A Soil Washing Approach to Remediation of Lead-Contaminated Soil with Amino Acid Ionic Liquid [Met][NO3]
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Pb-Contaminated Soil
2.2. Preparation of Washing Agents
2.3. Design of Soil Washing Experiment
2.4. Detection Method
2.4.1. Determination of Pb Content and Pb Form
2.4.2. Determination of Physical and Chemical Properties of Soil
2.4.3. Characterization of Soil
2.5. Data Analysis
3. Results and Discussion
3.1. Effect of Different AAILs on Pb Removal from Soil
3.2. Effect of Different Washing Conditions on Pb Removal from Soil
3.2.1. Concentration
3.2.2. Liquid–Soil Ratio
3.2.3. Washing Time
3.2.4. Kinetics of Pb Removal
3.3. Effect of Soil Washing on Soil Properties
3.3.1. Chemical Forms of Pb in Soil
3.3.2. Physico-Chemical Properties of Soil
3.3.3. Chemical Compositions of Soil
3.3.4. Functional Groups and Elements Chemical Form of Soil
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, D.M.; Guo, Z.H.; Xiao, X.Y.; Peng, C.; He, Y.L.; Yang, A.D.; Wang, X.Y.; Hu, Y.L.; Li, Z.H. Cleanup of arsenic, cadmium, and lead in the soil from a smelting site using N,N-bis(carboxymethyl)-L-glutamic acid combined with ascorbic acid: A lab-scale experiment. J. Environ. Manag. 2021, 296, 113174. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.; Shahid, M.; Niazi, N.K.; Murtaza, B.; Bibi, I.; Dumat, C. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 2017, 182, 247–268. [Google Scholar] [CrossRef]
- Kamenov, G.D.; Swaringen, B.F.; Cornwell, D.A.; McTigue, N.E.; Roberts, S.M.; Bonzongo, J.C.J. High-precision Pb isotopes of drinking water lead pipes: Implications for human exposure to industrial Pb in the United States. Sci. Total Environ. 2023, 871, 162067. [Google Scholar] [CrossRef]
- Azhar, U.; Ahmad, H.; Shafqat, H.; Babar, M.; Munir, H.M.S.; Sagir, M.; Arif, M.; Hassan, A.; Rachmadona, N.; Rajendran, S.; et al. Remediation techniques for elimination of heavy metal pollutants from soil: A review. Environ. Res. 2022, 214, 113918. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhao, L.; Liu, Q.; Li, J.; Qiao, Z.; Sun, P.; Yang, Y. A critical review on soil washing during soil remediation for heavy metals and organic pollutants. Int. J. Environ. Sci. Technol. 2022, 19, 601–624. [Google Scholar] [CrossRef]
- Cao, Y.R.; Zhang, S.R.; Zhong, Q.M.; Wang, G.Y.; Xu, X.X.; Li, T.; Wang, L.L.; Jia, Y.X.; Li, Y. Feasibility of nanoscale zero-valent iron to enhance the removal efficiencies of heavy metals from polluted soils by organic acids. Ecotoxicol. Environ. Saf. 2018, 162, 464–473. [Google Scholar] [CrossRef]
- Wen, J.; Stacey, S.P.; McLaughlin, M.J.; Kirby, J.K. Biodegradation of rhamnolipid, EDTA and citric acid in cadmium and zinc contaminated soils. Soil Biol. Biochem. 2009, 41, 2214–2221. [Google Scholar] [CrossRef]
- Tao, G.H.; He, L.; Sun, N.; Kou, Y. New generation ionic liquids: Cations derived from amino acids. Chem. Commun. 2005, 28, 3562–3564. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, S.; Beadham, I.; Gao, X.; Ji, M.M.; Wang, G.; Zhang, C.B.; Ruan, W.Q. Effect of soil washing with an amino-acid-derived ionic liquid on the properties of Cd-contaminated paddy soil. Toxics 2023, 11, 288. [Google Scholar] [CrossRef]
