Lung Deposition of Particulate Matter as a Source of Metal Exposure: A Threat to Humans and Animals
Abstract
1. Introduction
2. Methodological Notes
3. Anthracosis and Pneumoconiosis in Humans
4. Anthracosis in Animals
5. Toxic Effects of PM-Bound Metals
6. Potential Solutions
7. Study Limitations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matei, E.; Râpă, M.; Mateș, I.M.; Popescu, A.F.; Bădiceanu, A.; Balint, A.I.; Covaliu-Mierlă, C.I. Heavy Metals in Particulate Matter-Trends and Impacts on Environment. Molecules 2025, 30, 1455. [Google Scholar] [CrossRef]
- Sánchez, J.E.C.; Chávez, M.C.A.G.; González, R.C.; Scheckel, K.; Maruri, D.T.; Cue, J.L.G. Metal(loid) bioaccessibility of atmospheric particulate matter from mine tailings at Zimapan, Mexico. Environ. Sci. Pollut. Res. Int. 2021, 28, 19458–19472. [Google Scholar] [CrossRef]
- Moreira, M.A.C.; Cardoso, A.R.O.; Silva, D.G.S.T.; Queiroz, M.C.C.A.M.; Oliveira, A.A.; Noleto, T.M.A. Hard metal pneumoconiosis with spontaneous bilateral pneumothorax. J. Bras. Pneumol. 2010, 36, 148–151. [Google Scholar] [CrossRef]
- Cullinan, P.; Reid, P. Pneumoconiosis. Prim. Care Respir. J. 2013, 22, 249–252. [Google Scholar] [CrossRef]
- Donaldson, K.; Wallace, W.A.; Henry, C.; Seaton, A. Black lungs in the general population: A new look at an old dispute. J. R. Coll. Physicians Edinb. 2019, 49, 165–170. [Google Scholar] [CrossRef]
- Qi, X.M.; Luo, Y.; Song, M.Y.; Liu, Y.; Shu, T.; Liu, Y.; Pang, J.L.; Wang, J.; Wang, C. Pneumoconiosis: Current status and future prospects. Chin. Med. J. (Engl.) 2021, 134, 898–907. [Google Scholar] [CrossRef]
- Hua, J.T.; Cool, C.D.; Green, F.H.Y. Pathology and Mineralogy of the Pneumoconioses. Semin. Respir. Crit. Care Med. 2023, 44, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Bettini, G.; Morini, M.; Marconato, L.; Marcato, P.S.; Zini, E. Association between environmental dust exposure and lung cancer in dogs. Vet. J. 2010, 186, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Leonard, R.; Zulfikar, R.; Stansbury, R. Coal mining and lung disease in the 21st century. Curr. Opin. Pulm. Med. 2020, 26, 135–141. [Google Scholar] [CrossRef]
- Mitchev, K.; Dumortier, P.; De Vuyst, P. ‘Black Spots’ and hyaline pleural plaques on the parietal pleura of 150 urban necropsy cases. Am. J. Surg. Pathol. 2002, 26, 1198–1206. [Google Scholar] [CrossRef] [PubMed]
- Takano, A.P.C.; Justo, L.T.; Dos Santos, N.V.; Marquezini, M.V.; de André, P.A.; da Rocha, F.M.M.; Pasqualucci, C.A.; Barrozo, L.V.; Singer, J.M.; De André, C.D.S.; et al. Pleural anthracosis as an indicator of lifetime exposure to urban air pollution: An autopsy-based study in Sao Paulo. Environ. Res. 2019, 173, 23–32. [Google Scholar] [CrossRef]
- Cassee, F.R.; Héroux, M.E.; Gerlofs-Nijland, M.E.; Kelly, F.J. Particulate matter beyond mass: Recent health evidence on the role of fractions, chemical constituents and sources of emission. Inhal. Toxicol. 2013, 25, 802–812. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Hu, J.; Yan, L.; He, Y.; Li, X.; Wang, M.; Sun, X.; Xu, H. The biological and chemical contents of atmospheric particulate matter and implication of its role in the transmission of bacterial pathogenesis. Environ. Microbiol. 2021, 23, 5481–5486. [Google Scholar] [CrossRef]
