Microplastics in Drinking Water: A Review of Sources, Removal, Detection, Occurrence, and Potential Risks
Abstract
1. Introduction
2. Sources and Fate of Microplastics in Drinking Water Supply Chain
2.1. Inputs from Raw Water Sources
2.2. Generation and Transformation During Drinking Water Treatment
2.3. Release from Distribution Network
2.4. Release from Bottled/Barreled Water Packaging
3. Microplastic Removal in Drinking Water Treatment
3.1. Coagulation/Sedimentation
3.2. Filtration
3.3. Disinfection
3.4. Advanced Microplastic Removal Technologies
4. Identification of Microplastics
4.1. Microscopy Techniques
4.2. Spectroscopic Techniques
4.3. Thermal Techniques
5. Potential Risk of Microplastics
5.1. Direct Hazards
5.2. Indirect Hazards
6. Recommendations for Future Research
- (1)
- Establishing standardized detection procedures and methods for MPs in drinking water. Current studies exhibit pronounced methodological heterogeneity, manifesting in inconsistent sampling strategies, pre-treatment approaches, and detection techniques. These inconsistencies compromise data comparability and introduce false-positive risks. Consequently, it is imperative to establish unified standardized protocols that consider all the steps associated with the quantification and characterization of MPs, ensuring data accuracy, reproducibility, and comparability.
- (2)
- Enhancing treatment processes to remove MPs. Traditional processes in current DWTPs are still insufficient in removing MPs and pose the risk of secondary release. Given the potential threats of MPs to the environment and human health, there is an urgent need to develop more efficient new water treatment technologies to enhance the removal capacity of MPs. Exploring and applying new adsorbent materials that can efficiently capture MP particles in water bodies, as well as the great potential of membrane technology in MP removal, are important directions. Moreover, integrating various water treatment processes to form a comprehensive treatment system is also an effective way to improve the removal efficiency of MPs.
- (3)
- Developing health risk assessment methods for MPs in drinking water. Data on the impact of MPs on human health are relatively limited, but their potential effects should not be overlooked. Drinking water is an important source of human exposure to MPs. By combining the absorption and metabolic conditions of MPs in the human body with toxicological data on MPs, it is necessary to quantify the migration and metabolic patterns of MPs in the human body, analyze their synergistic toxic effects with coexisting pollutants, establish dose–effect relationship models, and comprehensively assess the potential threats of MPs to human health.
- (4)
- Constructing a multi-scale coordinated life cycle prevention and control system for MPs in drinking water systems. Establish multi-level prevention and control barriers from the four dimensions of “source reduction–process interception–end-of-pipe treatment–recycling and regeneration” to form a systematic management plan for the entire chain of “sources–water treatment plants–pipelines-users”, reduce the risk of MPs in drinking water, and ensure public drinking water safety.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plastics Europe. Plastics-The-Facts-2022. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/ (accessed on 20 October 2023).
- Seongjoon, J.; Jin, C.I.; Hogyun, S. Structural insight into molecular mechanism of 776 poly(ethylene terephthalate) degradation. Nat. Commun. 2018, 9, 382. [Google Scholar]