- Fu, L.; Wang, S.; Deng, Y.; Zhang, C.B.; Xu, W.J.; Deng, J.W.; Luo, X.; Liu, Y.Y.; Mailhot, G.; Vione, D. Removal of arsenic from contaminated soil by washing with amino acid-derived ionic liquids: Remediation effects and potential mechanisms. Environ. Technol. Innov. 2025, 37, 104060. [Google Scholar] [CrossRef]
- Fouda-Mbanga, B.G.; Seyisi, T.; Pillay, K.; Zikhona, T.N. Nanoarchitectonics of WLC-H3PO4–MnFe2O3 nanocomposite for latent fingerprint detection. Hybrid Adv. 2024, 5, 100122. [Google Scholar] [CrossRef]
- Awad, M.; El-Sayed, M.M.; Li, X.; Liu, Z.; Mustafa, S.K.; Ditta, A.; Hessini, K. Diminishing Heavy Metal Hazards of Contaminated Soil via Biochar Supplementation. Sustainability 2021, 13, 12742. [Google Scholar] [CrossRef]
- Iqbal, N.; Tanzeem-ul-Haq, H.S.; Gull-e-Faran; Turan, V.; Iqbal, M. Soil Amendments and Foliar Melatonin Reduced Pb Uptake, and Oxidative Stress, and Improved Spinach Quality in Pb-Contaminated Soil. Plants 2023, 12, 1829. [Google Scholar] [CrossRef]
- Zeng, G.M.; Wan, J.; Huang, D.L.; Hu, L.; Huang, C.; Cheng, M.; Xue, W.J.; Gong, X.M.; Wang, R.Z.; Jiang, D.N. Precipitation, adsorption and rhizosphere effect: The mechanisms for Phosphate-induced Pb immobilization in soils—A review. J. Hazard. Mater. 2017, 339, 354–367. [Google Scholar] [CrossRef]
- Yoo, J.C.; Park, S.M.; Yoon, G.S.; Tsang, D.C.W.; Baek, K. Effects of lead mineralogy on soil washing enhanced by ferric salts as extracting and oxidizing agents. Chemosphere 2017, 185, 501–508. [Google Scholar] [CrossRef]
- Chu, Y.T.; Zhu, S.D.; Xia, M.Z.; Wang, F.Y.; Lei, W. Methionine-montmorillonite composite—A novel material for efficient adsorption of lead ions. Adv. Powder Technol. 2020, 31, 708–717. [Google Scholar] [CrossRef]
- Xu, L.; Dai, H.P.; Skuza, L.; Xu, J.M.; Shi, J.C.; Wei, S.H. Co-high-efficiency washing agents for simultaneous removal of Cd, Pb and As from smelting soil with risk assessment. Chemosphere 2022, 300, 134581. [Google Scholar] [CrossRef]
- Yang, T.; Hodson, M.E. Investigating the use of synthetic humic-like acid as a soil washing treatment for metal contaminated soil. Sci. Total Environ. 2019, 647, 290–300. [Google Scholar] [CrossRef]
- Liu, Q.J.; Deng, Y.; Tang, J.P.; Chen, D.; Li, X.; Lin, Q.T.; Yin, G.C.; Zhang, M.; Hu, H.W. Potassium lignosulfonate as a washing agent for remediating lead and copper co-contaminated soils. Sci. Total Environ. 2019, 658, 836–842. [Google Scholar] [CrossRef]
- Wu, Q.; Cui, Y.R.; Li, Q.L.; Sun, J.H. Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating ligand GLDA. J. Hazard. Mater. 2015, 283, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.Y.; Zhang, S.R.; Xu, X.X.; Zhong, Q.M.; Zhang, C.E.; Jia, Y.X.; Li, T.; Deng, O.P.; Li, Y. Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility. Sci. Total Environ. 2016, 569, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Golmaei, M.; Kinnarinen, T.; Jernström, E.; Häkkinen, A. Extraction of hazardous metals from green liquor dregs by ethylenediaminetetraacetic acid. J. Environ. Manag. 2018, 212, 219–227. [Google Scholar] [CrossRef]
