Mono(2-ethylhexyl) Phthalate Disrupts Mitochondrial Function, Dynamics and Biogenesis in Human Trophoblast Cells at Human Exposure Range Concentrations
Highlights
- MEHP dose-dependently disrupts mitochondrial homeostasis in HTR-8/Svneo cells at concentrations described in pregnant women.
- MEHP triggers adaptive mitochondrial responses at low doses and causes severe dysfunction and oxidative stress at high doses in HTR-8/SVneo cells.
- Mitochondrial disruption induced by MEHP may contribute to placental pathophysiology.
- Biomonitoring MEHP levels during pregnancy may be useful to better understand mitochondrial-related alterations in the placenta.
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture and Treatment
2.2. Chemicals and Reagents
2.3. Cell Viability Assays
2.3.1. Flow Cytometric Detection of Cell Membrane Damage (Fixable Viability Dye)
2.3.2. MTT Assay
2.4. ROS Quantification Assay
2.5. Mitochondrial Membrane Potential Determination
2.6. Mitochondrial DNA Content
2.7. RNA Isolation and RT-qPCR
2.8. Assay of SIRT1 Enzyme Activity
3. Results
3.1. MEHP Reduces Cell Viability in HTR-8/SVneo Cells
3.2. MEHP Disrupts Mitochondrial Activity and Promotes Oxidative Stress
3.3. MEHP Induces Dose-Dependent Changes in Mitochondrial Dynamics Gene Expression
3.4. MEHP Alters the Regulation of Mitochondrial Biogenesis in a Dose-Dependent Manner in HTR-8/SVneo Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calafat, A.M.; Valentin-Blasini, L.; Ye, X. Trends in Exposure to Chemicals in Personal Care and Consumer Products. Curr. Environ. Health Rep. 2015, 2, 348–355. [Google Scholar] [CrossRef]
- Schwedler, G.; Rucic, E.; Lange, R.; Conrad, A.; Koch, H.M.; Pälmke, C.; Brüning, T.; Schulz, C.; Schmied-Tobies, M.I.H.; Daniels, A.; et al. Phthalate Metabolites in Urine of Children and Adolescents in Germany. Human Biomonitoring Results of the German Environmental Survey GerES V, 2014–2017. Int. J. Hyg. Environ. Health 2020, 225, 113444. [Google Scholar] [CrossRef]
- Iannone, A.; Di Fiore, C.; Carriera, F.; Avino, P.; Stillittano, V. Phthalates: The Main Issue in Quality Control in the Beverage Industry. Separations 2024, 11, 133. [Google Scholar] [CrossRef]
- Albro, P.W.; Corbett, J.T.; Schroeder, J.L.; Jordan, S.; Matthews, H.B. Pharmacokinetics, Interactions with Macromolecules and Species Differences in Metabolism of DEHP. Environ. Health Perspect. 1982, 45, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, H.; Skakkebaek, N.E.; Andersson, A.-M. Metabolism of Phthalates in Humans. Mol. Nutr. Food Res. 2007, 51, 899–911. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ibarra, A.; Martínez-Razo, L.D.; Vázquez-Martínez, E.R.; Martínez-Cruz, N.; Flores-Ramírez, R.; García-Gómez, E.; López-López, M.; Ortega-González, C.; Camacho-Arroyo, I.; Cerbón, M. Unhealthy Levels of Phthalates and Bisphenol A in Mexican Pregnant Women with Gestational Diabetes and Its Association to Altered Expression of miRNAs Involved with Metabolic Disease. Int. J. Mol. Sci. 2019, 20, 3343. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Qi, W.; Su, Z.; Ye, H.; Zhao, H.; Cui, J.; Fang, X.; Shi, L.; Liu, X.; Wang, Z.; et al. The Associations of Urinary DEHP Metabolites in Pregnant Women with Serum Thyroid Hormone and Thyroid-Related Genes in Neonatal Umbilical Cord Blood in Jilin, China. Expo. Health 2024, 16, 1445–1458. [Google Scholar] [CrossRef]
