Effects of Prenatal Exposure to Ozone, Heatwave and Green Space on Neonatal Congenital Heart Disease: A Case-Control Study in Eastern China
Abstract
1. Introduction
2. Methods
2.1. Study Population
2.2. Covariates
2.3. Ozone Exposure Assessment
2.4. Green Space Assessment
2.5. Heatwave Identification
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. Maternal Ozone Exposure and CHD
3.3. Maternal Green Space Exposure and CHD
3.4. Maternal Heatwave Exposure and CHD
3.5. Sensitivity Analyses
3.6. Subgroup Analyses
3.7. Maternal Exposures and CHD Subtypes
3.8. Interaction Between Ozone, Green Space and Heatwave
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zimmerman, M.S.; Smith, A.G.C.; Sable, C.A.; Echko, M.M.; Wilner, L.B.; Olsen, H.E.; Kassebaum, N.J. Global, regional, and national burden of congenital heart disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Child Adolesc. Health 2020, 4, 185–200. [Google Scholar] [CrossRef]
- Baldacci, S.; Gorini, F.; Santoro, M.; Pierini, A.; Minichilli, F.; Bianchi, F. Environmental and individual exposure and the risk of congenital anomalies: A review of recent epidemiological evidence. Epidemiol. Prev. 2018, 42, 1–34. [Google Scholar] [CrossRef]
- Patel, S.S.; Burns, T.L. Nongenetic risk factors and congenital heart defects. Pediatr. Cardiol. 2013, 34, 1535–1555. [Google Scholar] [CrossRef]
- Williams, K.; Carson, J.; Lo, C. Genetics of Congenital Heart Disease. Biomolecules 2019, 9, 879. [Google Scholar] [CrossRef]
- Hu, C.Y.; Huang, K.; Fang, Y.; Yang, X.J.; Ding, K.; Jiang, W.; Hua, X.G.; Huang, D.Y.; Jiang, Z.X.; Zhang, X.J. Maternal air pollution exposure and congenital heart defects in offspring: A systematic review and meta-analysis. Chemosphere 2020, 253, 126668. [Google Scholar] [CrossRef] [PubMed]
- Rappazzo, K.M.; Nichols, J.L.; Rice, R.B.; Luben, T.J. Ozone exposure during early pregnancy and preterm birth: A systematic review and meta-analysis. Environ. Res. 2021, 198, 111317. [Google Scholar] [CrossRef]
- Klepac, P.; Locatelli, I.; Korošec, S.; Künzli, N.; Kukec, A. Ambient air pollution and pregnancy outcomes: A comprehensive review and identification of environmental public health challenges. Environ. Res. 2018, 167, 144–159. [Google Scholar] [CrossRef] [PubMed]
- Hwang, B.F.; Jaakkola, J.J. Ozone and other air pollutants and the risk of oral clefts. Environ. Health Perspect. 2008, 116, 1411–1415. [Google Scholar] [CrossRef] [PubMed]
- Kazi, D.S.; Katznelson, E.; Liu, C.L.; Al-Roub, N.M.; Chaudhary, R.S.; Young, D.E.; McNichol, M.; Mickley, L.J.; Kramer, D.B.; Cascio, W.E.; et al. Climate Change and Cardiovascular Health: A Systematic Review. JAMA Cardiol. 2024, 9, 748–757. [Google Scholar] [CrossRef]
- Wang, Y.; Ruan, Y.; Wan, X.; Wang, H.; Guo, J.; Wei, J.; Ma, S.; He, Y.; Zou, Z.; Li, J. Maternal exposure to ambient ozone and fetal congenital heart defects: A national multicenter study in China. J. Expo. Sci. Environ. Epidemiol. 2024, 35, 511–519. [Google Scholar] [CrossRef]
- Ma, Z.; Li, W.; Yang, J.; Qiao, Y.; Cao, X.; Ge, H.; Wang, Y.; Liu, H.; Tang, N.; Yang, X.; et al. Early prenatal exposure to air pollutants and congenital heart disease: A nested case-control study. Environ. Health Prev. Med. 2023, 28, 4. [Google Scholar] [CrossRef]