- Zheng, H.; Wu, D.; Wang, S.; Li, X.; Jin, L.N.; Zhao, B.; Li, S.; Sun, Y.; Dong, Z.; Wu, Q.; et al. Control of toxicity of fine particulate matter emissions in China. Nature 2025, 643, 404–411. [Google Scholar] [CrossRef]
- Han, I.; Mihalic, J.N.; Ramos-Bonilla, J.P.; Rule, A.M.; Polyak, L.M.; Peng, R.D.; Geyh, A.S.; Breysse, P.N. Assessment of heterogeneity of metal composition of fine particulate matter collected from eight U.S. counties using principal component analysis. J. Air Waste Manag. Assoc. 2012, 62, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Cheng, J.; Lv, J.; Wu, L.; Wu, J. Comparison of chemical compositions in air particulate matter during summer and winter in Beijing, China. Environ. Geochem. Health 2017, 39, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Schraufnagel, D.E. The health effects of ultrafine particles. Exp. Mol. Med. 2020, 52, 311–317. [Google Scholar] [CrossRef]
- Beauchemin, S.; Levesque, C.; Wiseman, C.L.S.; Rasmussen, P.E. Quantification and Characterization of Metals in Ultrafine Road Dust Particles. Atmosphere 2021, 12, 1564. [Google Scholar] [CrossRef]
- Phairuang, W.; Suwattiga, P.; Hongtieab, S.; Inerb, M.; Furuuchi, M.; Hata, M. Characteristics, sources, and health risks of ambient nanoparticles (PM0.1) bound metal in Bangkok, Thailand. Atmos. Environ. X 2021, 12, 100141. [Google Scholar] [CrossRef]
- Larionov, A.; Volobaev, V.; Zverev, A.; Vdovina, E.; Bach, S.; Schetnikova, E.; Leshukov, T.; Legoshchin, K.; Eremeeva, G. Chemical Composition and Toxicity of PM10 and PM0.1 Samples near Open-Pit Mines and Coal Power Stations. Life 2022, 12, 1047. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Natasha; Dumat, C.; Niazi, N.K.; Xiong, T.T.; Farooq, A.B.U.; Khalid, S. Ecotoxicology of Heavy Metal(loid)-Enriched Particulate Matter: Foliar Accumulation by Plants and Health Impacts. In Reviews of Environmental Contamination and Toxicology; de Voogt, P., Ed.; Springer Nature Switzerland AG: Cham, Switzerland, 2019; Volume 253, pp. 65–113. [Google Scholar] [CrossRef]
- Shridhar, V.; Khillare, P.S.; Agarwal, T.; Ray, S. Metallic species in ambient particulate matter at rural and urban location of Delhi. J. Hazard. Mater. 2010, 175, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Satsangi, P.G. Characterization of particulate matter and its related metal toxicity in an urban location in South West India. Environ. Monit. Assess. 2013, 185, 7365–7379. [Google Scholar] [CrossRef]
- Sharma, P.; Yadav, P.; Ghosh, C.; Singh, B. Heavy metal capture from the suspended particulate matter by Morus alba and evidence of foliar uptake and translocation of PM associated zinc using radiotracer (65Zn). Chemosphere 2020, 254, 126863. [Google Scholar] [CrossRef]
- Xie, J.; Jin, L.; Cui, J.; Luo, X.; Li, J.; Zhang, G.; Li, X. Health risk-oriented source apportionment of PM2.5-associated trace metals. Environ. Pollut. 2020, 262, 114655. [Google Scholar] [CrossRef]
- Tavella, R.A.; de Lima Brum, R.; Ramires, P.F.; Santos, J.E.K.; Carvalho, R.B.; Marmett, B.; Vargas, V.M.F.; Baisch, P.R.M.; da Silva Júnior, F.M.R. Health impacts of PM2.5-bound metals and PAHs in a medium-sized Brazilian city. Environ. Monit. Assess. 2022, 194, 622. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, G.; Falandysz, J.; Yang, L.; Zhao, C.; Chen, C.; Sun, Y.; Zheng, M.; Jiang, G. Atmospheric emissions of particulate matter-bound heavy metals from industrial sources. Sci. Total Environ. 2024, 947, 174467. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, F.; Liu, W.; Liu, X.; Wang, D. Characteristics, Sources, Exposure, and Health Effects of Heavy Metals in Atmospheric Particulate Matter. Curr. Pollut. Rep. 2025, 11, 16. [Google Scholar] [CrossRef]