- Becker, K.; Seiwert, M.; Angerer, J.; Heger, W.; Koch, H.M.; Nagorka, R.; Rosskamp, E.; Schlüter, C.; Seifert, B.; Ullrich, D. DEHP Metabolites in Urine of Children and DEHP in House Dust. Int. J. Hyg. Environ. Health 2004, 207, 409–417. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, X.; Ding, S.; Qi, W.; Zhang, Y.; Xu, Q.; Zhao, T.; Zhang, X.; Li, X.; Wu, F.; et al. The Associations of Urinary DEHP Metabolite Levels, Serum Thyroid Hormones, and Thyroid-Related Genes among the Adolescent Students from China: A Cross-Sectional Study. Environ. Sci. Pollut. Res. Int. 2022, 29, 19081–19097. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Hsieh, C.-J.; Lo, S.-C.; Chen, P.-C.; Torng, P.-L.; Hu, A.; Sung, F.-C.; Su, T.-C. Positive Association Between Concentration of Phthalate Metabolites in Urine and Microparticles in Adolescents and Young Adults. Environ. Int. 2016, 92, 157–164. [Google Scholar] [CrossRef]
- Ashaari, S.; Jamialahmadi, T.; Davies, N.M.; Almahmeed, W.; Sahebkar, A. Di (2-Ethyl Hexyl) Phthalate and Its Metabolite-Induced Metabolic Syndrome: A Review of Molecular Mechanisms. Drug Chem. Toxicol. 2025, 48, 325–343. [Google Scholar] [CrossRef]
- Akbariani, M.; Omidi, M.; Shahabi, Z.; Haghi-Aminjan, H.; Shadboorestan, A. The AhR Pathway Regulation in Phthalates-Induced Cancer Promotion, Progression and Metastasis: A Scoping Review. Cancer Cell Int. 2025, 25, 27. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ibarra, A.; Cerbón, M.; Martínez-Razo, L.D.; Morales-Pacheco, M.; Torre-Villalvazo, I.; Kawa, S.; Rodríguez-Dorantes, M. Impact of DEHP Exposure on Female Reproductive Health: Insights into Uterine Effects. Environ. Toxicol. Pharmacol. 2024, 107, 104391. [Google Scholar] [CrossRef]
- Martínez-Razo, L.D.; Martínez-Ibarra, A.; Vázquez-Martínez, E.R.; Cerbón, M. The Impact of Di-(2-Ethylhexyl) Phthalate and Mono(2-Ethylhexyl) Phthalate in Placental Development, Function, and Pathophysiology. Environ. Int. 2021, 146, 106228. [Google Scholar] [CrossRef]
- Friedman, A.; Welch, B.M.; Keil, A.P.; Bloom, M.S.; Braun, J.M.; Buckley, J.P.; Dabelea, D.; Factor-Litvak, P.; Meeker, J.D.; Michels, K.B.; et al. Periods of Susceptibility for Associations Between Phthalate Exposure and Preterm Birth: Results from a Pooled Analysis of 16 US Cohorts. Environ. Int. 2025, 198, 109392. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Lu, X.; Jiang, A.; Lv, Y.; Zhang, H.; Xu, B. Influence of Maternal Endocrine Disrupting Chemicals Exposure on Adverse Pregnancy Outcomes: A Systematic Review and Meta-Analysis. Ecotoxicol. Environ. Saf. 2024, 270, 115851. [Google Scholar] [CrossRef]
- Chin, H.B.; Jukic, A.M.; Wilcox, A.J.; Weinberg, C.R.; Ferguson, K.K.; Calafat, A.M.; McConnaughey, D.R.; Baird, D.D. Association of Urinary Concentrations of Early Pregnancy Phthalate Metabolites and Bisphenol A with Length of Gestation. Environ. Health 2019, 18, 80. [Google Scholar] [CrossRef]
- Cantonwine, D.E.; Meeker, J.D.; Ferguson, K.K.; Mukherjee, B.; Hauser, R.; McElrath, T.F. Urinary Concentrations of Bisphenol A and Phthalate Metabolites Measured During Pregnancy and Risk of Preeclampsia. Environ. Health Perspect. 2016, 124, 1651–1655. [Google Scholar] [CrossRef]