- Wan, X.; Wei, S.; Wang, Y.; Jiang, J.; Lian, X.; Zou, Z.; Li, J. The association between maternal air pollution exposure and the incidence of congenital heart diseases in children: A systematic review and meta-analysis. Sci. Total Environ. 2023, 892, 164431. [Google Scholar] [CrossRef]
- Astell-Burt, T.; Feng, X.; Kolt, G.S. Greener neighborhoods, slimmer people? Evidence from 246,920 Australians. Int. J. Obes. 2014, 38, 156–159. [Google Scholar] [CrossRef]
- Astell-Burt, T.; Feng, X.; Kolt, G.S. Is neighborhood green space associated with a lower risk of type 2 diabetes? Evidence from 267,072 Australians. Diabetes Care 2014, 37, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Demoury, C.; Thierry, B.; Richard, H.; Sigler, B.; Kestens, Y.; Parent, M.E. Residential greenness and risk of prostate cancer: A case-control study in Montreal, Canada. Environ. Int. 2017, 98, 129–136. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, Z.; Yu, L.; Xu, L.; Wu, Y.; Zhang, X.; Shen, P.; Lin, H.; Shui, L.; Tang, M.; et al. Residential greenness, air pollution and incident neurodegenerative disease: A cohort study in China. Sci. Total Environ. 2023, 878, 163173. [Google Scholar] [CrossRef]
- James, P.; Hart, J.E.; Banay, R.F.; Laden, F. Exposure to Greenness and Mortality in a Nationwide Prospective Cohort Study of Women. Environ. Health Perspect. 2016, 124, 1344–1352. [Google Scholar] [CrossRef] [PubMed]
- Villeneuve, P.J.; Jerrett, M.; Su, J.G.; Burnett, R.T.; Chen, H.; Wheeler, A.J.; Goldberg, M.S. A cohort study relating urban green space with mortality in Ontario, Canada. Environ. Res. 2012, 115, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.J.; Moon, H.; Yun, H.R.; Park, E.L.; Park, A.R.; Choi, H.; Hong, K.; Lee, J. Greenness, civil environment, and pregnancy outcomes: Perspectives with a systematic review and meta-analysis. Environ. Health A Glob. Access Sci. Source 2020, 19, 91. [Google Scholar] [CrossRef]
- Wang, M.; Wen, C.; Qi, H.; Xu, K.; Wei, M.; Xia, W.; Lv, L.; Duan, Z.; Zhang, J. Residential greenness and air pollution concerning excessive gestational weight gain during pregnancy: A cross-sectional study in Wuhan, China. Environ. Res. 2023, 217, 114866. [Google Scholar] [CrossRef]
- Klingberg, J.; Broberg, M.; Strandberg, B.; Thorsson, P.; Pleijel, H. Influence of urban vegetation on air pollution and noise exposure—A case study in Gothenburg, Sweden. Sci. Total Environ. 2017, 599–600, 1728–1739. [Google Scholar] [CrossRef] [PubMed]
- Ye, T.; Guo, Y.; Huang, W.; Zhang, Y.; Abramson, M.J.; Li, S. Heat Exposure, Preterm Birth, and the Role of Greenness in Australia. JAMA Pediatr. 2024, 178, 376–383. [Google Scholar] [CrossRef]
- Nguyen, P.Y.; Astell-Burt, T.; Rahimi-Ardabili, H.; Feng, X. Green Space Quality and Health: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 1028. [Google Scholar] [CrossRef]
- Matthews, H.D.; Wynes, S. Current global efforts are insufficient to limit warming to 1.5 °C. Science 2022, 376, 1404–1409. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, Y.; Ye, T.; Gasparrini, A.; Tong, S.; Overcenco, A.; Urban, A.; Schneider, A.; Entezari, A.; Vicedo-Cabrera, A.M.; et al. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: A three-stage modelling study. Lancet Planet. Health 2021, 5, e415–e425. [Google Scholar] [CrossRef]