- Senathirajah, K.; Attwood, S.; Bhagwat, G.; Carbery, M.; Wilson, S.; Palanisami, T. Estimation of the mass of MPs ingested: A pivotal first step towards human health risk assessment. J. Hazard. Mater. 2021, 404, 124004. [Google Scholar] [CrossRef]
- Ößmann, B.E.; Sarau, G.; Holtmannspötter, H.; Pischetsrieder, M.; Christiansen, S.H.; Dicke, W. Small-sized MPs and pigmented particles in bottled mineral water. Water Res. 2018, 141, 307–316. [Google Scholar] [CrossRef]
- Zuccarello, P.; Ferrante, M.; Cristaldi, A.; Copat, C.; Grasso, A.; Sangregorio, D.; Conti, G.O. Exposure to MPs (<10 μm) associated to plastic bottles mineral water consumption: The first quantitative study. Water Res. 2019, 157, 365–371. [Google Scholar]
- Kirstein, I.V.; Hensel, F.; Gomiero, A.; Iordachescu, L.; Vianello, A.; Wittgren, H.B.; Vollertsen, J. Drinking plastics?: Quantification and qualification of MPs in drinking water distribution systems by µFTIR and Py-GCMS. Water Res. 2021, 188, 116519. [Google Scholar] [CrossRef] [PubMed]
- Özsoy, S.; Gündogdu, S.; Sezigen, S.; Tasalp, E.; Ikiz, D.A.; Kideys, A.E. Presence of MPs in human stomachs. Forensic Sci. Int. 2024, 364, 112246. [Google Scholar] [CrossRef] [PubMed]
- Leslie, H.A.; Van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, Y.; Zhang, T.; Zhang, F.; Ren, H.; Zhang, Y. Analysis of MPs in human feces reveals a correlation between fecal MPs and inflammatory bowel disease status. Environ. Sci. Technol. 2021, 56, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Giorgini, E. Plasticenta: First evidence of MPs in human placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef]
- Guo, X.; Wang, L.; Wang, X.; Li, D.; Wang, H.; Xu, H.; Zhang, S. Discovery and analysis of MPs in human bone marrow. J. Hazard. Mater. 2024, 477, 135266. [Google Scholar] [CrossRef]
- Pivokonský, M.; Pivokonská, L.; Novotná, K.; Čermáková, L.; Klimtová, M. Occurrence and fate of MPs at two different drinking water treatment plants within a river catchment. Sci. Total Environ. 2020, 741, 140236. [Google Scholar] [CrossRef]
- Adib, D.; Mafigholami, R.; Tabeshkia, H. Identification of MPs in conventional drinking water treatment plants in Tehran, Iran. J. Environ. Health Sci. Eng. 2021, 19, 1817–1826. [Google Scholar] [CrossRef] [PubMed]
- Mintenig, S.M.; Löder, M.G.; Primpke, S.; Gerdts, G. Low numbers of MPs detected in drinking water from groundwater sources. Sci. Total Environ. 2019, 648, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Dronjak, L.; Exposito, N.; Rovira, J.; Florencio, K.; Emiliano, P.; Corzo, B.; Schuhmacher, M.; Valero, F.; Sierra, J. Screening of MPs in water and sludge lines of a drinking water treatment plant in Catalonia, Spain. Water Res. 2022, 225, 119185. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.A.; Arellano, J.M.; Albendín, G.; Rodríguez-Barroso, R.; Quiroga, J.M.; Coello, M.D. Microplastic pollution in wastewater treatment plants in the city of Cádiz: Abundance, removal efficiency, and presence in receiving water body. Sci. Total Environ. 2021, 776, 145795. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Rocher, V.; Saad, M.; Renault, N.; Tassin, B. Microplastic contamination in an urban area: A case study in Greater Paris. Environ. Chem. Lett. 2015, 12, 592–599. [Google Scholar] [CrossRef]
- Tan, Y.; Dai, J.; Wu, X.; Wu, S.; Zhang, J. Characteristics, occurrence, and fate of non-point source microplastic pollution in aquatic environments. J. Clean. Prod. 2022, 341, 130766. [Google Scholar] [CrossRef]
- Smyth, K.; Tan, S.Y.; Van Seters, T.; Henderson, V.; Passeport, E.; Drake, J. Pavement wear generates MPs in stormwater runoff. J. Hazard. Mater. 2025, 481, 136495. [Google Scholar] [CrossRef]