- Yang, Z.B.; Wang, D.; Wang, G.Y.; Zhang, S.R.; Cheng, Z.; Xian, J.R.; Pu, Y.L.; Li, T.; Jia, Y.X.; Li, Y.; et al. Removal of Pb, Zn, Ni and Cr from industrial sludge by biodegradable washing agents: Caboxyethylthiosuccinic acid and itaconic-acrylic acid. J. Hazard. Mater. 2021, 9, 105846. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, Q.; Xiao, R.; Cheng, S.; Luo, H.; Wen, X.; Wu, L.; Zhong, Q. Removal of Cu and Pb from contaminated agricultural soil using mixed chelators of fulvic acid potassium and citric acid. Ecotoxicol. Environ. Saf. 2020, 206, 111179. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; He, J.G.; Liu, T.T.; Xin, X.D. Removal of heavy metals with sequential sludge washing techniques using saponin: Optimization conditions, kinetics, removal effectiveness, binding intensity, mobility and mechanism. RSC Adv. 2017, 7, 33385–33401. [Google Scholar] [CrossRef]
- Xia, Z.H.; Zhang, S.R.; Cao, Y.R.; Zhong, Q.M.; Wang, G.Y.; Li, T.; Xu, X.X. Remediation of cadmium, lead and zinc in contaminated soil with CETSA and MA/AA. J. Hazard. Mater. 2019, 366, 177–183. [Google Scholar] [CrossRef]
- Cao, Y.R.; Zhang, S.R.; Wang, G.Y.; Li, T.; Xu, X.X.; Deng, O.P.; Zhang, Y.Z.; Pu, Y.L. Enhancing the soil heavy metals removal efficiency by adding HPMA and PBTCA along with plant washing agents. J. Hazard. Mater. 2017, 339, 33–42. [Google Scholar] [CrossRef]
- Shi, Z.Q.; Di Toro, D.M.; Allen, H.E.; Sparks, D.L. A general model for kinetics of heavy metal adsorption and desorption on soils. Environ. Sci. Technol. 2013, 47, 3761–3767. [Google Scholar] [CrossRef]
- Kulikowska, D.; Gusiatin, Z.M.; Bulkowska, K.; Klik, B. Feasibility of using humic substances from compost to remove heavy metals (Cd, Cu, Ni, Pb, Zn) from contaminated soil aged for different periods of time. J. Hazard. Mater. 2015, 300, 882–891. [Google Scholar] [CrossRef]
- Simić, M.; Petrović, J.; Koprivica, M.; Ercegović, M.; Dimitrijević, J.; Vuković, N.S.; Fiol, N. Efficient Adsorption of Lead on Hydro-Pyrochar Synthesized by Two-Step Conversion of Corn Cob in Magnesium Chloride Medium. Toxics 2025, 13, 459. [Google Scholar] [CrossRef]
- Klik, B.; Gusiatin, Z.M.; Kulikowska, D. A holistic approach to remediation of soil contaminated with Cu, Pb and Zn with sewage sludge-derived washing agents and synthetic chelator. J. Clean. Prod. 2021, 311, 127664. [Google Scholar] [CrossRef]
- Chen, C.L.; Tian, T.; Wang, M.K.; Wang, G. Release of Pb in soils washed with various extractants. Geoderma 2016, 275, 74–81. [Google Scholar] [CrossRef]
- Li, J.S.; Chen, Z.; Wang, Q.M.; Fang, L.; Xue, Q.; Cheeseman, C.R.; Donatello, S.; Liu, L.; Poon, C.S. Change in re-use value of incinerated sewage sludge ash due to chemical extraction of phosphorus. Waste Manag. 2018, 74, 404–412. [Google Scholar] [CrossRef]
