The Role of Danio rerio in Understanding Pollutant-Induced Gut Microbiome Dysbiosis in Aquatic Ecosystems
Abstract
1. Introduction
2. Zebrafish and Gut Microbiome
2.1. Danio rerio as a Model for Gut Microbiota Study
2.2. Pesticides and Gut Microbiota
2.3. Medicines and Gut Microbiota
2.3.1. Antibiotics
2.3.2. Hormones and Antidepressants
2.4. Heavy Metals
2.4.1. Lead (Pb)
2.4.2. Cadmium (Cd)
2.4.3. Arsenic (As)
2.4.4. Chromium (Cr)
2.4.5. Metal Nanoparticles
2.4.6. Dyes
2.4.7. Microplastics
3. Taxa Associated with Gut Dysbiosis in Zebrafish
4. Discussion
4.1. Role and Functions of Altered Phyla and Genera in Gut Microbiome of Zebrafish
4.2. Gut Microbiome Response of Zebrafish to Contaminant Exposure
4.3. Differences in Microbiome Alterations in Adult and Larvae Zebrafish
5. Conclusions
6. Methods
Data Collection
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mukhopadhya, I.; Louis, P. Gut Microbiota-Derived Short-Chain Fatty Acids and Their Role in Human Health and Disease. Nat. Rev. Microbiol 2025, 23, 635–651. [Google Scholar] [CrossRef]
- Gut Microbiota in Human Metabolic Health and Disease|Nature Reviews Microbiology. Available online: https://www.nature.com/articles/s41579-020-0433-9 (accessed on 19 May 2025).
- Role of Intestinal Microbiota and Metabolites on Gut Homeostasis and Human Diseases|BMC Immunology. Available online: https://bmcimmunol.biomedcentral.com/articles/10.1186/s12865-016-0187-3 (accessed on 19 May 2025).
- The Gut Microbiota–Brain Axis in Behaviour and Brain Disorders|Nature Reviews Microbiology. Available online: https://www.nature.com/articles/s41579-020-00460-0 (accessed on 19 May 2025).
- Frontiers|Recent Insights of Obesity-Induced Gut and Adipose Tissue Dysbiosis in Type 2 Diabetes. Available online: https://www.frontiersin.org/journals/molecular-biosciences/articles/10.3389/fmolb.2023.1224982/full (accessed on 19 May 2025).
- Frontiers|Gut Dysbiosis in Nonalcoholic Fatty Liver Disease: Pathogenesis, Diagnosis, and Therapeutic Implications. Available online: https://www.frontiersin.org/journals/cellular-and-infection-microbiology/articles/10.3389/fcimb.2022.997018/full (accessed on 19 May 2025).
- Persistent Dysbiosis of Duodenal Microbiota in Patients with Controlled Pediatric Crohn’s Disease After Resolution of Inflammation|Scientific Reports. Available online: https://www.nature.com/articles/s41598-024-63299-y (accessed on 19 May 2025).
- Frontiers|Insight into Gut Dysbiosis of Patients with Inflammatory Bowel Disease and Ischemic Colitis. Available online: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1174832/full (accessed on 19 May 2025).
- Dysbiosis of Human Gut Microbiome in Young-Onset Colorectal Cancer|Nature Communications. Available online: https://www.nature.com/articles/s41467-021-27112-y (accessed on 19 May 2025).
- Microbial Dysbiosis Tunes the Immune Response Towards Allergic Disease Outcomes|Clinical Reviews in Allergy & Immunology. Available online: https://link.springer.com/article/10.1007/s12016-022-08939-9 (accessed on 19 May 2025).
- Ahmed, H.; Leyrolle, Q.; Koistinen, V.; Kärkkäinen, O.; Layé, S.; Delzenne, N.; Hanhineva, K. Microbiota-Derived Metabolites as Drivers of Gut–Brain Communication. Gut Microbes 2022, 14, 2102878. [Google Scholar] [CrossRef] [PubMed]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of Aging: An Expanding Universe. Cell 2023, 186, 243–278. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Kokushi, E.; Koyama, J.; Uno, S.; Ghosh, A.R. Histopathological Alterations in Gill, Liver and Kidney of Common Carp Exposed to Chlorpyrifos. J. Environ. Sci. Health Part B 2012, 47, 180–195. [Google Scholar] [CrossRef] [PubMed]
- Alrudainy, A.J. Toxic Effects of Mercuric Chloride on DNA Damage, Hematological Parameters and Histopathological Changes in Common (Carp Cyprinuscarpio). Iraqi J. Vet. Med. 2014, 38, 87–94. [Google Scholar] [CrossRef]
- Al-Rudainy, A.J. Effects of Sub-Lethal Exposure to Lead Acetate on Haematological Indices and Growth Rate of Bunni Mesopotamichthys Sharpeyi. Available online: https://researcherslinks.com/table_contents_detail/Advances-in-Animal-and-Veterinary-Sciences/33/559/html (accessed on 27 May 2025).
- Lee, H.; An, G.; Park, J.; You, J.; Song, G.; Lim, W. Mevinphos Induces Developmental Defects via Inflammation, Apoptosis, and Altered MAPK and Akt Signaling Pathways in Zebrafish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2024, 275, 109768. [Google Scholar] [CrossRef]
- Liu, Y.; Huo, W.B.; Deng, J.Y.; Tang, Q.P.; Wang, J.X.; Liao, Y.L.; Gou, D.; Pei, D.S. Neurotoxicity and the Potential Molecular Mechanisms of Mono-2-Ethylhexyl Phthalic Acid (MEHP) in Zebrafish. Ecotoxicol. Environ. Saf. 2023, 265, 115516. [Google Scholar] [CrossRef]
- Knutie, S.A.; Gabor, C.R.; Kohl, K.D.; Rohr, J.R. Do Host-Associated Gut Microbiota Mediate the Effect of an Herbicide on Disease Risk in Frogs? J. Anim. Ecol. 2018, 87, 489–499. [Google Scholar] [CrossRef]
- Kohl, K.D.; Cary, T.L.; Karasov, W.H.; Dearing, M.D. Larval Exposure to Polychlorinated Biphenyl 126 (PCB-126) Causes Persistent Alteration of the Amphibian Gut Microbiota. Environ. Toxicol. Chem. 2015, 34, 1113–1118. [Google Scholar] [CrossRef]
- Kan, H.; Zhao, F.; Zhang, X.-X.; Ren, H.; Gao, S. Correlations of Gut Microbial Community Shift with Hepatic Damage and Growth Inhibition of Carassius Auratus Induced by Pentachlorophenol Exposure. Environ. Sci. Technol. 2015, 49, 11894–11902. [Google Scholar] [CrossRef]
- Meng, X.-L.; Li, S.; Qin, C.-B.; Zhu, Z.-X.; Hu, W.-P.; Yang, L.-P.; Lu, R.-H.; Li, W.-J.; Nie, G.-X. Intestinal Microbiota and Lipid Metabolism Responses in the Common Carp (Cyprinus carpio L.) Following Copper Exposure. Ecotoxicol. Environ. Saf. 2018, 160, 257–264. [Google Scholar] [CrossRef]
- Narrowe, A.B.; Albuthi-Lantz, M.; Smith, E.P.; Bower, K.J.; Roane, T.M.; Vajda, A.M.; Miller, C.S. Perturbation and Restoration of the Fathead Minnow Gut Microbiome after Low-Level Triclosan Exposure. Microbiome 2015, 3, 6. [Google Scholar] [CrossRef] [PubMed]
- Carlson, J.M.; Leonard, A.B.; Hyde, E.R.; Petrosino, J.F.; Primm, T.P. Microbiome Disruption and Recovery in the Fish Gambusia Affinis Following Exposure to Broad-Spectrum Antibiotic. Infect. Drug Resist. 2017, 10, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Wu, S.; Zeng, Z.; Fu, Z. Effects of Environmental Pollutants on Gut Microbiota. Environ. Pollut. 2017, 222, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Pérez, T.; Balcázar, J.L.; Ruiz-Zarzuela, I.; Halaihel, N.; Vendrell, D.; de Blas, I.; Múzquiz, J.L. Host–Microbiota Interactions within the Fish Intestinal Ecosystem. Mucosal Immunol. 2010, 3, 355–360. [Google Scholar] [CrossRef]
- Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; et al. The Zebrafish Reference Genome Sequence and Its Relationship to the Human Genome. Nature 2013, 496, 498–503. [Google Scholar] [CrossRef]
- Brugman, S. The Zebrafish as a Model to Study Intestinal Inflammation. Dev. Comp. Immunol. 2016, 64, 82–92. [Google Scholar] [CrossRef]
- Oehlers, S.H.; Flores, M.V.; Chen, T.; Hall, C.J.; Crosier, K.E.; Crosier, P.S. Topographical Distribution of Antimicrobial Genes in the Zebrafish Intestine. Dev. Comp. Immunol. 2011, 35, 385–391. [Google Scholar] [CrossRef]
- Laterza, L.; Rizzatti, G.; Gaetani, E.; Chiusolo, P.; Gasbarrini, A. The Gut Microbiota and Immune System Relationship in Human Graft-versus-Host Disease. Mediterr. J. Hematol. Infect. Dis. 2016, 8, e2016025. [Google Scholar] [CrossRef]
- Flores, E.M.; Nguyen, A.T.; Odem, M.A.; Eisenhoffer, G.T.; Krachler, A.M. The Zebrafish as a Model for Gastrointestinal Tract–Microbe Interactions. Cell. Microbiol. 2020, 22, e13152. [Google Scholar] [CrossRef]
- Zebrafish: An Efficient Vertebrate Model for Understanding Role of Gut Microbiota|Molecular Medicine. Available online: https://molmed.biomedcentral.com/articles/10.1186/s10020-022-00579-1 (accessed on 27 May 2025).