- Acarer, S. Abundance and characteristics of MPs in drinking water treatment plants, distribution systems, water from refill kiosks, tap waters, and bottled waters. Sci. Total Environ. 2023, 884, 163866. [Google Scholar] [CrossRef]
- Nesterovschi, I.; Marica, I.; Levei, E.A.; Angyus, S.B.; Kenesz, M.; Moldovan, O.T.; Pînzaru, S.C. Subterranean transport of MPs as evidenced in karst springs and their characterization using Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 298, 122811. [Google Scholar] [CrossRef]
- Kim, Y.-I.; Jeong, E.; Lee, J.-Y.; Chia, R.W.; Raza, M. Microplastic contamination in groundwater on a volcanic Jeju Island of Korea. Environ. Res. 2023, 226, 115682. [Google Scholar] [CrossRef]
- He, Y.Q.; McDonough, L.K.; Zainab, S.M.; Guo, Z.F.; Chen, C.; Xu, Y.Y. Microplastic accumulation in groundwater: Data-scaled insights and future research. Water Res. 2024, 258, 121808. [Google Scholar] [CrossRef]
- Alvim, C.B.; Ferrer-Polonio, E.; Bes-Piá, M.A.; Mendoza-Roca, J.A.; Fernández-Navarro, J.; Alonso-Molina, J.L.; Amorós-Muñoz, I. Effect of polystyrene nanoplastics on the activated sludge process performance and biomass characteristics: A laboratory study with a sequencing batch reactor. J. Environ. Manag. 2023, 329, 117131. [Google Scholar] [CrossRef]
- Wolff, S.; Kerpen, J.; Prediger, J.; Barkmann, L.; Müller, L. Determination of the MPs emission in the effluent of a municipal waste water treatment plant using Raman microspectroscopy. Water Res. 2019, 2, 100014. [Google Scholar]
- Koelmans, A.A.; Nor, N.H.M.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; De France, J. MPs in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef]
- Chowdhury, S.R.; Razzak, S.A.; Hassan, I.; Hossain, S.Z.; Hossain, M.M. MPs in freshwater and drinking water: Sources, impacts, detection, and removal strategies. Water Air Soil Pollut. 2023, 234, 673. [Google Scholar] [CrossRef]
- Rodrigues dos Santos, C.; Pinheiro Drumond, G.; Rezende Moreira, V.; de Souza Santos, L.V.; Amaral, M.C.S. MPs in surface water: Occurrence, ecological implications, quantification methods and remediation technologies. Chem. Eng. J. 2023, 474, 144936. [Google Scholar] [CrossRef]
- Li, Y.; Li, W.; Jarvis, P.; Zhou, W.; Zhang, J.; Chen, J.; Tian, Y. Occurrence, removal and potential threats associated with MPs in drinking water sources. J. Environ. Chem. Eng. 2020, 8, 104527. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Tang, Y. Fragmentation of MPs in the drinking water treatment process: A case study in Yangtze River region, China. Sci. Total Environ. 2022, 806, 150545. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.; Lin, T.; Jiang, F.; Zhang, X. Impacts on characteristics and effluent safety of PVDF ultrafiltration membranes aged by different chemical cleaning types. J. Membr. Sci. 2021, 640, 119770. [Google Scholar] [CrossRef]
- Ding, H.; Zhang, J.; He, H.; Zhu, Y.; Dionysiou, D.D.; Liu, Z.; Zhao, C. Do membrane filtration systems in drinking water treatment plants release nano/MPs? Sci. Total Environ. 2021, 755, 142658. [Google Scholar] [CrossRef] [PubMed]
- Maliwan, T.; Hu, J. Release of MPs from polymeric ultrafiltration membrane system for drinking water treatment under different operating conditions. Water Res. 2025, 274, 123047. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Zheng, B.; Li, Z.; Cai, C.; Peng, Z.; Zhao, P.; Tian, Y. Occurrence and distribution of MPs in water supply systems: In water and pipe scales. Sci. Total Environ. 2022, 803, 150004. [Google Scholar] [CrossRef]
- Pivokonsky, M.; Cermakova, L.; Novotna, K.; Peer, P.; Cajthaml, T.; Janda, V. Occurrence of MPs in raw and treated drinking water. Sci. Total Environ. 2018, 643, 1644–1651. [Google Scholar] [CrossRef]
