin, X.Q.; Yao, X.J.; Liang, B.; Huang, C.; Sun, K.; Wang, A.J. Selective stress of antibiotics on microbial denitrification: Inhibitory effects, dynamics of microbial community structure and function. J. Hazard. Mater. 2021, 405, 124366. [Google Scholar] [CrossRef]
- Wang, Y.; Du, B.; Wu, G. Tetracycline in anaerobic digestion: Microbial inhibition, removal pathways, and conductive material mitigation. J. Hazard. Mater. 2025, 496, 139378. [Google Scholar] [CrossRef]
- Tian, Y.; Yang, P.; Yang, H.; Wang, H.; Zhang, L.; Tong, C.; Lai, D.Y.; Lin, Y.; Tan, L.; Hong, Y. Diffusive nitrous oxide (N2O) fluxes across the sediment-water-atmosphere interfaces in aquaculture shrimp ponds in a subtropical estuary: Implications for climate warming. Agric. Ecosyst. Environ. 2023, 341, 108218. [Google Scholar] [CrossRef]
- He, Y.; Cao, L.; Gadow, S.I.; Jiang, H.; Jin, Q.; Hu, Y. Insights into antibiotics impacts on long-term nitrogen removal performance of anammox process: Mechanisms and mitigation strategies. J. Environ. Chem. Eng. 2024, 13, 115035. [Google Scholar] [CrossRef]
- Kawai, Y.; Kawai, M.; Mackenzie, E.S.; Dashti, Y.; Kepplinger, B.; Waldron, K.J.; Errington, J. On the mechanisms of lysis triggered by perturbations of bacterial cell wall biosynthesis. Nat. Commun. 2023, 14, 4123. [Google Scholar] [CrossRef]
- Langbehn, R.K.; Michels, C.; Soares, H.M. Tetracyclines lead to ammonium accumulation during nitrification process. J. Environ. Sci. Health Part A 2020, 55, 1021–1031. [Google Scholar] [CrossRef]
- Fernández-Villa, D.; Aguilar, M.R.; Rojo, L. Folic acid antagonists: Antimicrobial and immunomodulating mechanisms and applications. Int. J. Mol. Sci. 2019, 20, 4996. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Shi, C.; Yu, Y.; Ruan, Y.; Kong, D.; Lv, X.; Xu, P.; Awasthi, M.K.; Dong, M. Interrelationships between tetracyclines and nitrogen cycling processes mediated by microorganisms: A review. Bioresour. Technol. 2021, 319, 124036. [Google Scholar] [CrossRef]
- Chen, C.; Laverman, A.M.; Roose-Amsaleg, C.; Regimbeau, G.; Hanna, K. Fate and transport of tetracycline and ciprofloxacin and impact on nitrate reduction activity in coastal sediments from the Seine Estuary, France. Environ. Sci. Pollut. Res. 2023, 30, 5749–5757. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, L.; Huang, L.; Qin, Y.; Zhang, J.; Zhang, J.; Yan, Q. Novel aquaculture wastewater treatment by an efficient nitrogen-removing bacterium capable of simultaneous nitrification and denitrification. Biochem. Eng. J. 2025, 216, 109663. [Google Scholar] [CrossRef]
- Qiao, X.; Fu, C.; Chen, Y.; Fang, F.; Zhang, Y.; Ding, L.; Yang, K.; Pan, B.; Xu, N.; Yu, K. Molecular insights into enhanced nitrogen removal induced by trace fluoroquinolone antibiotics in an anammox system. Bioresour. Technol. 2023, 374, 128784. [Google Scholar] [CrossRef]
- Lu, J.; Mu, X.; Zhang, S.; Song, Y.; Ma, Y.; Luo, M.; Duan, R. Coupling of submerged macrophytes and epiphytic biofilms reduced methane emissions from wetlands: Evidenced by an antibiotic inhibition experiment. Sci. Total Environ. 2023, 904, 166710. [Google Scholar] [CrossRef]