- Ziskin, M.C.; Morrissey, J. Thermal thresholds for teratogenicity, reproduction, and development. Int. J. Hyperth. 2011, 27, 374–387. [Google Scholar] [CrossRef]
- Chersich, M.F.; Pham, M.D.; Areal, A.; Haghighi, M.M.; Manyuchi, A.; Swift, C.P.; Wernecke, B.; Robinson, M.; Hetem, R.; Boeckmann, M.; et al. Associations between high temperatures in pregnancy and risk of preterm birth, low birth weight, and stillbirths: Systematic review and meta-analysis. BMJ 2020, 371, m3811. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Wang, Q.; Zhao, W.; Ren, Z.; Zhang, H.; Jalaludin, B.; Benmarhnia, T.; Di, J.; Hu, H.; Wang, Y.; et al. Effects of extreme temperature on the risk of preterm birth in China: A population-based multi-center cohort study. Lancet Reg. Health. West. Pac. 2022, 24, 100496. [Google Scholar] [CrossRef]
- Lin, S.; Lin, Z.; Ou, Y.; Soim, A.; Shrestha, S.; Lu, Y.; Sheridan, S.; Luben, T.J.; Fitzgerald, E.; Bell, E.; et al. Maternal ambient heat exposure during early pregnancy in summer and spring and congenital heart defects—A large US population-based, case-control study. Environ. Int. 2018, 118, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Li, D.; Shao, Z.; You, Y.; Pan, F.; Lou, H.; Li, J.; Jin, Y.; Wu, T.; Pan, L.; et al. The prenatal weekly temperature exposure and neonatal congenital heart disease: A large population-based observational study in China. Environ. Sci. Pollut. Res. Int. 2023, 30, 38282–38291. [Google Scholar] [CrossRef]
- Xu, R.; Sun, H.; Zhong, Z.; Zheng, Y.; Liu, T.; Li, Y.; Liu, L.; Luo, L.; Wang, S.; Lv, Z.; et al. Ozone, Heat Wave, and Cardiovascular Disease Mortality: A Population-Based Case-Crossover Study. Environ. Sci. Technol. 2024, 58, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Stafoggia, M.; Michelozzi, P.; Schneider, A.; Armstrong, B.; Scortichini, M.; Rai, M.; Achilleos, S.; Alahmad, B.; Analitis, A.; Åström, C.; et al. Joint effect of heat and air pollution on mortality in 620 cities of 36 countries. Environ. Int. 2023, 181, 108258. [Google Scholar] [CrossRef]
- Data, C.E. China Economic Data—Macroeconomic Statistical Database. Available online: https://ceidata.cei.cn/ (accessed on 18 March 2025).
- Liu, R.L.; Wang, T.; Yao, Y.L.; Lv, X.Y.; Hu, Y.L.; Chen, X.Z.; Tang, X.J.; Zhong, Z.H.; Fu, L.J.; Luo, X.; et al. Association of ambient air pollutant mixtures with IVF/ICSI-ET clinical pregnancy rates during critical exposure periods. Hum. Reprod. Open 2024, 3, hoae051. [Google Scholar] [CrossRef]
- Hooyberghs, J.; Mensink, C.; Dumont, G.; Fierens, F. Spatial interpolation of ambient ozone concentrations from sparse monitoring points in Belgium. J. Environ. Monit. 2006, 8, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Dadvand, P.; Sunyer, J.; Basagaña, X.; Ballester, F.; Lertxundi, A.; Fernández-Somoano, A.; Estarlich, M.; García-Esteban, R.; Mendez, M.A.; Nieuwenhuijsen, M.J. Surrounding greenness and pregnancy outcomes in four Spanish birth cohorts. Environ. Health Perspect. 2012, 120, 1481–1487. [Google Scholar] [CrossRef]
