Adsorptive Removal Behavior of Two Activated Carbons for Bis(2-ethylhexyl) Phosphate Dissolved in Water
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Material Characterization
2.3. Batch Experiments
2.4. Column Experiments
3. Results
3.1. Characterization
3.2. Batch Adsorption Behavior
3.3. Column Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tkac, P.; Vandegrift, G.F.; Lumetta, G.J.; Gelis, A.V. Study of the interaction between HDEHP and CMPO and its effect on the extraction of selected lanthanides. Ind. Eng. Chem. Res. 2012, 51, 10433–10444. [Google Scholar] [CrossRef]
- Batchu, N.K.; Vander Hoogerstraete, T.; Banerjee, D.; Binnemans, K. Separation of rare-earth ions from ethylene glycol (+LiCl) solutions by non-aqueous solvent extraction with Cyanex 923. RSC Adv. 2017, 7, 45351–45362. [Google Scholar] [CrossRef]
- Yang, X.; Xu, L.; Zhang, A.; Xiao, C. Organophosphorus Extractants: A Critical Choice for Actinides/Lanthanides Separation in Nuclear Fuel Cycle. Chem.—A Eur. J. 2023, 29, e202300456. [Google Scholar] [CrossRef]
- Adonis, S.; Oosthuysen, T. Evaluation of scandium sorption using modified Amberlite XAD-4 resin. Monatshefte Chem.—Chem. Mon. 2022, 153, 1185–1196. [Google Scholar] [CrossRef]
- Fan, J.; Duan, L.; Wang, Y.; Zhang, X.; Chen, G.; Liang, J.; Tian, X.; Li, Z. Automated separation of Am from Sm by two-stage polymer-based HDEHP extraction chromatography. Colloids Surf. A Physicochem. Eng. Asp. 2022, 654, 130080. [Google Scholar] [CrossRef]
- Su, W.; Chen, J.; Jing, Y. Aqueous partition mechanism of organophosphorus extractants in rare earths extraction. Ind. Eng. Chem. Res. 2016, 55, 8424–8431. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, L.; Qi, L.; Dong, Z. A novel organophosphorus acid anhydrolase from deep sea sediment with high degradation efficiency for organophosphorus pesticides and nerve agent. Microorganisms 2022, 10, 1112. [Google Scholar] [CrossRef]
- Zhao, S.; Xu, W.; Zhang, W.; Wu, H.; Guang, C.; Mu, W. In-depth biochemical identification of a novel methyl parathion hydrolase from Azohydromonas australica and its high effectiveness in the degradation of various organophosphorus pesticides. Bioresour. Technol. 2021, 323, 124641. [Google Scholar] [CrossRef]
- Pedroso, M.M.; Ely, F.; Mitic, N.; Carpenter, M.C.; Gahan, L.R.; Wilcox, D.E.; Larrabee, J.L.; Ollis, D.L.; Schenk, G. Comparative investigation of the reaction mechanisms of the organophosphate-degrading phosphotriesterases from Agrobacterium radiobacter (OpdA) and Pseudomonas diminuta (OPH). J. Biol. Inorg. Chem. 2014, 19, 1263–1275. [Google Scholar] [CrossRef] [PubMed]
- Lourthuraj, A.A.; Hatshan, M.R.; Hussein, D.S. Biocatalytic degradation of organophosphate pesticide from the wastewater and hydrolytic enzyme properties of consortium isolated from the pesticide contaminated water. Environ. Res. 2022, 205, 112553. [Google Scholar] [CrossRef] [PubMed]
- Mameda, N.; Park, H.; Choo, K.H. Electrochemical filtration process for simultaneous removal of refractory organic and particulate contaminants from wastewater effluents. Water Res. 2018, 144, 699–708. [Google Scholar] [CrossRef]