- Chen, W.; Peng, L.; Hu, K.R.; Zhang, Z.; Peng, C.H.; Teng, C.Y.; Zhou, K.G. Spectroscopic response of soil organic matter in mining area to Pb/Cd heavy metal interaction: A mirror of coherent structural variation. J. Hazard. Mater. 2020, 393, 122425. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.B.; Zhao, J.; Dong, C.X.; Wu, L.H.; Hu, P.J. Remediation of metal-contaminated paddy soils by chemical washing with FeCl3 and citric acid. J. Soils Sediments 2018, 18, 1020–1028. [Google Scholar] [CrossRef]
- Wei, M.; Chen, J.; Wang, Q. Remediation of sandy soil contaminated by heavy metals with Na2EDTA washing enhanced with organic reducing agents: Element distribution and spectroscopic analysis. Eur. J. Soil Sci. 2018, 69, 719–731. [Google Scholar] [CrossRef]
- He, J.; Lin, Q.T.; Luo, Y.R.; Liu, Y.X.; Fan, X.D.; Zheng, J.L.; Xu, K.H.; Ma, Y.J. Removal of arsenic from contaminated soils by combining tartaric acid with dithionite: An efficient composite washing agent. J. Environ. Chem. Eng. 2023, 11, 109877. [Google Scholar] [CrossRef]
- Wang, G.Y.; Pan, X.M.; Zhang, S.R.; Zhong, Q.M.; Zhou, W.; Zhang, X.H.; Wu, J.; Vijver, M.G.; Peijnenburg, W.J.G.M. Remediation of heavy metal contaminated soil by biodegradable chelator-induced washing: Efficiencies and mechanisms. Environ. Res. 2020, 186, 109554. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, J.M.; Huang, X.F.; Xia, B.; Su, C.Y.; Luo, G.F.; Xu, Y.W.; Wu, Y.X.; Mao, Z.W.; Qiu, R.L. Chelant extraction of heavy metals from contaminated soils using new selective EDTA derivatives. J. Hazard. Mater. 2013, 262, 464–471. [Google Scholar] [CrossRef]
- Basak, B.B. Phosphorus Release by Low Molecular Weight Organic Acids from Low-Grade Indian Rock Phosphate. Waste Biomass Valorization 2019, 10, 3225–3233. [Google Scholar] [CrossRef]
- Li, X.W.; Yang, J.; Chen, C.Z.; Vähätalo, A.V.; Riise, G.; Liu, C.Q.; Xiao, Y.H. Effects of mineral adsorption on the molecular composition of soil dissolved organic matter: Evidence from spectral analyses. Chem. Geol. 2024, 669, 122352. [Google Scholar] [CrossRef]
- Ren, X.H.; Yan, R.; Wang, H.C.; Kou, Y.Y.; Chae, K.J.; Kim, I.S.; Park, Y.J.; Wang, A.J. Citric acid and ethylene diamine tetra-acetic acid as effective washing agents to treat sewage sludge for agricultural reuse. Waste Manag. 2015, 46, 440–448. [Google Scholar] [CrossRef]
- Guo, X.F.; Zhao, G.H.; Zhang, G.X.; He, Q.S.; Wei, Z.B.; Zheng, W.; Qian, T.W.; Wu, Q.T. Effect of mixed chelators of EDTA, GLDA, and citric acid on bioavailability of residual heavy metals in soils and soil properties. Chemosphere 2018, 209, 776–782. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhou, J.; Xu, Z.J.; Zhu, P.R.; Liu, J.Y. Characterization of heavy metals in textile sludge with hydrothermal carbonization treatment. J. Hazard. Mater. 2021, 402, 123635. [Google Scholar] [CrossRef]
- Parolo, M.E.; Savini, M.C.; Loewy, R.M. Characterization of soil organic matter by FT-IR spectroscopy and its relationship with chlorpyrifos sorption. J. Environ. Manag. 2017, 196, 316–322. [Google Scholar] [CrossRef]
- Oancea, A.V.; Bodi, G.; Nica, V.; Ursu, L.E.; Drobota, M.; Cotofana, C.; Vasiliu, A.L.; Simionescu, B.C.; Olaru, M. Multi-analytical characterization of Cucuteni pottery. J. Eur. Ceram. Soc. 2017, 37, 5079–5098. [Google Scholar] [CrossRef]