- Xu, Y.; Yu, Y.; Zhou, Q.; Xiang, Y.; Chen, L.; Meng, Y.; She, X.; Zou, F.; Meng, X. Disturbance of Gut Microbiota Aggravates Cadmium-Induced Neurotoxicity in Zebrafish Larvae through V-ATPase. Sci. Total Environ. 2023, 891, 164074. [Google Scholar] [CrossRef]
- Navarro, I.; de la Torre, A.; Sanz, P.; Abrantes, N.; Campos, I.; Alaoui, A.; Christ, F.; Alcon, F.; Contreras, J.; Glavan, M.; et al. Assessing Pesticide Residues Occurrence and Risks in Water Systems: A Pan-European and Argentina Perspective. Water Res. 2024, 254, 121419. [Google Scholar] [CrossRef] [PubMed]
- Nikanorov, A.M.; Stradomskaya, A.G. Chronic Pollution of Freshwater Bodies: Data on Accumulation of Pesticides, Oil Products, and Other Toxic Substances in Bottom Deposits. Water Resour. 2007, 34, 314–320. [Google Scholar] [CrossRef]
- Zambito Marsala, R.; Capri, E.; Russo, E.; Bisagni, M.; Colla, R.; Lucini, L.; Gallo, A.; Suciu, N.A. First Evaluation of Pesticides Occurrence in Groundwater of Tidone Valley, an Area with Intensive Viticulture. Sci. Total Environ. 2020, 736, 139730. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Rawat, M.; Malyan, S.K.; Singh, R.; Tyagi, V.K.; Singh, K.; Kashyap, S.; Kumar, S.; Sharma, M.; Panday, B.K.; et al. Global Distribution of Pesticides in Freshwater Resources and Their Remediation Approaches. Environ. Res. 2023, 225, 115605. [Google Scholar] [CrossRef]
- Lima, C.; Falcão, M.A.P.; Rosa, J.G.S.; Disner, G.R.; Lopes-Ferreira, M. Pesticides and Their Impairing Effects on Epithelial Barrier Integrity, Dysbiosis, Disruption of the AhR Signaling Pathway and Development of Immune-Mediated Inflammatory Diseases. Int. J. Mol. Sci. 2022, 23, 12402. [Google Scholar] [CrossRef]
- Das, S.; Parida, V.K.; Tiwary, C.S.; Gupta, A.K.; Chowdhury, S. Emerging Contaminants in the Aquatic Environment: Fate, Occurrence, Impacts, and Toxicity. In Bioremediation of Emerging Contaminants in Water. Volume 1; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2024; Volume 1475, pp. 1–32. [Google Scholar]
- Rohani, M.F. Pesticides Toxicity in Fish: Histopathological and Hemato-Biochemical Aspects—A Review. Emerg. Contam. 2023, 9, 100234. [Google Scholar] [CrossRef]
- Saha, R.; Dutta, S.M. Pesticides’ Mode of Action on Aquatic Life. Toxicol. Rep. 2024, 13, 101780. [Google Scholar] [CrossRef]
- Li, M.; Chen, X.; Song, C.; Fan, L.; Qiu, L.; Li, D.; Xu, H.; Meng, S.; Mu, X.; Xia, B.; et al. Sub-Chronically Exposing Zebrafish to Environmental Levels of Methomyl Induces Dysbiosis and Dysfunction of the Gut Microbiota. Environ. Res. 2024, 261, 119674. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, H.; Liang, H.; Zhao, T.; Ren, B.; Li, Y.; Liang, H.; Liu, Y.; Cao, H.; Cui, N.; et al. Combined Toxic Effects of Polyethylene Microplastics and Lambda-Cyhalothrin on Gut of Zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2024, 276, 116296. [Google Scholar] [CrossRef]
- Sun, X.; Tian, S.; Yan, S.; Sun, W.; Miao, J.; Yue, Y.; Han, S.; Huang, S.; Xu, N.; Diao, J.; et al. Bifidobacterium Mediate Gut Microbiota-Remedied Intestinal Barrier Damage Caused by Cyproconazole in Zebrafish (Danio rerio). Sci. Total Environ. 2024, 912, 169556. [Google Scholar] [CrossRef] [PubMed]
- Hua, Q.; Adamovsky, O.; Vespalcova, H.; Boyda, J.; Schmidt, J.T.; Kozuch, M.; Craft, S.L.M.; Ginn, P.E.; Smatana, S.; Budinska, E.; et al. Microbiome Analysis and Predicted Relative Metabolomic Turnover Suggest Bacterial Heme and Selenium Metabolism Are Altered in the Gastrointestinal System of Zebrafish (Danio rerio) Exposed to the Organochlorine Dieldrin. Environ. Pollut. 2021, 268, 115715. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ma, C.; Wei, W.; Wang, Y.; Cao, H.; Cui, N.; Liu, Y.; Liang, H. Effects of Single and Combined Exposure of Virgin or Aged Polyethylene Microplastics and Penthiopyrad on Zebrafish (Danio rerio). Sci. Total Environ. 2024, 921, 171160. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, Y.; Liang, H.; Ma, C.; Cui, N.; Cao, H.; Wei, W.; Liu, Y. Single and Combined Effects of Polyethylene Microplastics and Acetochlor on Accumulation and Intestinal Toxicity of Zebrafish (Danio rerio). Environ. Pollut. 2023, 333, 122089. [Google Scholar] [CrossRef]
- Huang, Y.; Hong, Y.; Wu, S.; Yang, X.; Huang, Q.; Dong, Y.; Xu, D.; Huang, Z. Prolonged Darkness Attenuates Imidacloprid Toxicity through the Brain-Gut-Microbiome Axis in Zebrafish, Danio rerio. Sci. Total Environ. 2023, 881, 163481. [Google Scholar] [CrossRef]
- Zhao, F.; Guo, M.; Zhang, M.; Duan, M.; Zheng, J.; Liu, Y.; Qiu, L. Sub-Lethal Concentration of Metamifop Exposure Impair Gut Health of Zebrafish (Danio Rerio). Chemosphere 2022, 303, 135081. [Google Scholar] [CrossRef]
- Luo, T.; Wang, X.; Jin, Y. Low Concentrations of Imidacloprid Exposure Induced Gut Toxicity in Adult Zebrafish (Danio rerio). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 241, 108972. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, L.; Wu, S.; Lv, L.; Liu, X.; Wang, Q.; Zhao, X. Effects of Difenoconazole on Hepatotoxicity, Lipid Metabolism and Gut Microbiota in Zebrafish (Danio rerio). Environ. Pollut. 2020, 265, 114844. [Google Scholar] [CrossRef]
- Jin, C.; Luo, T.; Zhu, Z.; Pan, Z.; Yang, J.; Wang, W.; Fu, Z.; Jin, Y. Imazalil Exposure Induces Gut Microbiota Dysbiosis and Hepatic Metabolism Disorder in Zebrafish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2017, 202, 85–93. [Google Scholar] [CrossRef]
- Fang, C.; Zhu, J.; Xu, H.; Qian, M.; Jin, Y. Polystyrene Microplastics and Cypermethrin Exposure Interfered the Complexity of Antibiotic Resistance Genes and Induced Metabolic Dysfunction in the Gut of Adult Zebrafish. Environ. Pollut. 2025, 374, 126288. [Google Scholar] [CrossRef]
- Bhatt, P.; Huang, Y.; Zhan, H.; Chen, S. Insight Into Microbial Applications for the Biodegradation of Pyrethroid Insecticides. Front. Microbiol. 2019, 10, 1778. [Google Scholar] [CrossRef] [PubMed]
- Figliuolo, V.R.; Coutinho-Silva, R.; Coutinho, C.M.L.M. Contribution of Sulfate-Reducing Bacteria to Homeostasis Disruption during Intestinal Inflammation. Life Sci. 2018, 215, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, B.R.; Roberts, B.R.; Bush, A.I.; Hare, D.J. Selenium, Selenoproteins and Neurodegenerative Diseases. Metallomics 2015, 7, 1213–1228. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Wang, Y.; Hou, Y.; Zhou, M. Activity of the Succinate Dehydrogenase Inhibitor Fungicide Penthiopyrad Against Sclerotinia Sclerotiorum. Plant Dis. 2020, 104, 2696–2703. [Google Scholar] [CrossRef]
- Yang, G.; Yuan, X.; Jin, C.; Wang, D.; Wang, Y.; Miao, W.; Jin, Y. Imidacloprid Disturbed the Gut Barrier Function and Interfered with Bile Acids Metabolism in Mice. Environ. Pollut. 2020, 266, 115290. [Google Scholar] [CrossRef]