- Hu, F.; Chen, R.; Li, Y.; Sun, D.; Tan, H. A higher C/N ratio enhances nitrogen treatment and the biodiesel characteristics of algal-bacterial bioflocs derived from aquaculture wastewater. Process Biochem. 2025, 153, 1–10. [Google Scholar] [CrossRef]
- Sun, X.; Li, X.; Tang, S.; Lin, K.; Zhao, T.; Chen, X. A review on algal-bacterial symbiosis system for aquaculture tail water treatment. Sci. Total Environ. 2022, 847, 157620. [Google Scholar] [CrossRef]
- Peng, P.; Chen, L.; Yan, X.; Bai, R.; Adyari, B.; Zhou, X.; Zhao, F. N-doped carbon dots/g-C3N4 photoexcitation simultaneously enhanced the microbial degradation of nitrate and oxytetracycline in a low C/N ratio aquaculture wastewater. Chem. Eng. J. 2024, 491, 151763. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, G.; Lee, M.Y.; Park, S.E.; Kim, C.S.; Kim, T.H. Dominant contribution of land-based aquaculture to coastal organic matter and nutrient loads: Quantifying particulate organic carbon and ammonium fluxes from Jeju Island, South Korea. Reg. Stud. Mar. Sci. 2025, 91, 104520. [Google Scholar] [CrossRef]
- Cao, L.; Ma, S.; Xiang, S.; Li, Y.; Zhang, X.; Zhu, Z.; Yan, X.; Ruan, R.; Cheng, P. Regulating the Carbon-to-Nitrogen ratio for enhanced reconstruction efficiency in Litopenaeus vannamei aquaculture systems. Bioresour. Technol. 2025, 435, 132961. [Google Scholar] [CrossRef] [PubMed]
- Niavol, K.P.; Andaluri, G.; Achary, M.P.; Suri, R.P. How does carbon to nitrogen ratio and carrier type affect moving bed biofilm reactor (MBBR): Performance evaluation and the fate of antibiotic resistance genes. J. Environ. Manag. 2025, 377, 124619. [Google Scholar] [CrossRef]
- Akbar, S.A.; Hasan, M.; Jalil, Z.; Zulfahmi, I.; Iqhrammullah, M.; Safina, N. Enhanced ammonia nitrogen filtration using NaOH-activated Manihot utilissima peel carbon: Application in recirculating aquaculture systems for Nile tilapia. Chemosphere 2025, 385, 144537. [Google Scholar] [CrossRef]
- Li, Y.Q.; Zhang, C.M.; Wang, Q.; Jiao, X.R. Metagenomic insights into effects of carbon/nitrogen ratio on microbial community and antibiotic resistance in moving bed biofilm reactor. Bioresour. Technol. 2024, 406, 131007. [Google Scholar] [CrossRef]
- Zhang, M.; Fan, D.; Pan, L.; Su, C.; Li, Z.; Liu, C.; He, Q. Characterization and removal mechanism of a novel enrofloxacin-degrading microorganism, Microbacterium proteolyticum GJEE142 capable of simultaneous removal of enrofloxacin, nitrogen and phosphorus. J. Hazard. Mater. 2023, 454, 131452. [Google Scholar] [CrossRef]
- Li, X.; Tang, M.; Jiang, J.; Ma, S.; Yao, S.; Yang, Y. Enhanced effect and mechanism of biochar on the nitrogen removal of low C/N wastewater by cold-tolerant heterotrophic nitrifying–aerobic denitrifying bacterium. J. Contam. Hydrol. 2025, 276, 104708. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Junaid, M.; Chen, G.; Wang, J. Interactions and associated resistance development mechanisms between microplastics, antibiotics and heavy metals in the aquaculture environment. Rev. Aquac. 2022, 14, 1028–1045. [Google Scholar] [CrossRef]