- Tetz, L.M.; Cheng, A.A.; Korte, C.S.; Giese, R.W.; Wang, P.; Harris, C.; Meeker, J.D.; Loch-Caruso, R. Mono-2-Ethylhexyl Phthalate Induces Oxidative Stress Responses in Human Placental Cells in Vitro. Toxicol. Appl. Pharmacol. 2013, 268, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Meruvu, S.; Zhang, J.; Bedi, Y.S.; Choudhury, M. Mono-(2-Ethylhexyl) Phthalate Induces Apoptosis Through miR-16 in Human First Trimester Placental Cell Line HTR-8/SVneo. Toxicol. Vitr. 2016, 31, 35–42. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, Z.; Chen, J.; Zhou, M.; Chen, Y.; Cao, R.; Liu, C.; Zhao, K.; Wang, M.; Zhang, H. Dose-Response Mapping of MEHP Exposure with Metabolic Changes of Trophoblast Cell and Determination of Sensitive Markers. Sci. Total Environ. 2023, 855, 158924. [Google Scholar] [CrossRef]
- Lapehn, S.; Houghtaling, S.; Ahuna, K.; Kadam, L.; MacDonald, J.W.; Bammler, T.K.; LeWinn, K.Z.; Myatt, L.; Sathyanarayana, S.; Paquette, A.G. Mono(2-Ethylhexyl) Phthalate Induces Transcriptomic Changes in Placental Cells Based on Concentration, Fetal Sex, and Trophoblast Cell Type. Arch. Toxicol. 2023, 97, 831–847. [Google Scholar] [CrossRef] [PubMed]
- Kolahi, K.S.; Valent, A.M.; Thornburg, K.L. Cytotrophoblast, Not Syncytiotrophoblast, Dominates Glycolysis and Oxidative Phosphorylation in Human Term Placenta. Sci. Rep. 2017, 7, 42941. [Google Scholar] [CrossRef]
- Sanchez-Aranguren, L.; Nadeem, S. Bioenergetics Adaptations and Redox Homeostasis in Pregnancy and Related Disorders. Mol. Cell. Biochem. 2021, 476, 4003–4018. [Google Scholar] [CrossRef]
- Yu, J.; Duan, Y.; Lu, Q.; Chen, M.; Ning, F.; Ye, Y.; Lu, S.; Ou, D.; Sha, X.; Gan, X.; et al. Cytochrome c Oxidase IV Isoform 1 (COX4-1) Regulates the Proliferation, Migration and Invasion of Trophoblast Cells via Modulating Mitochondrial Function. Placenta 2024, 151, 48–58. [Google Scholar] [CrossRef]
- Wei, L.; Fang, C.; Jiang, Y.; Zhang, H.; Gao, P.; Zhou, X.; Zhu, S.; Du, Y.; Su, R.; Guo, L.; et al. The Role of Placental MFF-Mediated Mitochondrial Fission in Gestational Diabetes Mellitus. Diabetes Metab. Syndr. Obes. 2025, 18, 541–554. [Google Scholar] [CrossRef]
- Kobayashi, H.; Matsubara, S.; Yoshimoto, C.; Shigetomi, H.; Imanaka, S. Current Understanding of the Pathogenesis of Placenta Accreta Spectrum Disorder with Focus on Mitochondrial Function. J. Obstet. Gynaecol. Res. 2024, 50, 929–940. [Google Scholar] [CrossRef]
- Long, J.; Huang, Y.; Wang, G.; Tang, Z.; Shan, Y.; Shen, S.; Ni, X. Mitochondrial ROS Accumulation Contributes to Maternal Hypertension and Impaired Remodeling of Spiral Artery but Not IUGR in a Rat PE Model Caused by Maternal Glucocorticoid Exposure. Antioxidants 2023, 12, 987. [Google Scholar] [CrossRef]
- Meruvu, S.; Ding, Z.; Choudhury, M. Mono-(2-Ethylhexyl) Phthalate Induces Trophoblast Hypoxia and Mitochondrial Dysfunction Through HIF-1α-miR-210-3p Axis in HTR-8/SVneo Cell Line. Curr. Res. Toxicol. 2024, 7, 100188. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.-W.; Snyder, N.; Wang, J.; Xun, X.; Yin, Q.; LeWinn, K.; Carroll, K.N.; Bush, N.R.; Kannan, K.; Barrett, E.S.; et al. A Study on the Association of Placental and Maternal Urinary Phthalate Metabolites. J. Expo. Sci. Environ. Epidemiol. 2023, 33, 264–272. [Google Scholar] [CrossRef] [PubMed]
- MacDonald-Ramos, K.; Arenas-Hernandez, M.; Mancilla-Herrera, I.; Rangel-Escareño, C.; Vega-Sanchez, R. A Trypsin-Based Method for Isolating Leukocytes from Human Choriodecidua Suitable for Immunophenotyping and Transcriptome Studies. Immunobiology 2019, 224, 177–181. [Google Scholar] [CrossRef]