- Sun, Y.-Z.; Yang, H.-L.; Ma, R.-L.; Zhang, C.-X.; Lin, W.-Y. Effect of Dietary Administration of Psychrobacter Sp. on the Growth, Feed Utilization, Digestive Enzymes and Immune Responses of Grouper Epinephelus coioides. Aquac. Nutr. 2011, 17, e733–e740. [Google Scholar] [CrossRef]
- Ray, A.K.; Ghosh, K.; Ringø, E. Enzyme-Producing Bacteria Isolated from Fish Gut: A Review. Aquac. Nutr. 2012, 18, 465–492. [Google Scholar] [CrossRef]
- Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic Pollution in the Environment: From Microbial Ecology to Public Policy. Microorganisms 2019, 7, 180. [Google Scholar] [CrossRef]
- Gomes, M.P. The Convergence of Antibiotic Contamination, Resistance, and Climate Dynamics in Freshwater Ecosystems. Water 2024, 16, 2606. [Google Scholar] [CrossRef]
- Yang, J.H.; Park, J.W.; Kim, H.S.; Lee, S.; Yerke, A.M.; Jaiswal, Y.S.; Williams, L.L.; Hwang, S.; Moon, K.H. Effects of Antibiotic Residues on Fish Gut Microbiome Dysbiosis and Mucosal Barrier-Related Pathogen Susceptibility in Zebrafish Experimental Model. Antibiotics 2024, 13, 82. [Google Scholar] [CrossRef]
- Burgos, F.A.; Cai, W.; Arias, C.R. Gut Dysbiosis Induced by Florfenicol Increases Susceptibility to Aeromonas Hydrophila Infection in Zebrafish Danio Rerio after the Recommended Withdrawal Period. J. Aquat. Anim. Health 2024, 36, 113–127. [Google Scholar] [CrossRef]
- Yun, X.; Zhou, J.; Wang, J.; Li, Q.; Wang, Y.; Zhang, W.; Fan, Z. Biological Toxicity Effects of Florfenicol on Antioxidant, Immunity and Intestinal Flora of Zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2023, 265, 115520. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, L.; Huang, Q.; Dong, S.; Wang, X.; Yan, C. Combined Effects of Micro-/Nano-Plastics and Oxytetracycline on the Intestinal Histopathology and Microbiome in Zebrafish (Danio rerio). Sci. Total Environ. 2022, 843, 156917. [Google Scholar] [CrossRef]
- Qiu, W.; Liu, T.; Liu, X.; Chen, H.; Luo, S.; Chen, Q.; Magnuson, J.T.; Zheng, C.; Xu, E.G.; Schlenk, D. Enrofloxacin Induces Intestinal Microbiota-Mediated Immunosuppression in Zebrafish. Environ. Sci. Technol. 2022, 56, 8428–8437. [Google Scholar] [CrossRef]
- Qian, M.; Wang, J.; Ji, X.; Yang, H.; Tang, B.; Zhang, H.; Yang, G.; Bao, Z.; Jin, Y. Sub-Chronic Exposure to Antibiotics Doxycycline, Oxytetracycline or Florfenicol Impacts Gut Barrier and Induces Gut Microbiota Dysbiosis in Adult Zebrafish (Danio Rerio). Ecotoxicol. Environ. Saf. 2021, 221, 112464. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Qiu, Y.; Shen, Y.; Gao, C.; Feng, R.; Zeng, X.; Wang, W.; Chen, L.; Su, H.L. Environmental Concentrations of Antibiotics Alter the Zebrafish Gut Microbiome Structure and Potential Functions. Environ. Pollut. 2021, 278, 116760. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.R.; Alves, M.; Domingues, I.; Henriques, I. The Impact of Antibiotic Exposure in Water and Zebrafish Gut Microbiomes: A 16S rRNA Gene-Based Metagenomic Analysis. Ecotoxicol. Environ. Saf. 2019, 186, 109771. [Google Scholar] [CrossRef] [PubMed]
- Pindling, S.; Azulai, D.; Zheng, B.; Dahan, D.; Perron, G.G. Dysbiosis and Early Mortality in Zebrafish Larvae Exposed to Subclinical Concentrations of Streptomycin. FEMS Microbiol. Lett. 2018, 365, fny188. [Google Scholar] [CrossRef]
- Keerthisinghe, T.P.; Wang, F.; Wang, M.; Yang, Q.; Li, J.; Yang, J.; Xi, L.; Dong, W.; Fang, M. Long-Term Exposure to TET Increases Body Weight of Juvenile Zebrafish as Indicated in Host Metabolism and Gut Microbiome. Environ. Int. 2020, 139, 105705. [Google Scholar] [CrossRef]
- Pereiro, P.; Rey-Campos, M.; Figueras, A.; Novoa, B. An Environmentally Relevant Concentration of Antibiotics Impairs the Immune System of Zebrafish (Danio Rerio) and Increases Susceptibility to Virus Infection. Front. Immunol. 2023, 13, 1100092. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, C.; Wu, X.; Han, Z.; Zhang, S.; Chen, K.; Qiu, X. Exposure to Amitriptyline Induces Persistent Gut Damages and Dysbiosis of the Gut Microbiota in Zebrafish (Danio rerio). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 260, 109417. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Yang, L.; Ye, M.; Geng, Y.; Guo, Y.; Zou, H.; Hou, L. Effects of Cortisone in Zebrafish (Danio Rerio): Insights into Gut Microbiota Interactions and Molecular Mechanisms Underlying DNA Damage and Apoptosis. J. Hazard. Mater. 2024, 478, 135576. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Lin, H.; Liu, Z.; Lian, X.; Pan, C.-G.; Dong, Z.; Lin, Z.; Li, C.; Hou, L.; Liang, Y.-Q. The Impact of Co-Exposure to Polystyrene Microplastics and Norethindrone on Gill Histology, Antioxidant Capacity, Reproductive System, and Gut Microbiota in Zebrafish (Danio rerio). Aquat. Toxicol. 2024, 273, 107018. [Google Scholar] [CrossRef] [PubMed]
- Boti, V.; Toli, V.; Efthymiou, C.; Albanis, T. Screening of Commonly Used Antibiotics in Fresh and Saltwater Samples Impacted by Aquacultures: Analytical Methodology, Occurrence and Environmental Risk Assessment. Sustainability 2023, 15, 9199. [Google Scholar] [CrossRef]
- Jara, B.; Tucca, F.; Srain, B.M.; Méjanelle, L.; Aranda, M.; Fernández, C.; Pantoja-Gutiérrez, S. Antibiotics Florfenicol and Flumequine in the Water Column and Sediments of Puyuhuapi Fjord, Chilean Patagonia. Chemosphere 2021, 275, 130029. [Google Scholar] [CrossRef]
- Monteiro, S.H.; Francisco, J.G.; Andrade, G.C.R.M.; Botelho, R.G.; Figueiredo, L.A.; Tornisielo, V.L. Study of Spatial and Temporal Distribution of Antimicrobial in Water and Sediments from Caging Fish Farms by On-Line SPE-LC-MS/MS. J. Environ. Sci. Health Part B 2016, 51, 634–643. [Google Scholar] [CrossRef]
- Lyu, J.; Yang, L.; Zhang, L.; Ye, B.; Wang, L. Antibiotics in Soil and Water in China–a Systematic Review and Source Analysis. Environ. Pollut. 2020, 266, 115147. [Google Scholar] [CrossRef]
- Bu, Q.; Wang, B.; Huang, J.; Deng, S.; Yu, G. Pharmaceuticals and Personal Care Products in the Aquatic Environment in China: A Review. J. Hazard. Mater. 2013, 262, 189–211. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An Obesity-Associated Gut Microbiome with Increased Capacity for Energy Harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef]
- Roca-Saavedra, P.; Rodriguez, J.A.; Lamas, A.; Miranda, J.M.; Nebot, C.; Cardelle-Cobas, A.; Franco, C.M.; Cepeda, A. Low-Dosage Antibiotic Intake Can Disturb Gut Microbiota in Mice. CyTA J. Food 2018, 16, 672–678. [Google Scholar] [CrossRef]
- Barouei, J.; Bendiks, Z.; Martinic, A.; Mishchuk, D.; Heeney, D.; Hsieh, Y.-H.; Kieffer, D.; Zaragoza, J.; Martin, R.; Slupsky, C.; et al. Microbiota, Metabolome, and Immune Alterations in Obese Mice Fed a High-Fat Diet Containing Type 2 Resistant Starch. Mol. Nutr. Food Res. 2017, 61, 1700184. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. Multiresidue Methods for the Analysis of Pharmaceuticals, Personal Care Products and Illicit Drugs in Surface Water and Wastewater by Solid-Phase Extraction and Ultra Performance Liquid Chromatography-Electrospray Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2008, 391, 1293–1308. [Google Scholar] [CrossRef] [PubMed]