- Duan, Y.; Gao, H.; Liu, Y.; Chang, H.; Yan, J.; Wang, Y.; Zhang, Z.; Chen, C.; Li, X.; Wang, H.; et al. Microplastics pollution in aquaculture areas and the synergistic effects with antibiotics and heavy metals: A case study in Zhoushan, China. Reg. Stud. Mar. Sci. 2025; in press. [Google Scholar] [CrossRef]
- Wei, L.; Su, Z.; Yue, Q.; Huang, X.; Wei, M.; Wang, J. Microplastics, heavy metals, antibiotics, and antibiotic resistance genes in recirculating aquaculture systems. TrAC Trends Anal. Chem. 2024, 172, 117564. [Google Scholar] [CrossRef]
- Ameen, A.; Zheng, Y.; Wang, Q.; Li, Y.; Saleem, S.U.; Saleem, M.A.; Niaz, W.; Anjum, H.A.; Li, F. Sustainable hybrid constructed wetland-biological trickling filter system for simultaneous removal of antibiotics and heavy metals: Performance, mechanisms, and microbial insights. J. Water Process Eng. 2025, 79, 108979. [Google Scholar] [CrossRef]
- You, X.; Li, H.; Pan, B.; You, M.; Sun, W. Interactions between antibiotics and heavy metals determine their combined toxicity to Synechocystis sp. J. Hazard. Mater. 2022, 424, 127707. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, Y.; Liu, Y.; Ban, Y.; Li, K.; Li, X.; Zhang, X.; Xu, Z. Removal of sulfamethoxazole and Cu, Cd compound pollution by arbuscular mycorrhizal fungi enhanced vertical flow constructed wetlands. Environ. Res. 2024, 245, 117982. [Google Scholar] [CrossRef]
- Mai, N.T.; Van Thanh, D.; Hien, T.N.; Hanh, H.T.H.; Hoa, L.T.T.; Khai, N.M.; Bich, D.D.; Nguyen, D.D.; Tan, C.M.; Van Hao, P. Highly adsorptive removal of heavy metal, dye, and antibiotic pollutants using functionalized graphene nanosheets sono-electrochemically derived from graphitic waste. J. Environ. Chem. Eng. 2024, 12, 113020. [Google Scholar] [CrossRef]
- Xie, S.Y.; Peng, L.C.; Zhou, Z.C.; Xu, N.H.; Li, S.Q.; Feng, Y.J. Biodegradable microplastics amplify antibiotic resistance in aquaculture: A potential One Health crisis from environment to seafood. J. Hazard. Mater. 2025, 498, 139932. [Google Scholar] [CrossRef]
- Su, H.; Xu, W.; Hu, X.; Xu, Y.; Wen, G.; Cao, Y. The impact of microplastics on antibiotic resistance genes, metal resistance genes, and bacterial community in aquaculture environment. J. Hazard. Mater. 2025, 489, 137704. [Google Scholar] [CrossRef]
- Xie, S.; Hamid, N.; Zhang, T.; Zhang, Z.; Peng, L. Unraveling the nexus: Microplastics, antibiotics, and ARGs interactions, threats and control in aquaculture–A review. J. Hazard. Mater. 2024, 471, 134324. [Google Scholar] [CrossRef]
- Su, P.; Chang, J.; Yu, F.; Wu, X.; Ji, G. Microplastics in aquaculture environments: Sources, pollution status, toxicity and potential as substrates for nitrogen-cycling microbiota. Agric. Water Manag. 2024, 304, 109090. [Google Scholar] [CrossRef]
- Foo, W.H.; Chia, W.Y.; Ende, S.; Chia, S.R.; Chew, K.W. Nanomaterials in aquaculture disinfection, water quality monitoring and wastewater remediation. J. Environ. Chem. Eng. 2024, 12, 113947. [Google Scholar] [CrossRef]