- Gomiero, A.; øysæd, K.B.; Palmas, L.; Skogerbø, G. Application of GCMS-pyrolysis to estimate the levels of MPs in a drinking water supply system. J. Hazard Mater 2021, 416, 125708. [Google Scholar] [CrossRef] [PubMed]
- Weber, F.; Kerpen, J.; Wolff, S.; Langer, R.; Eschweiler, V. Investigation of MPs contamination in drinking water of a German city. Sci. Total Environ. 2021, 755, 143421. [Google Scholar] [CrossRef]
- Shen, M.; Zeng, Z.; Wen, X.; Ren, X.; Zeng, G.; Zhang, Y.; Rao, R. Presence of MPs in drinking water from freshwater sources: The investigation in Changsha, China. Environ. Sci. Pollut. Res. 2021, 28, 42313–42324. [Google Scholar] [CrossRef]
- Zhou, G.; Wu, Q.; Wei, X.F.; Chen, C.; Ma, J.; Crittenden, J.C.; Liu, B. Tracing MPs in rural drinking water in Chongqing, China: Their presence and pathways from source to tap. J. Hazard. Mater. 2023, 459, 132206. [Google Scholar] [CrossRef]
- Tong, H.; Jiang, Q.; Hu, X.; Zhong, X. Occurrence and identification of MPs in tap water from China. Chemosphere 2020, 252, 126493. [Google Scholar] [CrossRef]
- Mukotaka, A.; Kataoka, T.; Nihei, Y. Rapid analytical method for characterization and quantification of MPs in tap water using a Fourier transform infrared microscope. Sci. Total Environ. 2021, 790, 148231. [Google Scholar]
- Guart, A.; Bono-Blay, F.; Borrell, A.; Lacorte, S. Migration of plasticizers phthalates, bisphenol A and alkylphenols from plastic containers and evaluation of risk. Food Addit. Contam. 2011, 28, 676–685. [Google Scholar] [CrossRef]
- Mason, S.A.; Welch, V.G.; Neratko, J. Synthetic polymer contamination in bottled water. Front. Chem. 2018, 6, 407. [Google Scholar] [CrossRef]
- Schymanski, D.; Goldbeck, C.; Humpf, H.U.; Fürst, P. Analysis of MPs in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Res. 2018, 129, 154–162. [Google Scholar] [CrossRef]
- Weisser, J.; Beer, I.; Hufnagl, B.; Hofmann, T.; Lohninger, H.; Ivleva, N.P.; Glas, K. From the well to the bottle: Identifying sources of microplastics in mineral water. Water 2021, 13, 841. [Google Scholar] [CrossRef]
- Winkler, A.; Santo, N.; Ortenzi, M.A.; Bolzoni, E.; Bacchetta, R.; Tremolada, P. Does mechanical stress cause microplastic release from plastic water bottles? Water Res. 2019, 166, 115082. [Google Scholar] [CrossRef] [PubMed]
- Singh, T. Generation of MPs from the opening and closing of disposable plastic water bottles. J. Water Health 2021, 19, 488–498. [Google Scholar] [CrossRef]
- Wang, Z.F.; Lin, T.; Chen, W. Occurrence and removal of MPs in an advanced drinking water treatment plant (ADWTP). Sci. Total Environ. 2020, 700, 134520. [Google Scholar] [CrossRef]
- Arenas, L.R.; Gentile, S.R.; Zimmermann, S.; Stoll, S. Fate and removal efficiency of polystyrene nanoplastics in a pilot drinking water treatment plant. Sci. Total Environ. 2022, 813, 152623. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Jiang, J.; Xia, J.; Yan, C.; Cui, C. Occurrence and fate of MPs from a water source to two different drinking water treatment plants in a megacity in eastern China. Environ. Pollut. 2024, 346, 123546. [Google Scholar] [CrossRef]
- Mao, Y.; Hu, Z.; Li, H.; Zheng, H.; Yang, S.; Yu, W.; Zhang, S. Recent advances in microplastic removal from drinking water by coagulation: Removal mechanisms and influencing factors. Environ. Pollut. 2024, 349, 123863. [Google Scholar] [CrossRef]
- Wang, X.S.; Song, H.; Liu, Y.L.; Pan, X.R.; Zhang, H.C.; Gao, Z.; Ma, J. Quantitively analyzing the variation of micrometer-sized microplastic during water treatment with the flow cytometry-fluorescent beads method. ACS EST Eng. 2021, 1, 1668–1677. [Google Scholar] [CrossRef]