- Sorroza-Martínez, K.; González-Sánchez, I.; Villamil-Ramos, R.; Cerbón, M.; Guerrero-Álvarez, J.A.; Coronel-Cruz, C.; Rivera, E.; González-Méndez, I. Using Poly(amidoamine) PAMAM-βCD Dendrimer for Controlled and Prolonged Delivery of Doxorubicin as Alternative System for Cancer Treatment. Pharmaceutics 2024, 16, 1509. [Google Scholar] [CrossRef] [PubMed]
- Rivero-Segura, N.A.; Coronado-Mares, M.I.; Rincón-Heredia, R.; Pérez-Torres, I.; Montiel, T.; Pavón, N.; Cabrera-Reyes, E.A.; Massieu, L.; Cerbón, M. Prolactin Prevents Mitochondrial Dysfunction Induced by Glutamate Excitotoxicity in Hippocampal Neurons. Neurosci. Lett. 2019, 701, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhu, S.; Han, W.; Cai, Y.; Liu, C. DMEP Induces Mitochondrial Damage Regulated by Inhibiting Nrf2 and SIRT1/PGC-1α Signaling Pathways in HepG2 Cells. Ecotoxicol. Environ. Saf. 2021, 221, 112449. [Google Scholar] [CrossRef]
- Hofmann, A.; Mishra, J.S.; Yadav, P.; Dangudubiyyam, S.V.; Blesson, C.S.; Kumar, S. PFOS Impairs Mitochondrial Biogenesis and Dynamics and Reduces Oxygen Consumption in Human Trophoblasts. J. Environ. Sci. Public Health 2023, 7, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.; Colman, L.; Contreras, P.; Chini, C.C.; Carlomagno, A.; Leyva, A.; Bresque, M.; Marmisolle, I.; Quijano, C.; Durán, R.; et al. A Novel Form of Deleted in Breast Cancer 1 (DBC1) Lacking the N-Terminal Domain Does Not Bind SIRT1 and Is Dynamically Regulated In Vivo. Sci. Rep. 2019, 9, 14381. [Google Scholar] [CrossRef]
- Dhande, S.R.; Patil, V.R. In Vitro MTT Assay to Evaluate Mitochondrial Dysfunction in Rat Brain Synaptosomes. Res. J. Pharm. Technol. 2024, 17, 3543–3545. [Google Scholar] [CrossRef]
- Pearce, R.G.; Woodrow Setzer, R.; Strope, C.L.; Sipes, N.S.; Wambaugh, J.F. Httk: R Package for High-Throughput Toxicokinetics. J. Stat. Soft. 2017, 79, 1–26. [Google Scholar] [CrossRef]
- Yapa, N.M.B.; Lisnyak, V.; Reljic, B.; Ryan, M.T. Mitochondrial Dynamics in Health and Disease. FEBS Lett. 2021, 595, 1184–1204. [Google Scholar] [CrossRef]
- Adebayo, M.; Singh, S.; Singh, A.P.; Dasgupta, S. Mitochondrial Fusion and Fission: The Fine-Tune Balance for Cellular Homeostasis. FASEB J. 2021, 35, e21620. [Google Scholar] [CrossRef]
- Zerihun, M.; Sukumaran, S.; Qvit, N. The Drp1-Mediated Mitochondrial Fission Protein Interactome as an Emerging Core Player in Mitochondrial Dynamics and Cardiovascular Disease Therapy. Int. J. Mol. Sci. 2023, 24, 5785. [Google Scholar] [CrossRef]
- Nag, S.; Szederkenyi, K.; Gorbenko, O.; Tyrrell, H.; Yip, C.M.; McQuibban, G.A. PGAM5 Is an MFN2 Phosphatase That Plays an Essential Role in the Regulation of Mitochondrial Dynamics. Cell Rep. 2023, 42, 112895. [Google Scholar] [CrossRef]
- Valera-Alberni, M.; Joffraud, M.; Miro-Blanch, J.; Capellades, J.; Junza, A.; Dayon, L.; Núñez Galindo, A.; Sanchez-Garcia, J.L.; Valsesia, A.; Cercillieux, A.; et al. Crosstalk Between Drp1 Phosphorylation Sites During Mitochondrial Remodeling and Their Impact on Metabolic Adaptation. Cell Rep. 2021, 36, 109565. [Google Scholar] [CrossRef] [PubMed]
- Di Pietro, V.; Lazzarino, G.; Amorini, A.M.; Signoretti, S.; Hill, L.J.; Porto, E.; Tavazzi, B.; Lazzarino, G.; Belli, A. Fusion or Fission: The Destiny of Mitochondria in Traumatic Brain Injury of Different Severities. Sci. Rep. 2017, 7, 9189. [Google Scholar] [CrossRef]