- Lhotský, O.; Krákorová, E.; Mašín, P.; Žebrák, R.; Linhartová, L.; Křesinová, Z.; Kašlík, J.; Steinová, J.; Rødsand, T.; Filipová, A.; et al. Pharmaceuticals, Benzene, Toluene and Chlorobenzene Removal from Contaminated Groundwater by Combined UV/H2O2 Photo-Oxidation and Aeration. Water Res. 2017, 120, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Chang, H.; Sun, Y.; Wan, Y. Determination and Occurrence of Natural and Synthetic Glucocorticoids in Surface Waters. Environ. Int. 2020, 134, 105278. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Lin, C.; Xiong, X.; Chen, D.; Chen, Y.; Zhou, Y.; Wu, C.; Du, Y. Occurrence, Distribution, and Potential Risks of Environmental Corticosteroids in Surface Waters from the Pearl River Delta, South China. Environ. Pollut. 2019, 251, 102–109. [Google Scholar] [CrossRef]
- Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy Metal Water Pollution: A Fresh Look about Hazards, Novel and Conventional Remediation Methods. Environ. Technol. Innov. 2021, 22, 101504. [Google Scholar] [CrossRef]
- Vareda, J.P.; Valente, A.J.M.; Durães, L. Assessment of Heavy Metal Pollution from Anthropogenic Activities and Remediation Strategies: A Review. J. Environ. Manag. 2019, 246, 101–118. [Google Scholar] [CrossRef]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of Heavy Metals on the Environment and Human Health: Novel Therapeutic Insights to Counter the Toxicity. J. King Saud Univ. Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Oros, A. Bioaccumulation and Trophic Transfer of Heavy Metals in Marine Fish: Ecological and Ecosystem-Level Impacts. J. Xenobiot. 2025, 15, 59. [Google Scholar] [CrossRef]
- Kwong, R.W.M. Trace Metals in the Teleost Fish Gill: Biological Roles, Uptake Regulation, and Detoxification Mechanisms. J. Comp. Physiol. B 2024, 194, 749–763. [Google Scholar] [CrossRef]
- Díaz-Delgado, E.; Girolametti, F.; Annibaldi, A.; Trueman, C.N.; Willis, T.J. Mercury Bioaccumulation and Its Relationship with Trophic Biomarkers in a Mediterranean Elasmobranch Mesopredator. Mar. Pollut. Bull. 2024, 201, 116218. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Li, Z.; Wang, C.; Zhang, X.; Li, J.; Zhou, Q.; Yang, J.; Chen, Q.; Meng, X.; Wang, J. Dynamic Alterations of Locomotor Activity and the Microbiota in Zebrafish Larvae with Low Concentrations of Lead Exposure. Environ. Sci. Pollut. Res. 2024, 31, 2042–2052. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Deng, L.; Wang, Y.; Liu, N.; Yang, M.; Qiu, J.; Chen, C. Synergistic Effects of Combined Lead and Iprodione Exposure on P53 Signaling-Mediated Hepatotoxicity, Enterotoxicity and Transgenerational Toxicity in Zebrafish. Sci. Total Environ. 2025, 958, 178127. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Lu, L.; Jin, C.; Wang, S.; Zhou, J.; Ni, Y.; Fu, Z.; Jin, Y. Effects of Short Term Lead Exposure on Gut Microbiota and Hepatic Metabolism in Adult Zebrafish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2018, 209, 1–8. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, C.; Zhang, X.; Li, J.; Li, Z.; Zhu, J.; Zhou, Q.; Yang, J.; Chen, Q.; Meng, X. Combined Effects of Lead and Manganese on Locomotor Activity and Microbiota in Zebrafish. Ecotoxicol. Environ. Saf. 2023, 263, 115260. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Jia, R.; Long, H.; Zhou, J.; Sun, G.; Wang, Y.; Zhang, Z.; Rong, X.; Jiang, Y. Transfer from Ciliate to Zebrafish: Unveiling Mechanisms and Combined Effects of Microplastics and Heavy Metals. J. Hazard. Mater. 2024, 479, 135645. [Google Scholar] [CrossRef]
- Xia, Y.; Zhu, J.; Xu, Y.; Zhang, H.; Zou, F.; Meng, X. Effects of Ecologically Relevant Concentrations of Cadmium on Locomotor Activity and Microbiota in Zebrafish. Chemosphere 2020, 257, 127220. [Google Scholar] [CrossRef]
- Yang, J.; Li, J.; Zhang, X.; Zhou, Q.; Wang, J.; Chen, Q.; Meng, X.; Xia, Y. Effects of Ecologically Relevant Concentrations of Cadmium on the Microbiota, Short-Chain Fatty Acids, and FFAR2 Expression in Zebrafish. Metabolites 2023, 13, 657. [Google Scholar] [CrossRef]
- Di, S.; Li, Y.; Song, B.; Guo, C.; Qi, P.; Wang, Z.; Liu, Z.; Zhao, H.; Wang, X. Potential Effects of Individual and Combined Exposure to Tetraconazole and Cadmium on Zebrafish from the Perspective of Enantioselectivity and Intestinal Microbiota. Sci. Total Environ. 2024, 921, 170899. [Google Scholar] [CrossRef]
- Yan, T.; Xu, Y.; Zhu, Y.; Jiang, P.; Zhang, Z.; Li, L.; Wu, Q. Chromium Exposure Altered Metabolome and Microbiome-Associated with Neurotoxicity in Zebrafish. J. Appl. Toxicol. 2023, 43, 1026–1038. [Google Scholar] [CrossRef]
- Dahan, D.; Jude, B.A.; Lamendella, R.; Keesing, F.; Perron, G.G. Exposure to Arsenic Alters the Microbiome of Larval Zebrafish. Front. Microbiol. 2018, 9, 1323. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Lv, M.; Yu, H.; Zhang, H.; Zhang, D.; Li, Q.; Wang, L.; Wu, Y. Integration of Physiology, Microbiota and Metabolomics Reveals Toxic Response of Zebrafish Gut to Co-Exposure to Polystyrene Nanoplastics and Arsenic. Aquat. Toxicol. 2025, 278, 107172. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Bhattacharya, R.; Sarkar, O.; Islam, S.; Biswas, S.R.; Chattopadhyay, A. Gut Microbiota Perturbation and Subsequent Oxidative Stress in Gut and Kidney Tissues of Zebrafish after Individual and Combined Exposure to Inorganic Arsenic and Fluoride. Sci. Total. Environ. 2024, 957, 177519. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Huang, J.; Rao, L.; Zhu, W.; Yu, Y.; Xiao, F.; Yu, H.; Wu, Y.; Hu, R.; Liu, X.; et al. Environmental Effects of Nanoparticles on the Ecological Succession of Gut Microbiota across Zebrafish Development. Sci. Total Environ. 2022, 806, 150963. [Google Scholar] [CrossRef]
- Chen, P.; Huang, J.; Rao, L.; Zhu, W.; Yu, Y.; Xiao, F.; Chen, X.; Yu, H.; Wu, Y.; Xu, K.; et al. Resistance and Resilience of Fish Gut Microbiota to Silver Nanoparticles. mSystems 2021, 6, e00630-21. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; Zhao, X.; Sui, S.; Wang, Q.; Shi, G.; Xu, H.; Zhang, X.; He, Y.; Gu, J. Intestinal Microflora Changes in Patients with Mild Alzheimer’s Disease in a Chinese Cohort. J. Alzheimer’s Dis. 2022, 88, 563–575. [Google Scholar] [CrossRef]
- Jiang, R.; Wang, Y.; Liu, J.; Wu, Z.; Wang, D.; Deng, Q.; Yang, C.; Zhou, Q. Gut Microbiota Is Involved in the Antidepressant Effects of Adipose-Derived Mesenchymal Stem Cells in Chronic Social Defeat Stress Mouse Model. Psychopharmacol. 2022, 239, 533–549. [Google Scholar] [CrossRef]
- Gut Microbiome Associates with Lifetime Cardiovascular Disease Risk Profile Among Bogalusa Heart Study Participants|Circulation Research. Available online: https://www.ahajournals.org/doi/10.1161/circresaha.116.309219 (accessed on 30 May 2025).