- Ramadan, B.S.; Rosmalina, R.T.; Syafrudin; Munawir; Khair, H.; Widiyanti, A.; Rachman, I.; Matsumoto, T. Potential exposure to metals-bound particulate during open burning of different waste materials. Environ. Monit. Assess. 2025, 197, 495. [Google Scholar] [CrossRef] [PubMed]
- Abelenda-Alonso, G.; Rombauts, A.; Burguillos, N.; Carratalà, J. One air, one health: Air pollution in the era of antimicrobial resistance. Clin. Microbiol. Infect. 2021, 27, 947–948. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.H.; Buckley, J.; Byers, K.A.; Fake, K.; Lehrer, E.W.; Magle, S.B.; Stone, C.; Tuten, H.; Schell, C.J. One Health for All: Advancing Human and Ecosystem Health in Cities by Integrating an Environmental Justice Lens. Annu. Rev. Ecol. Evol. Syst. 2022, 53, 403–426. [Google Scholar] [CrossRef]
- Dawydenko, K.; Cameron-Hamilton, E.; Dawsona, P. A One Health Initiative for Air Pollution: Student-Living Gardens. One Health Innov. 2023, 1, 1–13. [Google Scholar] [CrossRef]
- Correia, G.; Calheiros, D.; Rosa, N.; Rodrigues, L.; Cunha, S.; Santiago, L.M.; Costa, J.; Gameiro da Silva, M.; Gonçalves, T. Indoor air quality and airborne transmission under the One Health lens: A scoping review. One Health 2025, 21, 101160. [Google Scholar] [CrossRef]
- NIH—National Institutes of Health, National Library of Medicine, National Center for Biotechnology Information. PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/ (accessed on 10 July 2025).
- Isidro, A.; Malgosa, A.; Prats-Muñoz, G. Anthracosis in a Coptic mummy. Arch. Bronconeumol. 2014, 50, 368–369. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liang, R.; Yang, M.; Ma, J.; Li, W.; Mu, M.; Xiao, Y.; Feng, X.; Dong, C.; Yu, L.; et al. Incidence and disease burden of coal workers’ pneumoconiosis worldwide, 1990–2019: Evidence from the Global Burden of Disease Study 2019. Eur. Respir. J. 2021, 58, 2101669. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liang, R.; Zhang, R.; Wang, B.; Cao, S.; Wang, X.; Ma, J.; Wang, D.; Chen, W. Prevalence of coal worker’s pneumoconiosis: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. Int. 2022, 29, 88690–88698. [Google Scholar] [CrossRef]
- Cool, C.D.; Murray, J.; Vorajee, N.I.; Rose, C.S.; Zell-Baran, L.M.; Sanyal, S.; Franko, A.D.; Almberg, K.S.; Iwaniuk, C.; Go, L.H.T.; et al. Pathologic Findings in Severe Coal Workers’ Pneumoconiosis in Contemporary US Coal Miners. Arch. Pathol. Lab. Med. 2024, 148, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Wang, Y.; Yu, C.; Ding, C.; He, J.; Liu, Y.; Wang, H.; Ni, C. Metal Exposure-Related Welder’s Pneumoconiosis and Lung Function: A Cross-Sectional Study in a Container Factory of China. Int. J. Environ. Res. Public Health 2022, 19, 16809. [Google Scholar] [CrossRef]
- Penteado, J.O.; Peres, T.G.; Ramires, P.F.; de Lima Brum, R.; da Silva Freitas, L.; Volcão, L.M.; Dos Santos, M.; Da Silva Júnior, F.M.R. Trends in pneumoconiosis in Brazil, 1979–2019. Occup. Med. 2022, 72, 386–393. [Google Scholar] [CrossRef]
- Zimet, Z.; Bilban, M.; Fabjan, T.; Suhadolc, K.; Poljšak, B.; Osredkar, J. Lead Exposure and Oxidative Stress in Coal Miners. Biomed. Environ. Sci. 2017, 30, 841–845. [Google Scholar] [CrossRef] [PubMed]