- Zhang, R.; Xu, X.; Lyu, Y.; Zhou, Y.; Chen, Q.; Sun, W. Impacts of engineered nanoparticles and antibiotics on denitrification: Element cycling functional genes and antibiotic resistance genes. Ecotoxicol. Environ. Saf. 2022, 241, 113787. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Hu, S.W.; Xu, X.C.; Yang, F.L. Unraveling the impact of coexistent of oxytetracycline and nanomaterials on algal-bacterial granular sludge: Performance, microbial community variations and antibiotic resistance genes. J. Environ. Chem. Eng. 2025, 13, 118210. [Google Scholar] [CrossRef]
- Li, S.; Meng, D.; Zhang, G.; Yang, F. Periodic polarity reversal triggered sequential electrochemical redox of blue TiO2 nanotube arrays for efficient removal of antibiotics and inorganic nitrogen from actual mariculture wastewater. Chem. Eng. J. 2024, 499, 156651. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, S.; Ma, Z.; Li, Y.; Huang, D.; Zhang, J. Study on the purification of aquaculture tailwater under Sulfamethoxazole stress using algae-bacteria biofilms: Nutrient removal efficiency, microbial community, and ARGs. Process Saf. Environ. Prot. 2024, 191, 1432–1444. [Google Scholar] [CrossRef]
- Jiang, S.; Guo, X.; Tang, P.; Yin, S.; Zhang, K. Seasonal dynamics of microbial communities and horizontal transfer of antibiotic resistance genes in crab pond: Interplay among sediment, water, and gut communities. Sci. Total Environ. 2025, 1003, 180706. [Google Scholar] [CrossRef]
- Arisekar, U.; Shakila, R.J.; Shalini, R.; Sivaraman, B.; Iyyappan, T.; Selvaraj, M.; Albormani, O.; Keerthana, M.; Renuka, V.; Kalidass, B. Multivariate analysis and seasonal dynamics of toxic trace elements and antibiotics in shrimp (Penaeus vannamei, boon, 1931) aquaculture: Impacts on human and environmental health. Mar. Pollut. Bull. 2025, 219, 118326. [Google Scholar] [CrossRef]
- Xie, T.; Xi, Y.; Liu, Y.; Liu, H.; Su, Z.; Huang, Y.; Xu, W.; Wang, D.; Zhang, C.; Li, X. Long-term effects of Cu(II) on denitrification in hydrogen-based membrane biofilm reactor: Performance, extracellular polymeric substances and microbial communities. Sci. Total Environ. 2022, 830, 154526. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, J.; Yu, L.; Korpelainen, H.; Li, C. Different sexual impacts of dioecious Populus euphratica on microbial communities and nitrogen cycle processes in natural forests. For. Ecol. Manag. 2021, 496, 119403. [Google Scholar] [CrossRef]
- Jang, J.; Xiong, X.; Liu, C.; Yoo, K.; Ishii, S. Invasive earthworms alter forest soil microbiomes and nitrogen cycling. Soil Biol. Biochem. 2022, 171, 108724. [Google Scholar] [CrossRef]
- Ren, X.; Qin, Y.; Zhang, Y.; Li, X.; Tang, Y.; Diao, X.; Lin, Y.; Qin, H. Antibiotic Resistance Genes and Microbial Diversity in Major Aquaculture Areas of Hainan Island. Emerg. Contam. 2025, 11, 100562. [Google Scholar] [CrossRef]
- Gong, W.; Guo, L.; Huang, C.; Xie, B.; Jiang, M.; Zhao, Y.; Liang, H. A systematic review of antibiotics and antibiotic resistance genes (ARGs) in mariculture wastewater: Antibiotics removal by microalgal-bacterial symbiotic system (MBSS), ARGs characterization on the metagenomic. Sci. Total Environ. 2024, 930, 172601. [Google Scholar] [CrossRef]