- Zamponi, N.; Zamponi, E.; Cannas, S.A.; Billoni, O.V.; Helguera, P.R.; Chialvo, D.R. Mitochondrial Network Complexity Emerges from Fission/Fusion Dynamics. Sci. Rep. 2018, 8, 363. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, Y.; Chen, G.; Chen, Q. Crosstalk Between Mitochondrial Biogenesis and Mitophagy to Maintain Mitochondrial Homeostasis. J. Biomed. Sci. 2023, 30, 86. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Zhang, L.; Liu, Q.; Peng, H.; He, J.; Jin, H.; Su, X.; Zhao, J.; Guo, J. NRF2/PGC-1α-Mediated Mitochondrial Biogenesis Contributes to T-2 Toxin-Induced Toxicity in Human Neuroblastoma SH-SY5Y Cells. Toxicol. Appl. Pharmacol. 2022, 451, 116167. [Google Scholar] [CrossRef]
- Gureev, A.P.; Shaforostova, E.A.; Popov, V.N. Regulation of Mitochondrial Biogenesis as a Way for Active Longevity: Interaction Between the Nrf2 and PGC-1α Signaling Pathways. Front. Genet. 2019, 10, 435. [Google Scholar] [CrossRef]
- Gaetani, S.; Galzignati, L.; Marcati, M.; Durazzi, P.; Cianella, A.; Mocheggiani, V.; Monaco, F.; Bracci, M.; Neuzil, J.; Tomasetti, M.; et al. Mitochondrial Function as Related to Psychological Distress in Health Care Professionals. Psychosom. Med. 2022, 84, 40–49. [Google Scholar] [CrossRef]
- Pieters, N.; Koppen, G.; Smeets, K.; Napierska, D.; Plusquin, M.; De Prins, S.; Van De Weghe, H.; Nelen, V.; Cox, B.; Cuypers, A.; et al. Decreased Mitochondrial DNA Content in Association with Exposure to Polycyclic Aromatic Hydrocarbons in House Dust During Wintertime: From a Population Enquiry to Cell Culture. PLoS ONE 2013, 8, e63208. [Google Scholar] [CrossRef]
- Tang, B.L. Sirt1 and the Mitochondria. Mol. Cells 2016, 39, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.Y.; Kim, S.G.; Kang, Y.J.; Park, S.-Y.; Choi, H.C. SIRT1-Dependent PGC-1α Deacetylation by SRT1720 Rescues Progression of Atherosclerosis by Enhancing Mitochondrial Function. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2024, 1869, 159453. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Razo, L.D.; Rivero-Segura, N.A.; Almeida-Aguirre, E.K.P.; Mancilla-Herrera, I.; Rincón-Heredia, R.; Martínez-Ibarra, A.; Cerbón, M. Mono(2-ethylhexyl) Phthalate Disrupts Mitochondrial Function, Dynamics and Biogenesis in Human Trophoblast Cells at Human Exposure Range Concentrations. Toxics 2025, 13, 770. https://doi.org/10.3390/toxics13090770
Martínez-Razo LD, Rivero-Segura NA, Almeida-Aguirre EKP, Mancilla-Herrera I, Rincón-Heredia R, Martínez-Ibarra A, Cerbón M. Mono(2-ethylhexyl) Phthalate Disrupts Mitochondrial Function, Dynamics and Biogenesis in Human Trophoblast Cells at Human Exposure Range Concentrations. Toxics. 2025; 13(9):770. https://doi.org/10.3390/toxics13090770
Chicago/Turabian StyleMartínez-Razo, Luis Daniel, Nadia Alejandra Rivero-Segura, Ericka Karol Pamela Almeida-Aguirre, Ismael Mancilla-Herrera, Ruth Rincón-Heredia, Alejandra Martínez-Ibarra, and Marco Cerbón. 2025. "Mono(2-ethylhexyl) Phthalate Disrupts Mitochondrial Function, Dynamics and Biogenesis in Human Trophoblast Cells at Human Exposure Range Concentrations" Toxics 13, no. 9: 770. https://doi.org/10.3390/toxics13090770
APA StyleMartínez-Razo, L. D., Rivero-Segura, N. A., Almeida-Aguirre, E. K. P., Mancilla-Herrera, I., Rincón-Heredia, R., Martínez-Ibarra, A., & Cerbón, M. (2025). Mono(2-ethylhexyl) Phthalate Disrupts Mitochondrial Function, Dynamics and Biogenesis in Human Trophoblast Cells at Human Exposure Range Concentrations. Toxics, 13(9), 770. https://doi.org/10.3390/toxics13090770