- Qingsong, M.; Xiao, R.; Yang, W.; Wang, X.; Kong, Y.Z. Global burden of pneumoconiosis attributable to occupational particulate matter, gasses, and fumes from 1990~2021 and forecasting the future trends: A population-based study. Front. Public Health 2025, 12, 1494942. [Google Scholar] [CrossRef]
- Brucker, N.; Moro, A.; Charão, M.; Bubols, G.; Nascimento, S.; Goethel, G.; Barth, A.; Prohmann, A.C.; Rocha, R.; Moresco, R.; et al. Relationship between blood metals and inflammation in taxi drivers. Clin. Chim. Acta. 2015, 444, 176–181. [Google Scholar] [CrossRef]
- Qorbani, M.; Yunesian, M.; Baradaran, H.R. Indoor smoke exposure and risk of anthracosis. Iran. J. Med. Sci. 2014, 39, 571–576. [Google Scholar] [PubMed]
- Lee, D.W.; Oh, J.; Ye, S.; Kwag, Y.; Yang, W.; Kim, Y.; Ha, E. Indoor particulate matter and blood heavy metals in housewives: A repeated measured study. Environ. Res. 2021, 197, 111013. [Google Scholar] [CrossRef] [PubMed]
- Cauci, S.; Tavano, M.; Curcio, F.; Francescato, M.P. Biomonitoring of urinary metals in athletes according to particulate matter air pollution before and after exercise. Environ. Sci. Pollut. Res. Int. 2022, 29, 26371–26384. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, N.V.; Vieira, C.L.Z.; Saldiva, P.H.N.; Paci Mazzilli, B.; Saiki, M.; Saueia, C.H.; De André, C.D.S.; Justo, L.T.; Nisti, M.B.; Koutrakis, P. Levels of Polonium-210 in brain and pulmonary tissues: Preliminary study in autopsies conducted in the city of Sao Paulo, Brazil. Sci. Rep. 2020, 10, 180. [Google Scholar] [CrossRef]
- Attarchi, M.; Soltanipour, S.; Foumani, A.A.; Rahbar-Taramsari, M.; Ghorbani Samin, M.; Dolati, M.; Samie, M.; Seyedmehdi, S.M. Frequency of Pulmonary Anthracosis and its Related Factors in Autopsy Specimens in Guilan, Iran, in 2019. Tanaffos 2022, 21, 496–502. [Google Scholar]
- Falcones, B.; Kahnt, M.; Johansson, U.; Svobodová, B.; von Wachenfelt, K.A.; Brunmark, C.; Dellgren, G.; Elowsson, L.; Thånell, K.; Westergren-Thorsson, G. Nano-XRF of lung fibrotic tissue reveals unexplored Ca, Zn, S and Fe metabolism: A novel approach to chronic lung diseases. Cell Commun. Signal. 2025, 23, 67. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Ling, L.; Hou, G.; Leng, S.; Ma, N.; Qiu, M.; Li, X.; Guo, X. The distribution and structural fingerprints of metals from particulate matters (PM) deposited in human lungs. Ecotoxicol. Environ. Saf. 2022, 233, 113324. [Google Scholar] [CrossRef] [PubMed]
- Torres-Blas, I.; Horsler, H.; Paredes, U.M.; Perkins, M.; Priestnall, S.L.; Brekke, P. Impact of exposure to urban air pollution on grey squirrel (Sciurus carolinensis) lung health. Environ. Pollut. 2023, 326, 121312. [Google Scholar] [CrossRef]
- Ozmen, O.; Adanir, R.; Haligur, M.; Albayrak, T.; Kose, O.; Ipek, V. Parasitologic and pathologic observations of the house sparrow (Passer domesticus). J. Zoo. Wildl. Med. 2013, 44, 564–569. [Google Scholar] [CrossRef]
- Liu, W.X.; Ling, X.; Halbrook, R.S.; Martineau, D.; Dou, H.; Liu, X.; Zhang, G.; Tao, S. Preliminary evaluation on the use of homing pigeons as a biomonitor in urban areas. Ecotoxicology 2010, 19, 295–305. [Google Scholar] [CrossRef]
- Oladipo, T.M.; Ajayi, O.L.; Olaniyi, M.O.; Awoyomi, J.O.; Mshelbwala, F.M.; Adebiyi, A.A.; Adegboyega, I.; Jubril, A.J. Prevalence of pulmonary anthracosis in household dogs in southwest states in Nigeria: A sentinel for environmental pollution. Environ. Sci. Pollut. Res. Int. 2025, 32, 5106–5118. [Google Scholar] [CrossRef]