- Hu, J.; Zeng, W.; Guo, Y.; Meng, R.; Huang, S.; Zhou, C.; Xiao, Y.; Yu, M.; Huang, B.; Lu, D.; et al. Modification and mediation effects of ozone on heatwave-mortality association: A time series study in five provinces of China. Environ. Pollut. 2025, 378, 126493. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, M.; Yin, F.; You, J.; Chen, Y.; Gao, L. Multi-scale evaluation of ERA5 air temperature and precipitation data over the Poyang Lake Basin of China. Water 2024, 16, 3123. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, Q.; Liang, Y.; Ruan, Z.; Acharya, B.K.; Zhang, S.; Qian, Z.; McMillin, S.E.; Hinyard, L.; Sun, J.; et al. Maternal air pollution exposure associated with risk of congenital heart defect in pre-pregnancy overweighted women. Sci. Total Environ. 2020, 712, 136470. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, J.; Yang, R.; Qian, Z.; Liang, S.; Bassig, B.A.; Zhang, Y.; Hu, K.; Xu, S.; Dong, G.; et al. Ozone and Other Air Pollutants and the Risk of Congenital Heart Defects. Sci. Rep. 2016, 6, 34852. [Google Scholar] [CrossRef]
- Liu, L.; Zeng, L.; Gao, L.; Zeng, J.; Lu, J. Ozone therapy for skin diseases: Cellular and molecular mechanisms. Int. Wound J. 2023, 20, 2376–2385. [Google Scholar] [CrossRef] [PubMed]
- Scassellati, C.; Galoforo, A.C.; Bonvicini, C.; Esposito, C.; Ricevuti, G. Ozone: A natural bioactive molecule with antioxidant property as potential new strategy in aging and in neurodegenerative disorders. Ageing Res. Rev. 2020, 63, 101138. [Google Scholar] [CrossRef]
- Inguscio, C.R.; Dalla Pozza, E.; Dando, I.; Boschi, F.; Tabaracci, G.; Angelini, O.; Picotti, P.M.; Malatesta, M.; Cisterna, B. Mitochondrial Features of Mouse Myoblasts Are Finely Tuned by Low Doses of Ozone: The Evidence In Vitro. Int. J. Mol. Sci. 2023, 24, 8900. [Google Scholar] [CrossRef] [PubMed]
- Cornelli, U.; Belcaro, G.; Cesarone, M.R.; Finco, A. Analysis of oxidative stress during the menstrual cycle. Reprod. Biol. Endocrinol. 2013, 11, 74. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, S.J.; Wan, S.C.; Li, X.; Chen, G. Ozone: Complicated effects in central nervous system diseases. Med. Gas Res. 2025, 15, 44–57. [Google Scholar] [CrossRef]
- Hwang, B.F.; Lee, Y.L.; Jaakkola, J.J. Air Pollution and the Risk of Cardiac Defects: A Population-Based Case-Control Study. Medicine 2015, 94, e1883. [Google Scholar] [CrossRef] [PubMed]
- Vinikoor-Imler, L.C.; Stewart, T.G.; Luben, T.J.; Davis, J.A.; Langlois, P.H. An exploratory analysis of the relationship between ambient ozone and particulate matter concentrations during early pregnancy and selected birth defects in Texas. Environ. Pollut. 2015, 202, 1–6. [Google Scholar] [CrossRef]
- Ritz, B.; Yu, F.; Fruin, S.; Chapa, G.; Shaw, G.M.; Harris, J.A. Ambient air pollution and risk of birth defects in Southern California. Am. J. Epidemiol. 2002, 155, 17–25. [Google Scholar] [CrossRef]
- Dadvand, P.; Rankin, J.; Rushton, S.; Pless-Mulloli, T. Ambient air pollution and congenital heart disease: A register-based study. Environ. Res. 2011, 111, 435–441. [Google Scholar] [CrossRef]