- Tian, C.; Akhtar, I.; Wang, Q.; Li, Z.; Shi, B.; Feng, C.; Wang, D. Effects of electrostatic neutralization of Keggin Fe13 on the removal of micro and nano plastic. J. Hazard. Mater. 2023, 443, 130175. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Wang, Q.; Li, J.; Li, Q.; Xu, H.; Ye, Q.; Zhang, J. Removal of polystyrene and polyethylene MPs using PAC and FeCl3 coagulation: Performance and mechanism. Sci. Total Environ. 2021, 752, 141837. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Peng, Z.; Chen, W.; Lin, Q.; Cheng, M.; Li, H.; Yang, H.Y. Surface characteristics of polystyrene MPs mainly determine their coagulation performances. Mar. Pollut. Bull. 2023, 186, 114347. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Li, H.; Fei, L.; Wei, B.; Zhou, T.; Zhang, H. The removal of MPs from water by coagulation: A comprehensive review. Sci. Total Environ. 2022, 851, 158224. [Google Scholar] [CrossRef]
- Na, S.; Kim, M.; Kim, J. Microplastic removal in conventional drinking water treatment processes: Performance, mechanism, and potential risk. Water Res. 2021, 202, 117417. [Google Scholar] [CrossRef]
- Ma, B.; Xue, W.; Hu, C.; Liu, H.; Qu, J.; Li, L. Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chem. Eng. J. 2019, 359, 159–167. [Google Scholar] [CrossRef]
- Lapointe, M.; Farner, J.M.; Hernandez, L.M.; Tufenkji, N. Understanding and improving microplastic removal during water treatment: Impact of coagulation and flocculation. Environ. Sci. Technol. 2020, 54, 8719–8727. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Li, Y.; Wang, H.; Shi, Y.; Li, Y.; Zhang, Y. Improving nanoplastic removal by coagulation: Impact mechanism of particle size and water chemical conditions. J. Hazard. Mater. 2022, 425, 127962. [Google Scholar] [CrossRef]
- Song, F.; Li, T.; Hur, J.; Shi, Q.; Wu, F.; He, W.; Huang, J.; Cao, Y. Molecular-level insights into the heterogeneous variations and dynamic formation mechanism of leached dissolved organic matter during the photoaging of polystyrene MPs. Water Res. 2023, 242, 120114. [Google Scholar] [CrossRef]
- Chabi, K.; Li, J.; Ye, C.; Kiki, C.; Xiao, X.; Li, X.; Huang, Y.; Yu, X. Rapid sand filtration for <10 μm-sized microplastic removal in tap water treatment: Efficiency and adsorption mechanisms. Sci. Total Environ. 2024, 912, 169074. [Google Scholar]
- He, L.; Rong, H.; Wu, D.; Li, M.; Wang, C.; Tong, M. Influence of biofilm on the transport and deposition behaviors of nano- and micro-plastic particles in quartz sand. Water Res. 2020, 178, 115808. [Google Scholar] [CrossRef]
- Wang, Z.; Sedighi, M.; Lea-Langton, A. Filtration of microplastic spheres by biochar: Removal efficiency and immobilisation mechanisms. Water Res. 2020, 184, 116165. [Google Scholar] [CrossRef]
- Hsieh, L.; He, L.; Zhang, M.; Lv, W.; Yang, K.; Tong, M. Addition of biochar as thin preamble layer into sand filtration columns could improve the MPs removal from water. Water Res. 2022, 221, 118783. [Google Scholar] [CrossRef] [PubMed]
- Enfrin, M.; Lee, J.; Le-Clech, P.; Dumée, L.F. Kinetic and mechanistic aspects of ultrafiltration membrane fouling by nano- and MPs. J. Membr. Sci. 2020, 601, 117890. [Google Scholar] [CrossRef]
- Kumar, R.; Ismail, A. Fouling control on microfiltration/ultrafiltration membranes: Effects of morphology, hydrophilicity, and charge. J. Appl. Polym. Sci. 2015, 132, 42042. [Google Scholar] [CrossRef]