- Nederlof, M.A.; Verdegem, M.C.; Smaal, A.C.; Jansen, H.M. Nutrient retention efficiencies in integrated multi-trophic aquaculture. Rev. Aquac. 2022, 14, 1194–1212. [Google Scholar] [CrossRef]
- Ljubojević Pelić, D.; Radosavljević, V.; Pelić, M.; Živkov Baloš, M.; Puvača, N.; Jug-Dujaković, J.; Gavrilović, A. Antibiotic residues in cultured fish: Implications for food safety and regulatory concerns. Fishes 2024, 9, 484. [Google Scholar] [CrossRef]
- Narbonne, J.A.; Radke, B.R.; Price, D.; Hanington, P.C.; Babujee, A.; Otto, S.J. Antimicrobial use surveillance indicators for finfish aquaculture production: A review. Front. Vet. Sci. 2021, 8, 595152. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, E.A.H.; Kovács, B.; Kuunya, R.; Mustafa, E.O.A.; Abbo, A.S.H.; Pál, K. Antibiotic Resistance in Aquaculture: Challenges, Trends Analysis, and Alternative Approaches. Antibiotics 2025, 14, 598. [Google Scholar] [CrossRef]
- Rico, A.; Vighi, M.; Van den Brink, P.J.; ter Horst, M.; Macken, A.; Lillicrap, A.; Falconer, L.; Telfer, T.C. Use of models for the environmental risk assessment of veterinary medicines in European aquaculture: Current situation and future perspectives. Rev. Aquac. 2019, 11, 969–988. [Google Scholar] [CrossRef]
- Bondad-Reantaso, M.G.; MacKinnon, B.; Karunasagar, I.; Fridman, S.; Alday-Sanz, V.; Brun, E.; Le Groumellec, M.; Li, A.; Surachetpong, W.; Karunasagar, I. Review of alternatives to antibiotic use in aquaculture. Rev. Aquac. 2023, 15, 1421–1451. [Google Scholar] [CrossRef]
- Bohnes, F.A.; Hauschild, M.Z.; Schlundt, J.; Laurent, A. Life cycle assessments of aquaculture systems: A critical review of reported findings with recommendations for policy and system development. Rev. Aquac. 2019, 11, 1061–1079. [Google Scholar] [CrossRef]
- Hammarlund, C.; Svensson, K.; Asche, F.; Bronnmann, J.; Osmundsen, T.; Nielsen, R. Eco-certification in aquaculture–economic incentives and effects. Rev. Fish. Sci. Aquac. 2025, 33, 402–415. [Google Scholar] [CrossRef]
- Lulijwa, R.; Rupia, E.J.; Alfaro, A.C. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: A review of the top 15 major producers. Rev. Aquac. 2020, 12, 640–663. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, H.; Zhang, L.; Zhang, S.; Li, H.; Sun, C.; Wang, Y.; Hang, X. Review of the Effects of Antibiotics on Nitrogen Cycle and Greenhouse Gas Emissions in Aquaculture Water. Toxics 2026, 14, 43. https://doi.org/10.3390/toxics14010043
Wang H, Zhang L, Zhang S, Li H, Sun C, Wang Y, Hang X. Review of the Effects of Antibiotics on Nitrogen Cycle and Greenhouse Gas Emissions in Aquaculture Water. Toxics. 2026; 14(1):43. https://doi.org/10.3390/toxics14010043
Chicago/Turabian StyleWang, Hanxiao, Lan Zhang, Shicheng Zhang, Haoyan Li, Changyan Sun, Yan Wang, and Xiaoshuai Hang. 2026. "Review of the Effects of Antibiotics on Nitrogen Cycle and Greenhouse Gas Emissions in Aquaculture Water" Toxics 14, no. 1: 43. https://doi.org/10.3390/toxics14010043
APA StyleWang, H., Zhang, L., Zhang, S., Li, H., Sun, C., Wang, Y., & Hang, X. (2026). Review of the Effects of Antibiotics on Nitrogen Cycle and Greenhouse Gas Emissions in Aquaculture Water. Toxics, 14(1), 43. https://doi.org/10.3390/toxics14010043