- Niu, Y.; Chen, R.; Xia, Y.; Cai, J.; Lin, Z.; Liu, C.; Chen, C.; Peng, L.; Zhao, Z.; Zhou, W.; et al. Personal Ozone Exposure and Respiratory Inflammatory Response: The Role of DNA Methylation in the Arginase-Nitric Oxide Synthase Pathway. Environ. Sci. Technol. 2018, 52, 8785–8791. [Google Scholar] [CrossRef]
- Fry, R.C.; Rager, J.E.; Bauer, R.; Sebastian, E.; Peden, D.B.; Jaspers, I.; Alexis, N.E. Air toxics and epigenetic effects: Ozone altered microRNAs in the sputum of human subjects. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014, 306, L1129–L1137. [Google Scholar] [CrossRef]
- Schembari, A.; Nieuwenhuijsen, M.J.; Salvador, J.; de Nazelle, A.; Cirach, M.; Dadvand, P.; Beelen, R.; Hoek, G.; Basagaña, X.; Vrijheid, M. Traffic-related air pollution and congenital anomalies in Barcelona. Environ. Health Perspect. 2014, 122, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Zhen, S.; Zheng, L.; Li, Q.; Yin, Z.; Cui, H.; Li, Y.; Wu, S.; Li, K.; Zhao, Y.; Liang, F.; et al. Maternal green space exposure and congenital heart defects: A population-based study. Environ. Res. 2025, 268, 120745. [Google Scholar] [CrossRef]
- Nie, Z.; Yang, B.; Ou, Y.; Bloom, M.S.; Han, F.; Qu, Y.; Nasca, P.; Matale, R.; Mai, J.; Wu, Y.; et al. Maternal residential greenness and congenital heart defects in infants: A large case-control study in Southern China. Environ. Int. 2020, 142, 105859. [Google Scholar] [CrossRef]
- Chen, L.; Yang, T.; Chen, L.; Wang, L.; Wang, T.; Zhao, L.; Ye, Z.; Zhang, S.; Luo, L.; Zheng, Z.; et al. Risk of congenital heart defects in offspring exposed to maternal diabetes mellitus: An updated systematic review and meta-analysis. Arch. Gynecol. Obstet. 2019, 300, 1491–1506. [Google Scholar] [CrossRef]
- Liao, J.; Chen, X.; Xu, S.; Li, Y.; Zhang, B.; Cao, Z.; Zhang, Y.; Liang, S.; Hu, K.; Xia, W. Effect of residential exposure to green space on maternal blood glucose levels, impaired glucose tolerance, and gestational diabetes mellitus. Environ. Res. 2019, 176, 108526. [Google Scholar] [CrossRef]
- Boyd, H.A.; Basit, S.; Behrens, I.; Leirgul, E.; Bundgaard, H.; Wohlfahrt, J.; Melbye, M.; Øyen, N. Association Between Fetal Congenital Heart Defects and Maternal Risk of Hypertensive Disorders of Pregnancy in the Same Pregnancy and Across Pregnancies. Circulation 2017, 136, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, M.P.; Wellenius, G.A.; James, P.; Subramanian, S.V.; Buka, S.; Eaton, C.; Gilman, S.E.; Loucks, E.B. Associations of types of green space across the life-course with blood pressure and body mass index. Environ. Res. 2020, 185, 109411. [Google Scholar] [CrossRef]
- Gascon, M.; Triguero-Mas, M.; Martínez, D.; Dadvand, P.; Rojas-Rueda, D.; Plasència, A.; Nieuwenhuijsen, M.J. Residential green spaces and mortality: A systematic review. Environ. Int. 2016, 86, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.Y.; Zijlema, W.L.; Triguero-Mas, M.; Donaire-Gonzalez, D.; Valentín, A.; Ballester, J.; Chan, E.Y.Y.; Goggins, W.B.; Mo, P.K.H.; Kruize, H.; et al. Does surrounding greenness moderate the relationship between apparent temperature and physical activity? Findings from the PHENOTYPE project. Environ. Res. 2021, 197, 110992. [Google Scholar] [CrossRef] [PubMed]