- Thapa, S.; Bhatta, R.; Puri, B.; Bashyal, R.; Kunwar, R.; Shrestha, S.P.; Regmi, G.; Pal, P. A pilot study on the pulmonary anthracosis in stray dogs of Kathmandu Valley, Nepal: A potential public health threat for future. Vet. World. 2024, 17, 658–665. [Google Scholar] [CrossRef]
- Mohamed, R.A.; Georges, K.; Rajh, S.; Suepaul, R.B. A pilot study on the lung morphology of shelter dogs in relation to air pollution in Trinidad. Am. J. Vet. Res. 2022, 83, ajvr.22.05.0077. [Google Scholar] [CrossRef] [PubMed]
- Sabattini, S.; Mancini, F.R.; Marconato, L.; Bacci, B.; Rossi, F.; Vignoli, M.; Bettini, G. EGFR overexpression in canine primary lung cancer: Pathogenetic implications and impact on survival. Vet. Comp. Oncol. 2014, 12, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Leya, M.; Oh, B.; Ha, S.; Bao Tien, H.T.N.; Cha, J.O.; Park, S.C.; Han, J.I.; Lim, C.W.; Kim, B. The presence of anthracosis is associated with the environmental air quality of zoo, wildlife, and companion animals in Jeollabuk-do Province, South Korea. Am. J. Vet. Res. 2023, 84, ajvr.23.01.0016. [Google Scholar] [CrossRef]
- Ahasan, S.A.; Chowdhury, E.H.; Azam, S.U.; Parvin, R.; Rahaman, A.Z.; Bhuyan, A.R. Pulmonary anthracosis in Dhaka Zoo collections—A public health forecasting for city dwellers. J. Threat. Taxa 2010, 2, 1303–1308. [Google Scholar] [CrossRef]
- Mellau, L.S.B.; Nonga, H.E.; Karimuribo, E.D. A slaughterhouse survey of lung lesions in slaughtered stocks at Arusha, Tanzania. Prev. Vet. Med. 2010, 97, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Nevárez-Garza, A.M.; Garza-Arredondo, A.J.; Zamora-Avila, D.E.; Moreno-Degollado, G.; Rodriguez-Tovar, L.E. Mixed Pneumoconiosis Associated with Diffuse Pulmonary Ossification in Wild Coyotes (Canis latrans). J. Comp. Pathol. 2021, 189, 72–76. [Google Scholar] [CrossRef]
- Navas-Suárez, P.E.; Díaz-Delgado, J.; Fernandes-Santos, R.C.; Testa-José, C.; Silva, R.; Sansone, M.; Medici, E.P.; Catão-Dias, J.L. Pathological Findings in Lowland Tapirs (Tapirus terrestris) Killed by Motor Vehicle Collision in the Brazilian Cerrado. J. Comp. Pathol. 2019, 170, 34–45. [Google Scholar] [CrossRef]
- Rodrigues, A.C.; de Sá, É.F.G.G.; Santos, F.M.; Sano, N.Y.; Pistori, J.G.B.; Cordeiro-Estrela, P.; Ozório, C.L.C.T.; Herrera, H.M.; de Andrade, G.B. Health of Holochilus chacarius (Rodentia: Cricetidae) in rice agroecosystem in a neotropical wetland assessed by histopathology. Environ. Monit. Assess. 2024, 196, 407. [Google Scholar] [CrossRef] [PubMed]
- da Silva Júnior, F.M.R.; Tavella, R.A.; Fernandes, C.L.F.; Dos Santos, M. Genetic damage in coal and uranium miners. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2021, 866, 503348. [Google Scholar] [CrossRef] [PubMed]
- Kogianni, E.; Samara, C.; Lialiaris, T. Genotoxicity induced in vitro by water-soluble indoor PM2.5 fractions in relation to heavy metal concentrations. Environ. Monit. Assess. 2021, 193, 82. [Google Scholar] [CrossRef]
- Signorelli, S.S.; Conti, G.O.; Zanobetti, A.; Baccarelli, A.; Fiore, M.; Ferrante, M. Effect of particulate matter-bound metals exposure on prothrombotic biomarkers: A systematic review. Environ. Res. 2019, 177, 108573. [Google Scholar] [CrossRef]