- Wei, X.; Ni, H. Efficient electrochemical degradation of TBP using a Ti/SnO2-Sb/F-PbO2 electrode. Mater. Lett. 2024, 366, 136474. [Google Scholar] [CrossRef]
- Lian, W.; Yi, X.; Huang, K.; Tang, T.; Wang, R.; Tao, X.; Zheng, Z.; Dang, Z.; Yin, H.; Lu, G. Degradation of tris(2-chloroethyl) phosphate (TCEP) in aqueous solution by using pyrite activating persulfate to produce radicals. Ecotoxicol. Environ. Saf. 2019, 174, 667–674. [Google Scholar] [CrossRef]
- Chen, B.; Xu, J.; Zhu, L. Controllable chemical redox reactions to couple microbial degradation for organic contaminated sites remediation: A review. J. Environ. Sci. 2024, 139, 428–445. [Google Scholar] [CrossRef]
- Khedr, T.; Hammad, A.A.; Elmarsafy, A.M.; Halawa, E.; Soliman, M. Degradation of some organophosphorus pesticides in aqueous solution by gamma irradiation. J. Hazard. Mater. 2019, 373, 23–28. [Google Scholar] [CrossRef]
- Zhao, Y.; Qin, K.; Zhou, Y.; Liu, W.; Gao, Z.; Peng, Y. Hierarchically porous Cu-MOF fiber membrane enables instantaneous and continuous removal of organophosphorus pesticides in water. J. Environ. Chem. Eng. 2025, 13, 115877. [Google Scholar] [CrossRef]
- Pastukhov, A.M.; Skripchenko, S.Y.; Titova, S.M. Application of ceramic membranes for purification of solvent extraction process wastewaters from tributyl phosphate. In Proceedings of the Physics, Technologies and Innovation (PTI-2019): Proceedings of the VI International Young Researchers’ Conference, Ekaterinburg, Russia, 20–23 May 2019. [Google Scholar]
- Mishra, S.; Anand, P.V.; Patra, C.; Sinha, P.K.; Mukhopadhyay, C.; Ravi, J.; Sivakumar, D.; Desigan, N.; Rajesh, P.; Rajeev, R.; et al. Solvent wash studies for the removal of di-butyl phosphate from spent solvent under simulated PUREX condition. J. Radioanal. Nucl. Chem. 2023, 332, 343–353. [Google Scholar] [CrossRef]
- Manohar, S.; Narayan Kutty, K.; Shah, B.V.; Wattal, P.K.; Bajoria, S.L.; Kolhe, N.S.; Rathod, V.K. Removal of dissolved Trin-butyl phosphate from aqueous streams of reprocessing origin: Engineering scale studies. Desalin. Water. Treat. 2012, 38, 146–150. [Google Scholar] [CrossRef]
- Wang, S.; Yu, G.; Wang, J. Treatment of tributyl phosphate by fenton oxidation: Optimization of parameter, degradation kinetics and pathway. Chemosphere 2023, 317, 137889. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Zeng, X.; Guo, F.; Wang, C.; Wang, H.; Zhao, Z.; Man, S.; Yan, Q. Simultaneous tributyl phosphate (TBP) removal and P recovery through electro-Fenton (EF): Process exploring and mechanism probing. J. Environ. Chem. Eng. 2025, 13, 115352. [Google Scholar] [CrossRef]
- Wang, C.; Yu, G.; Wang, J. Fenton oxidative degradation of spent organic solvents from nuclear fuel reprocessing plant. Prog. Nucl. Energy 2020, 130, 103563. [Google Scholar] [CrossRef]
- Zhu, X.; Li, B.; Yang, J.; Li, Y.; Zhao, W.; Shi, J.; Gu, J. Effective Adsorption and Enhanced Removal of Organophosphorus Pesticides from Aqueous Solution by Zr-Based MOFs of UiO-67. ACS Appl. Mater. Interfaces 2014, 7, 223–231. [Google Scholar] [CrossRef]