- Chen, W.; Ouyang, Z.Y.; Qian, C.; Yu, H.Q. Induced structural changes of humic acid by exposure of polystyrene MPs: A spectroscopic insight. Environ. Pollut. 2018, 233, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, B.; Chen, Z.; Ma, B.; Chen, J.P. Ultrafiltration membrane fouling by MPs with raw water: Behaviors and alleviation methods. Chem. Eng. J. 2021, 410, 128174. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Ding, J.; Song, Z.; Yang, B.; Zhang, C.; Guan, B. Degradation of nano-sized polystyrene plastics by ozonation or chlorination in drinking water disinfection processes. Chem. Eng. J. 2022, 427, 131690. [Google Scholar] [CrossRef]
- Ding, W.; Jin, W.; Cao, S.; Zhou, X.; Wang, C.; Jiang, Q.; Huang, X.; Wang, Q. Ozone disinfection of chlorine-resistant bacteria in drinking water. Water Res. 2019, 160, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Enfrin, M.; Dumée, L.F.; Lee, J. Nano/MPs in water and wastewater treatment processes–origin, impact and potential solutions. Water Res. 2019, 161, 621–638. [Google Scholar] [CrossRef]
- Hidayaturrahman, H.; Lee, T. A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of MPs during treatment process. Mar. Pollut. Bull. 2019, 146, 696–702. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Guo, K.; Wu, W.; Yao, M. Effect of chlorination and ultraviolet on the adsorption of pefloxacin on polystyrene and polyvinyl chloride. J. Environ. Sci. 2025, 149, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Galafassi, S.; Di Cesare, A.; Di Nardo, L.; Sabatino, R.; Valsesia, A.; Fumagalli, F.S.; Volta, P. Microplastic retention in small and medium municipal wastewater treatment plants and the role of the disinfection. Environ. Sci. Pollut. Res. 2022, 29, 10535–10546. [Google Scholar] [CrossRef]
- Kelkar, V.P.; Rolsky, C.B.; Pant, A.; Green, M.D.; Tongay, S.; Halden, R.U. Chemical and physical changes of MPs during sterilization by chlorination. Water Res. 2019, 163, 114871. [Google Scholar] [CrossRef] [PubMed]
- Miao, M.; Yu, B.; Cheng, X.; Hao, T.; Dou, Y.; Zhang, M.; Li, Y. Effects of chlorination on MPs pollution: Physicochemical transformation and chromium adsorption. Environ. Pollut. 2023, 323, 121254. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, X.; Ma, Y.; Niu, Z.; Zhang, Y. Comparison of chlorination resistance of biodegradable MPs and conventional MPs during the disinfection process in water treatments. Sci. Total Environ. 2024, 908, 168229. [Google Scholar] [CrossRef]
- Song, Y.K.; Hong, S.H.; Jang, M.; Han, G.M.; Jung, S.W.; Shim, W.J. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environ. Sci. Technol. 2017, 51, 4368–4376. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Dong, Q.; Zuo, Z.; Liu, Y.; Huang, X.; Wu, W.M. MPs in a municipal wastewater treatment plant: Fate, dynamic distribution, removal efficiencies, and control strategies. J. Cleaner Prod. 2019, 225, 579–586. [Google Scholar] [CrossRef]
- Zhang, M.; Lü, X.; Yuan, C.; He, W.; Qiu, C.; Lan, B.; Li, Y. Impact of non-aged and UV-aged MPs on the formation of halogenated disinfection byproducts during chlorination of drinking water and its mechanism. Environ. Pollut. 2024, 344, 123394. [Google Scholar] [CrossRef]
- Lin, J.; Yan, D.; Fu, J.; Chen, Y.; Ou, H. Ultraviolet-C and vacuum ultraviolet inducing surface degradation of MPs. Water Res. 2020, 186, 116360. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Y.; Zhang, G. Degradation of microplastic in water by advanced oxidation processes. Chemosphere 2024, 357, 141939. [Google Scholar] [CrossRef]
- Elkhatib, D.; Oyanedel-Craver, V.; Carissimi, E. Electrocoagulation applied for the removal of MPs from wastewater treatment facilities. Sep. Purif. Technol. 2021, 276, 118877. [Google Scholar] [CrossRef]