- McMorris, O.; Villeneuve, P.J.; Su, J.; Jerrett, M. Urban greenness and physical activity in a national survey of Canadians. Environ. Res. 2015, 137, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, C.; Webster, C.; Gallacher, J. Residential greenness and prevalence of major depressive disorders: A cross-sectional, observational, associational study of 94 879 adult UK Biobank participants. Lancet. Planet. Health 2018, 2, e162–e173. [Google Scholar] [CrossRef]
- Buijtendijk, M.F.J.; Barnett, P.; van den Hoff, M.J.B. Development of the human heart. Am. J. Med. Genet. Part C Semin. Med. Genet. 2020, 184, 7–22. [Google Scholar] [CrossRef]
- Tan, C.M.J.; Lewandowski, A.J. The Transitional Heart: From Early Embryonic and Fetal Development to Neonatal Life. Fetal Diagn. Ther. 2020, 47, 373–386. [Google Scholar] [CrossRef]
- Yu, X.; Miao, H.; Zeng, Q.; Wu, H.; Chen, Y.; Guo, P.; Zhu, Y. Associations between ambient heat exposure early in pregnancy and risk of congenital heart defects: A large population-based study. Environ. Sci. Pollut. Res. Int. 2022, 29, 7627–7638. [Google Scholar] [CrossRef] [PubMed]
- Auger, N.; Fraser, W.D.; Sauve, R.; Bilodeau-Bertrand, M.; Kosatsky, T. Risk of Congenital Heart Defects after Ambient Heat Exposure Early in Pregnancy. Environ. Health Perspect. 2017, 125, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Zhan, W.; Ju, W.; Hai, S.; Ferguson, G.; Quan, J.; Tang, C.; Guo, Z.; Kong, F. Satellite-derived subsurface urban heat island. Environ. Sci. Technol. 2014, 48, 12134–12140. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, Z.; Ni, B.; Xie, W.; Zhou, H.; Li, X. Independent and interactive effects of air pollutants and ambient heat exposure on congenital heart defects. Reprod. Toxicol. 2021, 104, 106–113. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, L.; Zeng, Y.; Liu, M.; Bi, J.; Ji, J.S. Effect of heatwaves and greenness on mortality among Chinese older adults. Environ. Pollut. 2021, 290, 118009. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Ma, L.; Ju, T. Independent and compound characteristics of PM(2.5), ozone, and extreme heat pollution events in Korea. Environ. Monit. Assess. 2024, 197, 49. [Google Scholar] [CrossRef]
- Limesand, S.W.; Camacho, L.E.; Kelly, A.C.; Antolic, A.T. Impact of thermal stress on placental function and fetal physiology. Anim. Reprod. 2018, 15, 886–898. [Google Scholar] [CrossRef]
- MacPhee, D.J.; Miskiewicz, E.I. The Potential Functions of Small Heat Shock Proteins in the Uterine Musculature during Pregnancy. In Advances in Anatomy, Embryology, and Cell Biology; Springer: Berlin/Heidelberg, Germany, 2017; Volume 222, pp. 95–116. [Google Scholar] [CrossRef]
- Kanninen, T.T.; Sisti, G.; Witkin, S.S. Induction of the 70 kDa heat shock protein stress response inhibits autophagy: Possible consequences for pregnancy outcome. J. Matern.-Fetal Neonatal Med. 2016, 29, 159–162. [Google Scholar] [CrossRef] [PubMed]
Total (n = 27,236) | CHD Cases (n = 6809) | Controls (n = 20,427) | p Value | |
---|---|---|---|---|
Maternal age (years, mean ± SD) | 30 ± 5 | 30 ± 5 | 30 ± 5 | 0.616 |
Gestational weeks (weeks, mean ± SD) | 38.29 ± 2.06 | 38.34 ± 2.04 | 38.27 ± 2.06 | 0.008 |