- Cheng, S.; Zhang, L.; Ma, A.; Xia, H.; Peng, J.; Li, C.; Shu, J. Comparison of activated carbon and iron/cerium modified activated carbon to remove methylene blue from wastewater. J. Environ. Sci. 2018, 65, 92–102. [Google Scholar] [CrossRef]
- Bakhiia, T.; Toropov, A.; Nevolin, I.; Maslakov, K.; Romanchuk, A.; Kalmykov, S. Carbon materials for effective purification of aqueous solutions from tributyl phosphate. Phys. Chem. Chem. Phys. 2024, 26, 25977–25985. [Google Scholar] [CrossRef]
- Zhuang, S.; Wang, J. Adsorptive removal of pharmaceutical pollutants by defective metal organic framework UiO-66: Insight into the contribution of defects. Chemosphere 2021, 281, 130997. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Deng, S.; Li, D.; Ren, L.; Wang, B.; Huang, J.; Wang, Y.; Yu, G. Adsorptive removal of organophosphate flame retardants from water by non-ionic resins. Chem. Eng. J. 2018, 354, 105–112. [Google Scholar] [CrossRef]
- Zhuang, S.; Cheng, R.; Wang, J. Adsorption of diclofenac from aqueous solution using UiO-66-type metal-organic frameworks. Chem. Eng. J. 2019, 359, 354–362. [Google Scholar] [CrossRef]
- Pandey, N.K.; Velavendan, P.; Geetha, R.; Ahmed, M.K.; Koganti, S.B. Adsorption kinetics and breakthrough behavior of Tri-n-butyl phosphate on Amberlite XAD-4 resin. J. Nucl. Sci. Technol. 2012, 35, 370–378. [Google Scholar] [CrossRef]
- Alrefaee, S.H.; Aljohani, M.; Alkhamis, K.; Shaaban, F.; El-Desouky, M.G.; El-Bindary, A.A.; El-Bindary, M.A. Adsorption and effective removal of organophosphorus pesticides from aqueous solution via novel metal-organic framework: Adsorption isotherms, kinetics, and optimization via Box-Behnken design. J. Mol. Liq. 2023, 384, 122206. [Google Scholar] [CrossRef]
- Kulemin, V.V.; Kulyukhin, S.A. Sorption Treatment of Nitric Acid Solutions to Remove Tributyl Phosphate and Hexachlorobutadiene. Radiochemistry 2024, 66, 58–63. [Google Scholar] [CrossRef]
- Kulemin, V.V.; Kostikova, G.V.; Kulyukhin, S.A. Sorption Treatment of Aqueous and Organic Media to Remove Tributyl Phosphate and Acidic Products of Its Decomposition. Radiochemistry 2024, 66, 50–57. [Google Scholar] [CrossRef]
- Rao, S.V.S.; Raj, S.S.; Lal, K.B.; Srinivasan, M.P.; Narasimham, S.V.; Panicker, P.K. Removal ofn-Tributyl Phosphate from Synthetic Intermediate Level Waste. Sep. Sci. Technol. 1996, 31, 1011–1017. [Google Scholar] [CrossRef]
- Wang, W.; Deng, S.; Li, D.; Ren, L.; Shan, D.; Wang, B.; Huang, J.; Wang, Y.; Yu, G. Sorption behavior and mechanism of organophosphate flame retardants on activated carbons. Chem. Eng. J. 2018, 332, 286–292. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, J.; Chen, X.; Yang, W.; Pei, H.; Hu, N.; Li, Z.; Suo, Y.; Li, T.; Wang, J. The simultaneous detection and removal of organophosphorus pesticides by a novel Zr-MOF based smart adsorbent. J. Mater. Chem. A 2018, 6, 2184–2192. [Google Scholar] [CrossRef]
- Yin, Y.; Xu, G.; Xu, Y.; Guo, M.; Xiao, Y.; Ma, T.; Liu, C. Adsorption of inorganic and organic phosphorus onto polypyrrole modified red mud: Evidence from batch and column experiments. Chemosphere 2022, 286, 131862. [Google Scholar] [CrossRef]