- Kawase, T.; Nagasawa, M.; Ikeda, H.; Yasuo, S.; Koga, Y.; Furuse, M. Gut Microbiota of Mice Putatively Modifies Amino Acid Metabolism in the Host Brain. Br. J. Nutr. 2017, 117, 775–783. [Google Scholar] [CrossRef]
- Sperringer, J.E.; Addington, A.; Hutson, S.M. Branched-Chain Amino Acids and Brain Metabolism. Neurochem. Res. 2017, 42, 1697–1709. [Google Scholar] [CrossRef]
- Frajerman, A.; Kebir, O.; Chaumette, B.; Tessier, C.; Lamazière, A.; Nuss, P.; Krebs, M.-O. Membrane lipids in schizophrenia and early phases of psychosis: Potential biomarkers and therapeutic targets? Encephale 2020, 46, 209–216. [Google Scholar] [CrossRef]
- Changes of Colonic Bacterial Composition in Parkinson’s Disease and Other Neurodegenerative Diseases. Available online: https://www.mdpi.com/2072-6643/10/6/708 (accessed on 30 May 2025).
- Minter, M.R.; Hinterleitner, R.; Meisel, M.; Zhang, C.; Leone, V.; Zhang, X.; Oyler-Castrillo, P.; Zhang, X.; Musch, M.W.; Shen, X.; et al. Antibiotic-Induced Perturbations in Microbial Diversity during Post-Natal Development Alters Amyloid Pathology in an Aged APPSWE/PS1ΔE9 Murine Model of Alzheimer’s Disease. Sci. Rep. 2017, 7, 10411. [Google Scholar] [CrossRef]
- Ebringer, A.; Rashid, T.; Wilson, C. Bovine Spongiform Encephalopathy, Multiple Sclerosis, and Creutzfeldt-Jakob Disease Are Probably Autoimmune Diseases Evoked by Acinetobacter Bacteria. Ann. N. Y. Acad. Sci. 2005, 1050, 417–428. [Google Scholar] [CrossRef]
- Gaze, W.H.; Zhang, L.; Abdouslam, N.A.; Hawkey, P.M.; Calvo-Bado, L.; Royle, J.; Brown, H.; Davis, S.; Kay, P.; Boxall, A.B.A.; et al. Impacts of Anthropogenic Activity on the Ecology of Class 1 Integrons and Integron-Associated Genes in the Environment. ISME J. 2011, 5, 1253–1261. [Google Scholar] [CrossRef]
- Huang, J.-N.; Wen, B.; Xu, L.; Ma, H.-C.; Li, X.-X.; Gao, J.-Z.; Chen, Z.-Z. Micro/Nano-Plastics Cause Neurobehavioral Toxicity in Discus Fish (Symphysodon Aequifasciatus): Insight from Brain-Gut-Microbiota Axis. J. Hazard. Mater. 2022, 421, 126830. [Google Scholar] [CrossRef]
- Nho, K.; Kueider-Paisley, A.; MahmoudianDehkordi, S.; Arnold, M.; Risacher, S.L.; Louie, G.; Blach, C.; Baillie, R.; Han, X.; Kastenmüller, G.; et al. Altered Bile Acid Profile in Mild Cognitive Impairment and Alzheimer’s Disease: Relationship to Neuroimaging and CSF Biomarkers. Alzheimer’s Dement. 2019, 15, 232–244. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, P.; Smith, M.D.; Mische, L.; Harrington, E.; Fitzgerald, K.C.; Martin, K.; Kim, S.; Reyes, A.A.; Gonzalez-Cardona, J.; Volsko, C.; et al. Bile Acid Metabolism Is Altered in Multiple Sclerosis and Supplementation Ameliorates Neuroinflammation. J. Clin. Investig. 2020, 130, 3467–3482. [Google Scholar] [CrossRef] [PubMed]
- McNamara, K.; Tofail, S.A.M. Nanoparticles in Biomedical Applications. Adv. Phys. X 2017, 2, 54–88. [Google Scholar] [CrossRef]
- Malakar, A.; Snow, D.D. Nanoparticles as Sources of Inorganic Water Pollutants. In Inorganic Pollutants in Water; Elsevier: Amsterdam, The Netherlands, 2020; pp. 337–370. ISBN 978-0-12-818966-5. [Google Scholar]
- Bundschuh, M.; Filser, J.; Lüderwald, S.; McKee, M.S.; Metreveli, G.; Schaumann, G.E.; Schulz, R.; Wagner, S. Nanoparticles in the Environment: Where Do We Come from, Where Do We Go To? Environ. Sci. Eur. 2018, 30, 6. [Google Scholar] [CrossRef]
- Nisar, P.; Ali, N.; Rahman, L.; Ali, M.; Shinwari, Z.K. Antimicrobial Activities of Biologically Synthesized Metal Nanoparticles: An Insight into the Mechanism of Action. J. Biol. Inorg. Chem. 2019, 24, 929–941. [Google Scholar] [CrossRef]
- Panáček, A.; Kvítek, L.; Smékalová, M.; Večeřová, R.; Kolář, M.; Röderová, M.; Dyčka, F.; Šebela, M.; Prucek, R.; Tomanec, O.; et al. Bacterial Resistance to Silver Nanoparticles and How to Overcome It. Nat. Nanotechnol. 2018, 13, 65–71. [Google Scholar] [CrossRef]
- Brinkmann, B.W.; Koch, B.E.V.; Spaink, H.P.; Peijnenburg, W.J.G.M.; Vijver, M.G. Colonizing Microbiota Protect Zebrafish Larvae against Silver Nanoparticle Toxicity. Nanotoxicology 2020, 14, 725–739. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Haneen, M.A.; Sharma, G.; Perumal, E. Acute Copper Oxide Nanoparticles Exposure Alters Zebrafish Larval Microbiome. Life Sci. 2024, 336, 122313. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Zhang, L.; Wu, D.; Qi, Z.; Cao, J.; Li, W.; Fan, L.; Shi, Y.; Wu, Y.; Li, G. CuO Nanoparticles Elicit Intestinal Immunotoxicity in Zebrafish Based on Intestinal Microbiota Dysbiosis. Food Funct. 2024, 15, 7619–7630. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, R.; Li, S.; Yi, M.; Li, J.; Sun, Y.; Ni, J. Dysbiosis of Gut Microbiota by Actual Long-Term Exposure to Textile Wastewater Treatment Plant Effluents in Adult Zebrafish (Danio rerio) Using Aquatic Microcosm Systems. J. Water Process Eng. 2023, 54, 104047. [Google Scholar] [CrossRef]
- Liang, Y.; Tan, Q.; Song, Q.; Li, J. An Analysis of the Plastic Waste Trade and Management in Asia. Waste Manag. 2021, 119, 242–253. [Google Scholar] [CrossRef]
- Mani, T.; Hauk, A.; Walter, U.; Burkhardt-Holm, P. Microplastics Profile along the Rhine River. Sci. Rep. 2015, 5, 17988. [Google Scholar] [CrossRef]
- Dyachenko, A.; Mitchell, J.; Arsem, N. Extraction and Identification of Microplastic Particles from Secondary Wastewater Treatment Plant (WWTP) Effluent. Anal. Methods 2017, 9, 1412–1418. [Google Scholar] [CrossRef]
- Wang, J.; Peng, J.; Tan, Z.; Gao, Y.; Zhan, Z.; Chen, Q.; Cai, L. Microplastics in the Surface Sediments from the Beijiang River Littoral Zone: Composition, Abundance, Surface Textures and Interaction with Heavy Metals. Chemosphere 2017, 171, 248–258. [Google Scholar] [CrossRef]
- Frias, J.P.G.L.; Sobral, P.; Ferreira, A.M. Organic Pollutants in Microplastics from Two Beaches of the Portuguese Coast. Mar. Pollut. Bull. 2010, 60, 1988–1992. [Google Scholar] [CrossRef]