Infant sex (n, %) | 0.501 | |||
boys | 12,910 (47.40) | 3203 (47.04) | 9707 (47.52) | |
girls | 14,326 (52.60) | 3606 (52.96) | 10,720 (52.48) | |
Birth weight (kilograms) | 3.22 ± 0.62 | 3.25 ± 0.61 | 3.21 ± 0.62 | <0.001 |
Parity (n, %) | <0.001 | |||
primipara | 15,310 (56.21) | 4497 (66.04) | 10,813 (52.93) | |
multipara | 11,926 (43.79) | 2312 (33.96) | 9614 (47.07) | |
Singleton pregnancy (n, %) | 25,954 (95.29) | 6601 (96.95) | 19,353 (94.74) | <0.001 |
Conception seasons (n, %) | <0.001 | |||
spring | 6086 (22.35) | 1527 (22.43) | 4559 (22.32) | |
summer | 7016 (25.76) | 1570 (23.06) | 5446 (26.66) | |
fall | 7151 (26.25) | 1752 (25.73) | 5399 (26.43) | |
winter | 6983 (25.64) | 1960 (28.78) | 5023 (24.59) | |
Residential region (n, %) | <0.001 | |||
urban | 18,700 (68.66) | 4891 (71.83) | 13,809 (67.60) | |
rural | 8536 (31.34) | 1918 (28.17) | 6618 (32.40) | |
AYE (years) | 9.10 ± 0.52 | 9.19 ± 0.58 | 9.07 ± 0.49 | <0.001 |
Per capita disposable income (n, %) | <0.001 | |||
low-income | 10,957 (40.23) | 2461 (36.14) | 8496 (41.59) | |
high-income | 16,279 (59.77) | 4348 (63.86) | 11,931 (58.41) | |
O3 concentration (μg/m3, median (P25, P75)) | 106.47 (89.38, 120.86) | 108.07 (87.88, 122.58) | 105.97 (89.92, 120.48) | 0.034 |
NDVI (median (P25, P75)) | ||||
500 m buffer | 0.27 (0.21, 0.36) | 0.27 (0.20, 0.35) | 0.28 (0.21, 0.37) | <0.001 |
1000 m buffer | 0.29 (0.23, 0.39) | 0.28 (0.22, 0.38) | 0.30 (0.23, 0.40) | <0.001 |
1500 m buffer | 0.31 (0.24, 0.41) | 0.29 (0.23, 0.40) | 0.31 (0.24, 0.42) | <0.001 |
NOAA (n, %) | <0.001 | |||
no heatwave exposure | 16,345 (60.01) | 3829 (56.24) | 12,516 (61.27) | |
1 day | 4607 (16.92) | 1022 (15.01) | 3585 (17.55) | |
2 days | 2744 (10.07) | 886 (13.01) | 1858 (9.10) | |
3 days | 3540 (13.00) | 1072 (15.74) | 2468 (12.08) |
Model 1 | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | |
Ozone | ||||||
Q1 | Ref. | Ref. | Ref. | |||
Q2 | 0.71 (0.65, 0.77) | <0.001 | 0.80 (0.74, 0.87) | <0.001 | 0.83 (0.76, 0.90) | <0.001 |
Q3 | 0.78 (0.72, 0.84) | <0.001 | 0.96 (0.87, 1.05) | 0.367 | 0.96 (0.87, 1.05) | 0.358 |
Q4 | 1.17 (1.08, 1.26) | <0.001 | 1.45 (1.32, 1.59) | <0.001 | 1.40 (1.28, 1.54) | <0.001 |
p for trend | <0.001 | <0.001 | <0.001 | |||
per IQR increment | 1.00 (0.95, 1.03) | 0.718 | 1.11 (1.06, 1.17) | <0.001 | 1.07 (1.02, 1.13) | 0.012 |
NDVI in 500 m buffer | ||||||
Q1 | Ref. | Ref. | Ref. | |||
Q2 | 0.89 (0.82, 0.96) | 0.002 | 0.89 (0.83, 0.97) | 0.005 | 0.89 (0.82, 0.96) | 0.003 |
Q3 | 0.88 (0.82, 0.95) | 0.001 | 0.92 (0.84, 0.99) | 0.032 | 0.92 (0.85, 1.00) | 0.049 |
Q4 | 0.77 (0.71, 0.83) | <0.001 | 0.82 (0.75, 0.89) | <0.001 | 0.86 (0.79, 0.93) | <0.001 |
p for trend | <0.001 | <0.001 | 0.002 | |||
per IQR increment | 0.89 (0.86, 0.92) | <0.001 | 0.91 (0.88, 0.95) | <0.001 | 0.93 (0.90, 0.97) | <0.001 |
NDVI in 1000 m buffer | ||||||
Q1 | Ref. | Ref. | Ref. | |||
Q2 | 0.86 (0.80, 0.93) | <0.001 | 0.88 (0.82, 0.96) | 0.002 | 0.88 (0.81, 0.96) | 0.002 |
Q3 | 0.82 (0.76, 0.88) | <0.001 | 0.86 (0.79, 0.93) | <0.001 | 0.88 (0.81, 0.95) | 0.002 |
Q4 | 0.75 (0.69, 0.81) | <0.001 | 0.81 (0.74, 0.88) | <0.001 | 0.86 (0.79, 0.94) | <0.001 |