- Zahedi, A.; Hassanvand, M.S.; Jaafarzadeh, N.; Ghadiri, A.; Shamsipour, M.; Dehcheshmeh, M.G. Effect of ambient air PM2.5-bound heavy metals on blood metal(loid)s and children’s asthma and allergy pro-inflammatory (IgE, IL-4 and IL-13) biomarkers. J. Trace Elem. Med. Biol. 2021, 68, 126826. [Google Scholar] [CrossRef]
- Barzgar, F.; Sadeghi-Mohammadi, S.; Aftabi, Y.; Zarredar, H.; Shakerkhatibi, M.; Sarbakhsh, P.; Gholampour, A. Oxidative stress indices induced by industrial and urban PM2.5-bound metals in A549 cells. Sci. Total Environ. 2023, 877, 162726. [Google Scholar] [CrossRef] [PubMed]
- Gałuszka, A.; Stec, M.; Węglarczyk, K.; Kluczewska, A.; Siedlar, M.; Baran, J. Transition Metal Containing Particulate Matter Promotes Th1 and Th17 Inflammatory Response by Monocyte Activation in Organic and Inorganic Compounds Dependent Manner. Int. J. Environ. Res. Public Health 2020, 17, 1227. [Google Scholar] [CrossRef]
- Sangani, R.G.; Soukup, J.M.; Ghio, A.J. Metals in air pollution particles decrease whole-blood coagulation time. Inhal. Toxicol. 2010, 22, 621–626. [Google Scholar] [CrossRef]
- Niu, J.; Liberda, E.N.; Qu, S.; Guo, X.; Li, X.; Zhang, J.; Meng, J.; Yan, B.; Li, N.; Zhong, M.; et al. The role of metal components in the cardiovascular effects of PM2.5. PLoS ONE 2013, 8, e83782. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, S.; Dales, R.; Kauri, L.M.; Mahmud, M.; Van Ryswyk, K.; Vanos, J.; Liu, L.; Kumarathasan, P.; Thomson, E.; Vincent, R.; et al. Metal composition of fine particulate air pollution and acute changes in cardiorespiratory physiology. Environ. Pollut. 2014, 189, 208–214. [Google Scholar] [CrossRef]
- Lavigne, A.; Sterrantino, A.F.; Liverani, S.; Blangiardo, M.; de Hoogh, K.; Molitor, J.; Hansell, A. Associations between metal constituents of ambient particulate matter and mortality in England: An ecological study. BMJ Open 2019, 9, e030140. [Google Scholar] [CrossRef]
- Li, Z.; Peng, S.; Chen, M.; Sun, J.; Liu, F.; Wang, H.; Xiang, H. Associations of fine particulate matter and its metal constituents with blood pressure: A panel study during the seventh World Military Games. Environ. Res. 2023, 217, 114739. [Google Scholar] [CrossRef]
- Yu, P.; Han, Y.; Wang, M.; Zhu, Z.; Tong, Z.; Shao, X.; Peng, J.; Hamid, Y.; Yang, X.; Deng, Y.; et al. Heavy metal content and health risk assessment of atmospheric particles in China: A meta-analysis. Sci. Total Environ. 2023, 867, 161556. [Google Scholar] [CrossRef]
- Ellwanger, J.H.; Ziliotto, M.; Chies, J.A.B. Impacts of Metals on Infectious Diseases in Wildlife and Zoonotic Spillover. J. Xenobiot. 2025, 15, 105. [Google Scholar] [CrossRef]
- Ellwanger, J.H.; Ziliotto, M.; Chies, J.A.B. Toxicogenomics of Arsenic, Lead and Mercury: The Toxic Triad. Pollutants 2025, 5, 18. [Google Scholar] [CrossRef]
- Ellwanger, J.H.; Valverde-Villegas, J.M.; Ziliotto, M.; Bogo Chies, J.A. Metal Pollution as a Risk Factor for HIV Infection. Immuno 2025, 5, 34. [Google Scholar] [CrossRef]