- Bakir, A.; Rowland, S.J.; Thompson, R.C. Enhanced Desorption of Persistent Organic Pollutants from Microplastics under Simulated Physiological Conditions. Environ. Pollut. 2014, 185, 16–23. [Google Scholar] [CrossRef]
- Jin, Y.; Xia, J.; Pan, Z.; Yang, J.; Wang, W.; Fu, Z. Polystyrene Microplastics Induce Microbiota Dysbiosis and Inflammation in the Gut of Adult Zebrafish. Environ. Pollut. 2018, 235, 322–329. [Google Scholar] [CrossRef]
- Qiao, R.; Deng, Y.; Zhang, S.; Wolosker, M.B.; Zhu, Q.; Ren, H.; Zhang, Y. Accumulation of Different Shapes of Microplastics Initiates Intestinal Injury and Gut Microbiota Dysbiosis in the Gut of Zebrafish. Chemosphere 2019, 236, 124334. [Google Scholar] [CrossRef]
- Kurchaba, N.; Cassone, B.J.; Northam, C.; Ardelli, B.F.; LeMoine, C.M.R. Effects of MP Polyethylene Microparticles on Microbiome and Inflammatory Response of Larval Zebrafish. Toxics 2020, 8, 55. [Google Scholar] [CrossRef]
- Medriano, C.A.; Bae, S. Acute Exposure to Microplastics Induces Metabolic Disturbances and Gut Dysbiosis in Adult Zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2022, 245, 114125. [Google Scholar] [CrossRef]
- Li, R.; Nie, J.; Qiu, D.; Li, S.; Sun, Y.; Wang, C. Toxic Effect of Chronic Exposure to Polyethylene Nano/Microplastics on Oxidative Stress, Neurotoxicity and Gut Microbiota of Adult Zebrafish (Danio rerio). Chemosphere 2023, 339, 139774. [Google Scholar] [CrossRef]
- Choi, J.S.; Yoon, H.; Heo, Y.; Kim, T.H.; Park, J.-W. Comparison of Gut Toxicity and Microbiome Effects in Zebrafish Exposed to Polypropylene Microplastics: Interesting Effects of UV-Weathering on Microbiome. J. Hazard. Mater. 2024, 470, 134209. [Google Scholar] [CrossRef]
- Qiang, L.; Lo, L.S.H.; Gao, Y.; Cheng, J. Parental Exposure to Polystyrene Microplastics at Environmentally Relevant Concentrations Has Negligible Transgenerational Effects on Zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2020, 206, 111382. [Google Scholar] [CrossRef] [PubMed]
- Mancia, A.; Abelli, L.; Palladino, G.; Candela, M.; Lucon-Xiccato, T.; Bertolucci, C.; Fossi, M.C.; Baini, M.; Panti, C. Sorbed Environmental Contaminants Increase the Harmful Effects of Microplastics in Adult Zebrafish, Danio rerio. Aquat. Toxicol. 2023, 259, 106544. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.; Cheng, H.; Duan, X.; Zhang, H.; Wang, Y.; Gong, Z.; Zhang, H.; Sun, H.; Wang, L. Diet Preference of Zebrafish (Danio rerio) for Bio-Based Polylactic Acid Microplastics and Induced Intestinal Damage and Microbiota Dysbiosis. J. Hazard. Mater. 2022, 429, 128332. [Google Scholar] [CrossRef] [PubMed]
- Medriano, C.A.; Kim, S.; Kim, L.H.; Bae, S. Chronic Exposure of Adult Zebrafish to Polyethylene and Polyester-Based Microplastics: Metabolomic and Gut Microbiome Alterations Reflecting Dysbiosis and Resilience. J. Hazard. Mater. 2025, 484, 136691. [Google Scholar] [CrossRef]
- Fang, C.; Zheng, R.; Hong, F.; Jiang, Y.; Chen, J.; Lin, H.; Lin, L.; Lei, R.; Bailey, C.; Bo, J. Microplastics in Three Typical Benthic Species from the Arctic: Occurrence, Characteristics, Sources, and Environmental Implications. Environ. Res. 2021, 192, 110326. [Google Scholar] [CrossRef]
- Huang, J.N.; Gao, C.C.; Ren, H.Y.; Wen, B.; Wang, Z.N.; Gao, J.Z.; Chen, Z.Z. Multi-Omics Association Pattern between Gut Microbiota and Host Metabolism of a Filter-Feeding Fish in Situ Exposed to Microplastics. Environ. Int. 2025, 197, 109360. [Google Scholar] [CrossRef] [PubMed]
- La Pietra, A.; Fasciolo, G.; Lucariello, D.; Motta, C.M.; Venditti, P.; Ferrandino, I. Polystyrene Microplastics Effects on Zebrafish Embryological Development: Comparison of Two Different Sizes. Environ. Toxicol. Pharmacol. 2024, 106, 104371. [Google Scholar] [CrossRef] [PubMed]
- Biagi, E.; Musella, M.; Palladino, G.; Angelini, V.; Pari, S.; Roncari, C.; Scicchitano, D.; Rampelli, S.; Franzellitti, S.; Candela, M. Impact of Plastic Debris on the Gut Microbiota of Caretta Caretta From Northwestern Adriatic Sea. Front. Mar. Sci. 2021, 8, 637030. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.; Huang, J.; Jin, Z.; Guan, J.; Yu, H.; Zhang, M.; Yu, M.; Jiang, H.; Qiao, Z. Effects of Aeromonas Hydrophila Infection on the Intestinal Microbiota, Transcriptome, and Metabolomic of Common Carp (Cyprinus carpio). Fish Shellfish Immunol. 2023, 139, 108876. [Google Scholar] [CrossRef]
- Zhang, J.; Meng, H.; Kong, X.; Cheng, X.; Ma, T.; He, H.; Du, W.; Yang, S.; Li, S.; Zhang, L. Combined Effects of Polyethylene and Organic Contaminant on Zebrafish (Danio rerio): Accumulation of 9-Nitroanthracene, Biomarkers and Intestinal Microbiota. Environ. Pollut. 2021, 277, 116767. [Google Scholar] [CrossRef]
- Zhao, F.; Gong, Z.; Yang, Y.; Li, X.; Chen, D.; Shi, X.; Yu, T.; Wei, P. Effects of Environmentally Relevant Concentrations of Florfenicol on the Glucose Metabolism System, Intestinal Microbiome, and Liver Metabolome of Zebrafish. Sci. Total Environ. 2024, 938, 173417. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, Y.; Huang, Y.; Wang, J. Toxicological Effects of Microplastics and Phenanthrene to Zebrafish (Danio rerio). Sci. Total Environ. 2021, 757, 143730. [Google Scholar] [CrossRef]
- Hao, Y.T.; Wu, S.G.; Jakovlić, I.; Zou, H.; Li, W.X.; Wang, G.T. Impacts of Diet on Hindgut Microbiota and Short-Chain Fatty Acids in Grass Carp (Ctenopharyngodon idellus). Aquac. Res. 2017, 48, 5595–5605. [Google Scholar] [CrossRef]
- Yu, J.; Zhong, D.; Li, S.; Zhang, Z.; Mo, H.; Wang, L. Acute Temperature Stresses Trigger Liver Transcriptome and Microbial Community Remodeling in Largemouth Bass (Micropterus salmoides). Aquaculture 2023, 573, 739573. [Google Scholar] [CrossRef]