- Kiendrebeogo, M.; Estahbanati, M.R.K.; Mostafazadeh, A.K.; Drogui, P.; Tyagi, R.D. Treatment of MPs in water by anodic oxidation: A case study for polystyrene. Environ. Pollut. 2021, 269, 116168. [Google Scholar] [CrossRef]
- Perren, W.; Wojtasik, A.; Cai, Q. Removal of microbeads from wastewater using electrocoagulation. ACS Omega 2018, 3, 3357–3364. [Google Scholar] [CrossRef]
- Martin, L.M.A.; Sheng, J.; Zimba, P.V.; Zhu, L.; Fadare, O.O.; Haley, C.; Wang, M.; Phillips, T.D.; Conkle, J.; Xu, W. Testing an Iron Oxide Nanoparticle-Based Method for Magnetic Separation of Nanoplastics and MPs from Water. Nanomaterials 2022, 12, 2348. [Google Scholar] [CrossRef]
- Kollofrath, D.; Kuhlmann, F.; Requardt, S.; Krysiak, Y.; Polarz, S. A self-regulating shuttle for autonomous seek and destroy of MPs from wastewater. Nat. Commun. 2025, 16, 6707. [Google Scholar] [CrossRef]
- Shim, W.J.; Song, Y.K.; Hong, S.H.; Jang, M. Identification and quantification of MPs using Nile Red staining. Mar. Pollut. Bull. 2016, 113, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.B.; Rahman, M.S.; Alom, J.; Hasan, M.S.; Johir, M.A.H.; Mondal, M.I.H.; Yoon, M.H. Microplastic particles in the aquatic environment: A systematic review. Sci. Total Environ. 2021, 775, 145793. [Google Scholar] [CrossRef] [PubMed]
- Frond, H.; Rubinovitz, R.; Rochman, C.M. μATR-FTIR spectral libraries of plastic particles (FLOPP and FLOPP-e) for the analysis of MPs. Anal. Chem. 2021, 93, 15878–15885. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Han, K.; Zhang, A.; Wang, T.; Yan, Z.; Ding, Z.; Zhang, W. Honeycomb-like AgNPs@TiO2 array SERS sensor for the quantification of micro/nanoplastics in the environmental water samples. Talanta 2024, 266, 125070. [Google Scholar] [CrossRef]
- Semmouri, I.; Vercauteren, M.; Van Acker, E.; Pequeur, E.; Asselman, J.; Janssen, C. Presence of MPs in drinking water from different freshwater sources in Flanders (Belgium), an urbanized region in Europe. Int. J. Food Contam. 2022, 9, 6. [Google Scholar] [CrossRef]
- Lam, T.W.L.; Ho, H.T.; Ma, A.T.; Fok, L. Microplastic contamination of surface water-sourced tap water in Hong Kong—A preliminary study. Appl. Sci. 2020, 10, 3463. [Google Scholar] [CrossRef]
- Kannan, K.; Vimalkumar, K. A review of human exposure to MPs and insights into MPs as obesogens. Front. Endocrinol. 2021, 12, 724989. [Google Scholar] [CrossRef]
- Huang, X.; Saha, S.C.; Saha, G.; Francis, I.; Luo, Z. Transport and deposition of MPs and nanoplastics in the human respiratory tract. Environ. Adv. 2024, 16, 100525. [Google Scholar] [CrossRef]
- Rahman, A.; Sarkar, A.; Yadav, O.P.; Achari, G.; Slobodnik, J. Potential human health risks due to environmental exposure to nano- and MPs and knowledge gaps: A scoping review. Sci. Total Environ. 2021, 757, 143872. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Wu, X.; Liu, S.; Wang, Z.; Chen, L. Size-dependent effects of polystyrene MPs on cytotoxicity and efflux pump inhibition in human Caco-2 cells. Chemosphere 2019, 221, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Lee, D.K.; Jeong, J.; Yang, S.I.; Kim, J.S.; Kim, J.; Cho, W.S. The reactive oxygen species as pathogenic factors of fragmented MPs to macrophages. Environ. Pollut. 2021, 281, 117006. [Google Scholar] [CrossRef]
- Shan, S.; Zhang, Y.; Zhao, H.; Zeng, T.; Zhao, X. Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice. Chemosphere 2022, 298, 134261. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, H.; Wang, C.; Su, X.L.; Song, Y.; Wu, P.; Zheng, C. Metabolomics reveal nanoplastic-induced mitochondrial damage in human liver and lung cells. Environ. Sci. Technol. 2022, 56, 12483–12493. [Google Scholar] [CrossRef]