- Kastury, F.; Smith, E.; Juhasz, A.L. A critical review of approaches and limitations of inhalation bioavailability and bioaccessibility of metal(loid)s from ambient particulate matter or dust. Sci. Total Environ. 2017, 574, 1054–1074. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, C.L.S. Analytical methods for assessing metal bioaccessibility in airborne particulate matter: A scoping review. Anal. Chim. Acta 2015, 877, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, L.; Yu, H.; Wang, J. The hidden risk in high-temperature urban environments: Assessment of metal elements and human health risks of particulate matter at street. J. Hazard. Mater. 2025, 488, 137475. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Zhang, Y.; Chen, X.; Sha, A.; Xiong, Z.; Luo, Y.; Peng, L.; Zou, L.; Zhao, C.; Li, Q. The Easily Overlooked Effect of Global Warming: Diffusion of Heavy Metals. Toxics 2024, 12, 400. [Google Scholar] [CrossRef]
- Ellwanger, J.H.; Ziliotto, M.; Kulmann-Leal, B.; Chies, J.A.B. Environmental Challenges in Southern Brazil: Impacts of Pollution and Extreme Weather Events on Biodiversity and Human Health. Int. J. Environ. Res. Public Health 2025, 22, 305. [Google Scholar] [CrossRef] [PubMed]
- CONAMA—Conselho Nacional do Meio Ambiente, Ministério do Meio Ambiente e Mudança do Clima. Resolução Nº 506, de 5 de Julho de 2024: Estabelece Padrões Nacionais de Qualidade do ar e Fornece Diretrizes Para sua Aplicação. Available online: https://conama.mma.gov.br/?option=com_sisconama&task=arquivo.download&id=827 (accessed on 14 August 2025).
- Vianna, N.A.; Gonçalves, D.; Brandão, F.; de Barros, R.P.; Amado Filho, G.M.; Meire, R.O.; Torres, J.P.M.; Malm, O.; D’Oliveira Júnior, A.; Andrade, L.R. Assessment of heavy metals in the particulate matter of two Brazilian metropolitan areas by using Tillandsia usneoides as atmospheric biomonitor. Environ. Sci. Pollut. Res. Int. 2011, 18, 416–427. [Google Scholar] [CrossRef]
- Millward-Hopkins, J.; Hickel, J.; Nag, S. Is growth in consumption occurring where it is most needed? An empirical analysis of current energy and material trends. Lancet Planet. Health 2025, 9, e503–e510. [Google Scholar] [CrossRef]
- Singer, J.M.; de André, C.D.S.; de André, P.A.; Rocha, F.M.M.; Waked, D.; Vaz, A.M.; Gois, G.F.; de Fátima Andrade, M.; Veras, M.M.; Saldiva, P.H.N.; et al. Assessing socioeconomic bias of exposure to urban air pollution: An autopsy-based study in São Paulo, Brazil. Lancet Reg. Health Am. 2023, 22, 100500. [Google Scholar] [CrossRef]
- dos Santos, A.N.S.; Felippe, J.N.O.; Silva, K.L.; Dezem, L.T.; Sousa, T.S.R.; Júnior, P.R.S.; Assunção, I.D.; Santana, E.C.; Coimbra, A.G.; Noronha, T.P.; et al. Racismo ambiental, saúde e direitos sociais: Causalidades e impactos da degradação ambiental em comunidades vulneráveis no Brasil. Obs. Econ. Latinoam. 2025, 23, e8603. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ellwanger, J.H.; Ziliotto, M.; Chies, J.A.B. Lung Deposition of Particulate Matter as a Source of Metal Exposure: A Threat to Humans and Animals. Toxics 2025, 13, 788. https://doi.org/10.3390/toxics13090788
Ellwanger JH, Ziliotto M, Chies JAB. Lung Deposition of Particulate Matter as a Source of Metal Exposure: A Threat to Humans and Animals. Toxics. 2025; 13(9):788. https://doi.org/10.3390/toxics13090788
Chicago/Turabian StyleEllwanger, Joel Henrique, Marina Ziliotto, and José Artur Bogo Chies. 2025. "Lung Deposition of Particulate Matter as a Source of Metal Exposure: A Threat to Humans and Animals" Toxics 13, no. 9: 788. https://doi.org/10.3390/toxics13090788
APA StyleEllwanger, J. H., Ziliotto, M., & Chies, J. A. B. (2025). Lung Deposition of Particulate Matter as a Source of Metal Exposure: A Threat to Humans and Animals. Toxics, 13(9), 788. https://doi.org/10.3390/toxics13090788