- Zhu, B.; Chen, X.; Zhang, T.; Zhang, Q.; Fu, K.; Hua, J.; Zhang, M.; Qi, Q.; Zhao, B.; Zhao, M.; et al. Interactions between Intestinal Microbiota and Metabolites in Zebrafish Larvae Exposed to Polystyrene Nanoplastics: Implications for Intestinal Health and Glycolipid Metabolism. J. Hazard. Mater. 2024, 472, 134478. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Deng, L.; Ma, X.; Guo, Y.; Feng, Z.; Liu, M.; Guan, Y.; Huang, Y.; Deng, J.; Li, H.; et al. Altered Diversity and Composition of Gut Microbiota in Wilson’s Disease. Sci. Rep. 2020, 10, 21825. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhang, J.-X.; Zhang, L.; Wu, D.; Tian, J.; Yu, L.-J.; He, L.; Zhong, S.; Du, H.; Deng, D.-F.; et al. Comprehensive Understanding the Impacts of Dietary Exposure to Polyethylene Microplastics on Genetically Improved Farmed Tilapia (Oreochromis Niloticus): Tracking from Growth, Microbiota, Metabolism to Gene Expressions. Sci. Total Environ. 2022, 841, 156571. [Google Scholar] [CrossRef]
- Shen, F.; Zheng, R.-D.; Sun, X.-Q.; Ding, W.-J.; Wang, X.-Y.; Fan, J.-G. Gut Microbiota Dysbiosis in Patients with Non-Alcoholic Fatty Liver Disease. Hepatobiliary Pancreat. Dis. Int. 2017, 16, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Gao, P.; Wang, J. Comprehensive Analysis of Microbiome, Metabolome, and Transcriptome Revealed the Mechanisms of Intestinal Injury in Rainbow Trout under Heat Stress. Int. J. Mol. Sci. 2023, 24, 8569. [Google Scholar] [CrossRef]
- Pace, A.; Dipineto, L.; Fioretti, A.; Hochscheid, S. Loggerhead Sea Turtles as Sentinels in the Western Mediterranean: Antibiotic Resistance and Environment-Related Modifications of Gram-Negative Bacteria. Mar. Pollut. Bull. 2019, 149, 110575. [Google Scholar] [CrossRef]
- Joshi, G.; Goswami, P.; Verma, P.; Prakash, G.; Simon, P.; Vinithkumar, N.V.; Dharani, G. Unraveling the Plastic Degradation Potentials of the Plastisphere-Associated Marine Bacterial Consortium as a Key Player for the Low-Density Polyethylene Degradation. J. Hazard. Mater. 2022, 425, 128005. [Google Scholar] [CrossRef]
- Ramírez, C.; Coronado, J.; Silva, A.; Romero, J. Cetobacterium Is a Major Component of the Microbiome of Giant Amazonian Fish (Arapaima gigas) in Ecuador. Animals 2018, 8, 189. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, Z.; Ding, Q.; Yang, Y.; Bindelle, J.; Ran, C.; Zhou, Z. Intestinal Cetobacterium and Acetate Modify Glucose Homeostasis via Parasympathetic Activation in Zebrafish. Gut Microbes 2021, 13, 1–15. [Google Scholar] [CrossRef]
- Zhang, J.-W.; Xuan, C.-G.; Lu, C.-H.; Guo, S.; Yu, J.-F.; Asif, M.; Jiang, W.-J.; Zhou, Z.-G.; Luo, Z.-Q.; Zhang, L.-Q. AidB, a Novel Thermostable N-Acylhomoserine Lactonase from the Bacterium Bosea Sp. Appl. Environ. Microbiol. 2019, 85, e02065-19. [Google Scholar] [CrossRef]
- Zhou, Q.; Pu, Y.; Deng, H.; Gong, J.; Guo, L.; Ma, J.; Liu, L.; Yuan, S.; Chen, Y.; Su, Y. Rhodobacter sphaeroides Reduces Pb Accumulation by Reshaping the Intestinal Microenvironment and Improving Liver Oxidant Resistance in Common Carp (Cyprinus carpio L.). J. Hazard. Mater. 2025, 492, 138152. [Google Scholar] [CrossRef]
- Sasikumar, R.; Saranya, S.; Lourdu Lincy, L.; Thamanna, L.; Chellapandi, P. Genomic Insights into Fish Pathogenic Bacteria: A Systems Biology Perspective for Sustainable Aquaculture. Fish Shellfish. Immunol. 2024, 154, 109978. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, G.; Sun, Y.; Yan, Z.; Dang, T.; Liu, J. Metagenomic Analysis Explores the Interaction of Aged Microplastics and Roxithromycin on Gut Microbiota and Antibiotic Resistance Genes of Carassius auratus. J. Hazard. Mater. 2022, 425, 127773. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Zhu, W.; Yu, Y.; Huang, J.; Li, J.; He, Z.; Wang, J.; Yin, H.; Yu, H.; Liu, S.; et al. Interactions and Stability of Gut Microbiota in Zebrafish Increase with Host Development. Microbiol. Spectr. 2022, 10, e01696-21. [Google Scholar] [CrossRef]
Contaminant | Zebrafish Model | Concentration | Days of Exposure | Ref. |
---|---|---|---|---|
Methomyl | juvenile | 0.05, 0.10, and 0.20 mg/L | 56 | [41] |
λ-cyhalothrin | adult | 0.1 μg/L | 21 | [42] |
Cyproconazole | adult | 50 and 500 μg/L | 40 | [43] |
Dieldrin | adult | 16 ng/g | ~120 | [44] |
Penthiopyrad | adult | 0.03 mg/L | 21 | [45] |
Acetochlor | adult | 0.05 mg/L | 21 | [46] |
Imidacloprid | adult | 1 mg/L | 14 | [47] |
Metamifop | adult | 0.025, 0.10, and 0.40 mg/L | 21 | [48] |
Imidacloprid | adult | 1000 μg/L | 21 | [49] |
Difenoconazole | adult | 0.4 mg/L | 21 | [50] |
Imazalil | adult | 1000 μg/L | 21 | [51] |
Cypermethrin Polystyrene | adult | 2.5 μg/L and 500 μg/L | 21 | [52] |
Contaminant | Zebrafish Model | Concentration | Days of Exposure | Ref. |
---|---|---|---|---|
Antibiotics | ||||
Oxytetracycline; sulfamethoxazole/trimethoprim; erythromycin | adult | 1 mg/L | 30 | [62] |
Florfenicol | adult | 15 mg/kg of body weight per day | 10 | [63] |
adult | 5, 10, 20, 40 mg/L | 56 | [64] | |
Oxytetracycline | adult | 100 μg/L | 30 | [65] |
Enrofloxacin | larvae | 0.01, 0.1, 1, 10, 100 μg/L | ~60 | [66] |
Doxycycline; oxytetracycline; florfenicol | adult | 10, 30, 100 μg/L | 21 | [67] |
Sulfamethoxazole; oxytetracycline | from larvae to adult stage | 1000 ng/L; 5000 ng/L | ~120 | [68] |
Oxytetracycline | adult | 10, 10,000 μg/L | ~60 | [69] |
Streptomycin | adult | 0.1, 1, 10 mg/L | 10 | [70] |
Tetracycline | juvenile | 1, 100 μg/L | ~30 | [71] |
Sulfamethoxazole; clarithromycin | larvae | 0.01 mg/L; 0.01 mg/L; | 14 | [72] |
Other medicines | ||||
Amitriptyline | adult | 2.5, 10, 40 μg/L | 7 | [73] |
Cortisone | adult | 5, 50, 500 ng/L | 7 | [74] |
Norethindrone | adult | ~70 ng/L | 30 | [75] |
Contaminant | Zebrafish Model | Concentration | Days of Exposure | Ref. |
---|---|---|---|---|
Lead | larvae | 0.05 mg/L | 3 | [94] |
adult | 60 | [95] | ||
adult | 10 and 30 μg/L | 7 | [96] | |
Lead + manganese | larvae | Pb: 0.05 mg/L; Mn: 0.3 mg/L | 7 | [97] |