- Adhikari, G.; Bhattacharyya, K.G. Impact of pulp and paper mill effluents and solid wastes on soil mineralogical and physicochemical properties. Environ. Monit. Assess. 2015, 187, 98. [Google Scholar] [CrossRef]
- Ramrakhiani, L.; Ghosh, S.; Mandal, A.K.; Majumdar, S. Utilization of multi-metal laden spent biosorbent for removal of glyphosate herbicide from aqueous solution and its mechanism elucidation. Chem. Eng. J. 2019, 361, 1063–1077. [Google Scholar] [CrossRef]
- Zhao, X.L.; Wang, Y.; Wu, H.Y.; Fang, L.C.; Liang, J.J.; Fan, Q.H.; Li, P. Insights into the effect of humic acid on Ni(II) sorption mechanism on illite: Batch, XPS and EXAFS investigations. J. Mol. Liq. 2017, 248, 1030–1038. [Google Scholar] [CrossRef]
- Qu, J.H.; Liu, Y.; Cheng, L.; Jiang, Z.; Zhang, G.S.; Deng, F.X.; Wang, L.; Han, W.; Zhang, Y. Green synthesis of hydrophilic activated carbon supported sulfide nZVI for enhanced Pb(II) scavenging from water: Characterization, kinetics, isotherms and mechanisms. J. Hazard. Mater. 2021, 403, 123607. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.J.; Wang, Z.; Teng, Y.F.; Sun, Y.; Wang, W.Z.; Zhang, H.L.; Chu, H.Y.; Zhang, J.X.; Liu, R.; Zhang, L.Y. Green modification of biochar with poly(aspartic acid) enhances the remediation of Cd and Pb in water and soil. J. Environ. Manag. 2024, 370, 122642. [Google Scholar] [CrossRef] [PubMed]
- Irshad, S.; Liu, G.J.; Yousaf, B.; Ali, M.U.; Ahmed, R.; Rehman, A.; Rashid, M.S.; Mahfooz, Y. Geochemical fractionation and spectroscopic fingerprinting for evaluation of the environmental transformation of potentially toxic metal(oid)s in surface-subsurface soils. Environ. Geochem. Health 2021, 43, 4329–4343. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.C.; Wang, Z.W.; Yue, R.R.; Gao, F.; Ren, R.L.; Wei, J.F.; Wane, X.L.; Kong, Z.Y. Functional group-rich hyperbranched magnetic material for simultaneous efficient removal of heavy metal ions from aqueous solution. J. Hazard. Mater. 2020, 384, 121288. [Google Scholar] [CrossRef] [PubMed]
Influence Factor | Experimental Parameter |
---|---|
AAILs type | Washing agent concentration of 0.3 mol/L, liquid–soil ratio of 4:1, washing time of 1440 min |
Washing agent concentration | Washing agent concentration of 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1.0 mol/L, liquid–soil ratio of 4:1, washing time of 1440 min |
Liquid–soil ratio | Washing agent concentration of 0.8 mol/L, liquid–soil ratio of 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, washing time of 1440 min |
Washing time | Washing agent concentration of 0.8 mol/L, liquid–soil ratio of 6:1, washing time of 15, 30, 60, 120, 240, 360, 480, 720, 1440 min |
Fraction | Extraction Solution | Extraction Method |
---|---|---|
F1 | 8 mL 1.00 mol/L MgCl2 | Oscillation for 1 h (25 °C, 150 r/min) |
F2 | 8 mL 1.00 mol/L CH3COONa (pH = 5) | Oscillation for 5 h (25 °C, 150 r/min) |
F3 | 20 mL 0.04 mol/L NH2OH·HCl | Water bath heating and batch stirring for 5 h (96 ± 2 °C) |