- Nihart, A.J.; Garcia, M.A.; El Hayek, E.; Liu, R.; Olewine, M.; Kingston, J.D.; Campen, M.J. Bioaccumulation of MPs in decedent human brains. Nat. Med. 2025, 31, 1114–1119. [Google Scholar] [CrossRef] [PubMed]
- Eker, F.; Gungunes, A.; Durmaz, S.; Kisa, U.; Celik, Z.R. Nonfunctional adrenal incidentalomas may be related to bisphenol-A. Endocrine 2021, 27, 456–461. [Google Scholar] [CrossRef]
- Deng, Y.; Yan, Z.; Shen, R.; Huang, Y.; Ren, H.; Zhang, Y. Enhanced reproductive toxicities induced by phthalates contaminated MPs in male mice (Mus musculus). J. Hazard. Mater. 2021, 406, 124644. [Google Scholar] [CrossRef]
- Wu, J.; Lu, J.; Wu, J. Effect of gastric fluid on adsorption and desorption of endocrine disrupting chemicals on MPs. Front. Environ. Sci. Eng. 2022, 16, 101–113. [Google Scholar] [CrossRef]
- Velzeboer, I.; Kwadijk, C.J.A.F.; Koelmans, A.A. Strong sorption of PCBs to nanoplastics, MPs, carbon nanotubes, and fullerenes. Environ. Sci. Technol. 2014, 48, 4869–4877. [Google Scholar] [CrossRef] [PubMed]
Sources | Detection | Polymer Type | Treatment | Removal Efficiency (%) | References |
---|---|---|---|---|---|
Czech | SEM + FTIR + Raman spectroscopy | PET, PP, and PE | Coagulation–sand filtration | 70.0 | [35] |
Czech | SEM + FTIR + Raman spectroscopy | PET, PP, and PE | Coagulation–sedimentation–sand filtration–activated carbon filtration | 81.0 | [35] |
Czech | SEM + FTIR + Raman spectroscopy | PET, PP, and PE | Coagulation–dissolved air flotation–sand filtration–activated carbon filtration | 83.0 | [35] |
China | SEM + Raman spectroscopy | PET, PE, PP, PAM, PS, and PVC | Coagulation–sedimentation–GAC filtration–sand filters–ozone tank | 88.6 | [48] |
Switzerland | Nanoparticle tracking analysis (NTA) + turbidimeter | PS | Coagulation–sedimentation–sand filtration–GAC filter | 99.2 | [49] |
China | Micro-Raman spectrometer | PP, PET, PE | Coagulation–sedimentation–sand filtration–ozonation integrated with GAC filtration–disinfection | 82.3 | [50] |
China | Micro-Raman spectrometer | PP, PET, PE | Coagulation–sedimentation–sand filtration–disinfection | 73.3 | [50] |
Iran | SEM + µ-Raman spectroscopy | PP, PET, PE, PS, PTFE, PU | Screen–coagulation–sand filtration–disinfection | 50.1 | [13] |
Iran | SEM + µ-Raman spectroscopy | PP, PET, PE, PS, PTFE, PU | Screen–coagulation–sand filtration–disinfection | 48.4 | [13] |
Iran | SEM + µ-Raman spectroscopy | PP, PET, PE, PS, PTFE, PU | Coagulation–sand filtration–disinfection | 55.2 | [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, T.; Tang, Z.; Gu, T.; Tong, K.; Wang, X.; Chen, H.; Zhou, X.; Long, Z.; Hao, C.; Chen, C.; et al. Microplastics in Drinking Water: A Review of Sources, Removal, Detection, Occurrence, and Potential Risks. Toxics 2025, 13, 782. https://doi.org/10.3390/toxics13090782
Cai T, Tang Z, Gu T, Tong K, Wang X, Chen H, Zhou X, Long Z, Hao C, Chen C, et al. Microplastics in Drinking Water: A Review of Sources, Removal, Detection, Occurrence, and Potential Risks. Toxics. 2025; 13(9):782. https://doi.org/10.3390/toxics13090782
Chicago/Turabian StyleCai, Ting, Zhihe Tang, Tao Gu, Kun Tong, Xinwei Wang, Hao Chen, Xingnan Zhou, Zi Long, Chunmei Hao, Chunmao Chen, and et al. 2025. "Microplastics in Drinking Water: A Review of Sources, Removal, Detection, Occurrence, and Potential Risks" Toxics 13, no. 9: 782. https://doi.org/10.3390/toxics13090782
APA StyleCai, T., Tang, Z., Gu, T., Tong, K., Wang, X., Chen, H., Zhou, X., Long, Z., Hao, C., Chen, C., & Zeng, R. (2025). Microplastics in Drinking Water: A Review of Sources, Removal, Detection, Occurrence, and Potential Risks. Toxics, 13(9), 782. https://doi.org/10.3390/toxics13090782