Cadmium | larvae | 25 µM, 100 µM | 7 | [32] |
Cd and MPs | adult | Cd2⁺: <0.1 µg/L; MPs: 1 × 105 items/L | 2 | [98] |
larvae | 1.25, 2.5, 5 mg/L | 7 | [99] | |
larvae | 5 µg | 7 | [100] | |
Cd and terconazole | adult | Cd 0.01 mg/L tetraconazole: 0.1 mg/L | 14 | [101] |
Chromium | larvae | 1 mg/L Cr (III) and 1 mg/L Cr (VI) | 7 | [102] |
Arsenic | larvae | [As3+] 10, 50, 100 ppb | 20 | [103] |
adult | [As5+] 10 μg/L | 21 | [104] | |
larvae | [As3+] 50 ppb | 60 | [105] | |
Metal nanoparticles | ||||
nTiO2; nZnO; nSe | larvae to adult | 100 μg/L; 100 μg/L; 100 μg/L | 90 | [106] |
nAg | larvae | 0.25, 0.75, 1, 1.5, 2.5 mg/L | 2 | |
adult | 33 and 100 μg/L | 15, 45, 75 | [107] |
Contaminant | Zebrafish Model | Concentration and MP Size | Days of Exposure | Ref. |
---|---|---|---|---|
Polystyrene | adult | 1000 μg/L [0.5 and 50 μm diameter] | 14 | [136] |
adult | 10 μg/L [sphere (15 um), fragment (15 um), and fiber (20 um)] | 21 | [137] | |
Polyethylene | larvae | 20 mg/L [10–45 µm microspheres] | 5 or 10 | [138] |
Polyethylene and polyester | adult | 1 mg/L [1000 µm] | 4 | [139] |
Polyethylene | adult | 20 μg/L [70 nm and 13.5 µm] | 21 | [140] |
Polypropylene | adult | 50 mg/L [33.2 ± 14.43 µm] | 14 | [141] |
Polystyrene | adult | 10, 100 and 1000 [1 µm] | 21 | [142] |
Polyethylene | adult | 0.4 mg/L | 15 | [143] |
Polyethylene; Polylactic | adult | 25 000 particles/L [111.12 ± 30.53; 135.35 ± 37.12 µm] | 15 | [144] |
Polyethylene; polyester | adult | 200 µg/L and 1 mg/L [180 ± 210; 350 ± 220 µm] | 30 | [145] |
Phyla | Genera | |
---|---|---|
Pesticides | ||
Methomyl | ↑ Planctomycetes, Verrucomicrobiota, Actinobacteriota | ↑ Bacillus, Luteolibacter |
↓ Fusobacteria | ↓ Shewanella, Pseudomonas, Gemmobacter | |
LTC | ↑ Proteobacteria, Firmicutes | No information |
↓ Fusobacteria | ||
CPZ | ↑ Bacteroidetes, Firmicutes | ↑ Shewanella, Aeromonas, Chitinilyticum, Desulfovibrio, Paracoccus, Anaerobacillus |
Dieldrin | ↑ Verrucomicrobiota | ↑ Defluviimonas |
↓ Firmicutes, Clostridiales, Betaproteobacteria | ↓ Sphingomonas, Pseudomonas | |
PTH | ↑ Firmicutes | No information |
Acetochlor | ↑ Proteobacteria, Actinobacteriota | ↑ Gemmobacter, Xanthobacter, Bosea, Nocardia, Methylobacterium-Methylorubrum |
↓ Fusobacteriota, Bacteroidota, Firmicutes | ||
IMI | ↑ Fusobacteria | ↑ Cetobacterium, Paracoccus, Flavobacterium, Neisseriaceae, Acetobacteraceae |
↓ Proteobacteria | ↓ Ralstonia, Bacillaceae | |
Metamifop | No significant difference | ↑ Rhodobacter, Pelomonas, Ralstonia |
↓ Psychrobacter, Aeromonas | ||
Difenoconazole | ↑ Firmicutes | ↑ Plesiomonas, Aeromonas, Ochrobactrum, Gemmobacter, Shewanella, Bacteroides |
↓ Cetobacterium | ||
IMZ | ↓ Bacteroidetes, Proteobacteria | ↑ Rhodobacter, Shewanella, Bosea, Aeromonas, Acinetobacter, Mycoplasma |
↓ Bacteroides | ||
CYP | ↑ Bacteroidota | ↑ Preplasmiviricota, Microsporidia |
↓ Fusobacteriota | ↓ Alphaproteobacteria | |
Heavy metals | ||
Lead | ↑ Firmicutes, Bacteroidetes | ↑ p_Proteobacteria, c_Gammaproteobacteria, c_Alphaproteobacteria |
↓ Proteobacteria, Fusobacteria | ↓ Prevotella, Corynebacterium, Ruminococcaceae_Ruminococcus | |
Cadmium | ↑ Firmicutes, Fusobacteria | ↑ Shewanella, Achromobacter |
↓ Proteobacteria, Bacteroidetes | ↓ Xanthobacter | |
Arsenic | ↑ Fusobacteriota | ↑ Cetobacterium |
Antibiotics and other medicines | ||
FFC | ↑ Verrucomicrobiota, Proteobacteria | ↑ Shinella, Reyranella, Bosea |
↓ Bacteroidetes, Firmicutes | ↓ Vibrio, Flavobacterium, Mycobacterium | |
SMX/TMP | ↑ Proteobacteria | ↓ Cetobacterium somerae |
↓ Fusobacteria | ||
Ery | ↑ Proteobacteria | ↑ Aeromonas veronii |
↓ Firmicutes | ↓ Cetobacterium somerae | |
OTC | ↑ Fusobacteria | |
↓ Firmicutes, Bacteroidetes, Actinobacteria, Verrucomicrobia | ||
Cortisone | ↑ Firmicutes | ↑ Defluviimonas |
↓ Bacteroidetes | ||
Norethindrone | ↓ Bacteroidetes, Fusobacteria | ↑ Gordonia, Crenobacter, Bosea |
↓ Shewanella | ||
Microplastics | ||
Polystyrene | ↑ Fusobacteria, Firmicutes | ↑ Cetobacterium, Plesiomonas, Aeromonas, Shewanella, Reyranella, Stenotrophomonas, Acidovorax |
↓ Bacteroidetes | ↓ Exiguobacterium, Microbacterium, Methylobacterium | |
Polyethylene | ↑ Proteobacteria | ↑ Acinetobacter |
↓ Tenericutes | ↓ Cerobacterium | |
Polypropylene | No significant changes | ↑ Flavobacterium, Bacteroides, Rhodobacter, Stenotrophomonas, Ralstonia, Vogesella, Plesiomonas |
↓ Pseudomonas | ||
Polylactic | ↑ Acidobacteria, Tenericutes | ↑ Bacteroides, Carnobacterium, Rhizobium, Gemmobacter, Cloacibacterium |
↓ Fusobacteria | ↓ Xanthobacter, Ancylobacter, Luteolibacter, Azorhizobium, Lactobacillus, Methylobacterium, Cetobacterium, Aeromonas, Porphyromonadaceae |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frolova, S.G.; Vatlin, A.A.; Pospelova, I.; Mitkin, N.A.; Kulieva, G.A.; Pavshintsev, V.V. The Role of Danio rerio in Understanding Pollutant-Induced Gut Microbiome Dysbiosis in Aquatic Ecosystems. Toxics 2025, 13, 769. https://doi.org/10.3390/toxics13090769
Frolova SG, Vatlin AA, Pospelova I, Mitkin NA, Kulieva GA, Pavshintsev VV. The Role of Danio rerio in Understanding Pollutant-Induced Gut Microbiome Dysbiosis in Aquatic Ecosystems. Toxics. 2025; 13(9):769. https://doi.org/10.3390/toxics13090769
Chicago/Turabian StyleFrolova, Svetlana G., Aleksey A. Vatlin, Iunona Pospelova, Nikita A. Mitkin, Gulnara A. Kulieva, and Vsevolod V. Pavshintsev. 2025. "The Role of Danio rerio in Understanding Pollutant-Induced Gut Microbiome Dysbiosis in Aquatic Ecosystems" Toxics 13, no. 9: 769. https://doi.org/10.3390/toxics13090769
APA StyleFrolova, S. G., Vatlin, A. A., Pospelova, I., Mitkin, N. A., Kulieva, G. A., & Pavshintsev, V. V. (2025). The Role of Danio rerio in Understanding Pollutant-Induced Gut Microbiome Dysbiosis in Aquatic Ecosystems. Toxics, 13(9), 769. https://doi.org/10.3390/toxics13090769