F4 | 3 mL 0.02 mol/L HNO3, 5 mL 30% H2O2 (pH = 2) | Water bath heating and batch stirring for 5 h (85 ± 2 °C) |
5 mL 30% H2O2 (pH = 2) | Water bath heating and batch stirring for 3 h (85 ± 2 °C) | |
5 mL 3.20 mol/L CH3COONH4 (dilution to 20 mL with 20% HNO3) | Oscillation for 30 min (25 °C, 150 r/min) | |
F5 | HNO3-HCl-HF | Microwave digestion |
Properties | Method/Instrument |
---|---|
Particle size | Laser particle size analyzer (BT-2003, Baite, Yueqing, China) |
pH | pH meter (SC-619, Mettler Toledo, Zurich, Switzerland) |
EC | Electrical conductivity meter (AB23EC, Ohaus, Parsippany, NJ, USA) |
OM | Potassium dichromate oxidation-spectrophotometric method |
CEC | Hexamminecobalt trichloride solution-spectrophotometric method |
Ex-Ca, Ex-Mg | Ammonium acetate solution-atomic absorption spectrophotometry method |
TN | Kjeldahl method |
TP | Alkali-fusion Mo-Sb anti spectrophotometric method |
TK | Alkali fusion-atomic absorption spectrophotometry |
AP | Sodium hydrogen carbonate solution-Mo-Sb anti spectrophotometric method |
AK | Ammonium acetate solution-atomic absorption spectrophotometry method |
Ca, Mg, Mn, Fe | Microwave digestion |
Characterization | Method/Instrument |
---|---|
Surface morphology | SEM (Tescan Mira4, Tescan, Brno, Czech Republic) |
Mineral composition | XRD (Ultima IV, Rigaku, Tokyo, Japan) |
Functional groups | FT-IR (Nicolet iS5, Thermo Scientific, Waltham, MA, USA) |
Chemical morphology | XPS (K-Alpha, Thermo Scientific, Waltham, MA, USA) |
Kinetic Model | Equation |
---|---|
Second order kinetic model | |
Elovich model | |
Diffusion model |
Characteristics | Before Washing | After Washing | |
---|---|---|---|
Basic properties | Sand/Silt/Clay (%) | 36/47/17 | 38/47/15 |
pH | 5.2 ± 0.1 | 2.0 ± 0.0 | |
EC (ms/cm) | 1.9 ± 0.2 | 4.5 ± 0.7 | |
OM (g/kg) | 7.2 ± 0.7 | 23.0 ± 0.8 | |
Exchange performance | CEC (cmol/kg) | 18.4 ± 0.1 | 19.4 ± 0.0 |
Ex-Ca (g/kg) | 4.5 ± 0.1 | 1.8 ± 0.2 | |
Ex-Mg (g/kg) | 2.3 ± 0.1 | 2.0 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Wang, S.; Fu, L.; Xue, W.; Zhang, C.; Deng, J.; Luo, X.; Liu, Y.; Zhao, D.; Mailhot, G. A Soil Washing Approach to Remediation of Lead-Contaminated Soil with Amino Acid Ionic Liquid [Met][NO3]. Toxics 2025, 13, 725. https://doi.org/10.3390/toxics13090725
Deng Y, Wang S, Fu L, Xue W, Zhang C, Deng J, Luo X, Liu Y, Zhao D, Mailhot G. A Soil Washing Approach to Remediation of Lead-Contaminated Soil with Amino Acid Ionic Liquid [Met][NO3]. Toxics. 2025; 13(9):725. https://doi.org/10.3390/toxics13090725
Chicago/Turabian StyleDeng, Yun, Sheng Wang, Lin Fu, Weijie Xue, Changbo Zhang, Jiawei Deng, Xin Luo, Yuyao Liu, Danyang Zhao, and Gilles Mailhot. 2025. "A Soil Washing Approach to Remediation of Lead-Contaminated Soil with Amino Acid Ionic Liquid [Met][NO3]" Toxics 13, no. 9: 725. https://doi.org/10.3390/toxics13090725
APA StyleDeng, Y., Wang, S., Fu, L., Xue, W., Zhang, C., Deng, J., Luo, X., Liu, Y., Zhao, D., & Mailhot, G. (2025). A Soil Washing Approach to Remediation of Lead-Contaminated Soil with Amino Acid Ionic Liquid [Met][NO3]. Toxics, 13(9), 725. https://doi.org/10.3390/toxics13090725