p for trend | <0.001 | <0.001 | 0.003 | |||
per IQR increment | 0.88 (0.85, 0.91) | <0.001 | 0.91 (0.88, 0.94) | <0.001 | 0.94 (0.90, 0.98) | 0.002 |
NDVI in 1500 m buffer | ||||||
Q1 | Ref. | Ref. | Ref. | |||
Q2 | 0.88 (0.82, 0.95) | 0.001 | 0.91 (0.84, 0.99) | 0.024 | 0.92 (0.85, 0.99) | 0.031 |
Q3 | 0.76 (0.71, 0.83) | <0.001 | 0.81 (0.75, 0.88) | <0.001 | 0.83 (0.77, 0.91) | <0.001 |
Q4 | 0.75 (0.69, 0.81) | <0.001 | 0.81 (0.75, 0.88) | <0.001 | 0.87 (0.80, 0.96) | 0.003 |
p for trend | <0.001 | <0.001 | <0.001 | |||
per IQR increment | 0.86 (0.83, 0.90) | <0.001 | 0.90 (0.86, 0.94) | <0.001 | 0.93 (0.89, 0.97) | 0.001 |
NOAA | ||||||
no heatwave exposure | Ref. | Ref. | Ref. | |||
1 day | 0.93 (0.86, 1.01) | 0.078 | 0.95 (0.88, 1.03) | 0.231 | 0.91 (0.84, 1.00) | 0.053 |
2 days | 1.56 (1.43, 1.70) | <0.001 | 1.48 (1.35, 1.62) | <0.001 | 1.31 (1.19, 1.44) | <0.001 |
3 days | 1.42 (1.31, 1.54) | <0.001 | 1.36 (1.25, 1.48) | <0.001 | 1.29 (1.18, 1.40) | <0.001 |
p for trend | <0.001 | <0.001 | <0.001 |
ASD | VSD | AVSD | PDA | |||||
---|---|---|---|---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | |
Ozone (per IQR increment) | 0.97 (0.91, 1.04) | 0.440 | 1.20 (1.06, 1.36) | 0.003 | 1.29 (1.15, 1.45) | <0.001 | 1.26 (1.17, 1.36) | <0.001 |
NDVI (per IQR increment) | ||||||||
500 m buffer | 0.90 (0.86, 0.95) | <0.001 | 0.96 (0.87, 1.04) | 0.328 | 0.99 (0.91, 1.07) | 0.758 | 0.93 (0.88, 0.98) | 0.005 |
1000 m buffer | 0.90 (0.86, 0.95) | <0.001 | 0.97 (0.88, 1.06) | 0.484 | 0.98 (0.90, 1.06) | 0.606 | 0.92 (0.87, 0.97) | 0.006 |
1500 m buffer | 0.90 (0.85, 0.95) | <0.001 | 0.97 (0.88, 1.07) | 0.568 | 0.97 (0.89, 1.07) | 0.565 | 0.91 (0.86, 0.97) | 0.003 |
NOAA | ||||||||
no heatwave exposure | Ref. | Ref. | Ref. | Ref. | ||||
1 day | 0.72 (0.64, 0.80) | <0.001 | 1.01 (0.84, 1.20) | 0.951 | 1.28 (1.09, 1.51) | 0.002 | 1.06 (0.95, 1.18) | 0.274 |
2 days | 1.39 (1.24, 1.56) | <0.001 | 0.95 (0.75, 1.19) | 0.652 | 1.54 (1.27, 1.85) | <0.001 | 1.07 (0.94, 1.21) | 0.329 |
3 days | 1.27 (1.14, 1.42) | <0.001 | 1.29 (1.06, 1.56) | 0.010 | 1.42 (1.18, 1.70) | <0.001 | 1.42 (1.24, 1.61) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Li, T.; Shi, L.; Li, D.; Fox, M.A. Effects of Prenatal Exposure to Ozone, Heatwave and Green Space on Neonatal Congenital Heart Disease: A Case-Control Study in Eastern China. Toxics 2025, 13, 716. https://doi.org/10.3390/toxics13090716
Zhang W, Li T, Shi L, Li D, Fox MA. Effects of Prenatal Exposure to Ozone, Heatwave and Green Space on Neonatal Congenital Heart Disease: A Case-Control Study in Eastern China. Toxics. 2025; 13(9):716. https://doi.org/10.3390/toxics13090716
Chicago/Turabian StyleZhang, Weizhe, Tiezheng Li, Leiyu Shi, Die Li, and Mary A. Fox. 2025. "Effects of Prenatal Exposure to Ozone, Heatwave and Green Space on Neonatal Congenital Heart Disease: A Case-Control Study in Eastern China" Toxics 13, no. 9: 716. https://doi.org/10.3390/toxics13090716
APA StyleZhang, W., Li, T., Shi, L., Li, D., & Fox, M. A. (2025). Effects of Prenatal Exposure to Ozone, Heatwave and Green Space on Neonatal Congenital Heart Disease: A Case-Control Study in Eastern China. Toxics, 13(9), 716. https://doi.org/10.3390/toxics13090716