- Dong, H.; Ning, S.; Li, Z.; Xu, S.; Hu, F.; Gao, F.; Wang, Y.; Chen, L.; Yin, X.; Fujita, T.; et al. Precise separation and efficient recovery of Pd(II) from high-level liquid waste by XAD-based adsorbents. Rare Metals 2024, 43, 5372–5390. [Google Scholar] [CrossRef]
- He, X.; Tang, J.; Wang, Z.; Feng, W.; Yan, Q.; Wei, Y.; Watabe, H.; Li, W.; Ning, S.; Chen, L. Method and mechanism for efficient radium isolation from bulk thorium based on anion exchange. Chem. Eng. J. 2024, 496, 154283. [Google Scholar] [CrossRef]
- Chen, L.; Yin, X.; Yu, Q.; Siming, L.; Meng, F.; Ning, S.; Wang, X.; Wei, Y. Rapid and selective capture of perrhenate anion from simulated groundwater by a mesoporous silica-supported anion exchanger. Microporous Mesoporous Mater. 2019, 274, 155–162. [Google Scholar] [CrossRef]
- Tang, J.; Liao, L.; He, X.; Lv, L.; Yin, X.; Li, W.; Wei, Y.; Ning, S.; Chen, L. Efficient separation of radium from natural thorium using a mesoporous silica-supported composite resin with sulfonic acid groups for the acquisition of targeted α-nuclides 212Pb. Chem. Eng. J. 2024, 485, 150022. [Google Scholar] [CrossRef]
- He, X.; Feng, W.; Wang, Z.; Ning, S.; Lv, L.; Chen, L.; Li, W.; Yin, X.; Wei, Y.; Watabe, H. An advanced separation method for the acquisition of 212Pb/212Bi from natural thorium. Chem. Eng. J. 2024, 502, 157971. [Google Scholar] [CrossRef]
- Shokry, H.; Elkady, M.; Hamad, H. Nano activated carbon from industrial mine coal as adsorbents for removal of dye from simulated textile wastewater: Operational parameters and mechanism study. J. Mater. Res. Technol. 2019, 8, 4477–4488. [Google Scholar] [CrossRef]
- Islam, M.N.; Sarker, J.; Khatton, A.; Hossain, S.M.M.; Sikder, H.A.; Ahmed, R.; Chowdhury, A.M.S. Synthesis and characterization of activated carbon prepared from jute stick charcoal for industrial uses. Sch. Int. J. Chem. Mater. Sci. 2022, 5, 33–39. [Google Scholar] [CrossRef]
- Xu, S.; Ning, S.; Wang, Y.; Wang, X.; Dong, H.; Chen, L.; Yin, X.; Fujita, T.; Wei, Y. Precise separation and efficient enrichment of palladium from wastewater by amino-functionalized silica adsorbent. J. Clean. Prod. 2023, 396, 136479. [Google Scholar] [CrossRef]
Materials | BET Specific Surface Area (m2/g) | Pore Volume (mL/g) | Average Pore Diameter (nm) |
---|---|---|---|
CSAC | 957 | 0.49 | 3.32 |
CBAC | 658 | 0.40 | 4.19 |
Materials | Qe (exp) (mg/g) | PFO | PSO | ||||
---|---|---|---|---|---|---|---|
Qe (mg/g) | k1 (min−1) | R2 | Qe (mg/g) | k2 (mg·g−1·min−1) | R2 | ||
CSAC | 193.2 | 180.9 | 0.0306 | 0.957 | 194.6 | 0.0019 | 0.999 |
CBAC | 124.1 | 113.7 | 0.0973 | 0.964 | 117.6 | 9.5 × 10−4 | 0.998 |
Materials | Langmuir Model | Freundlich Model | R-P Model | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Qm | KL | R2 | KF | n | R2 | KR | a | b | R2 | |
CSAC | 354.7 | 0.0169 | 0.963 | 23.98 | 2.15 | 0.876 | 4.27 | 7.39 × 10−4 | 1.51 | 0.984 |
CBAC | 155.6 | 0.0369 | 0.979 | 26.54 | 3.20 | 0.950 | 8.98 | 0.121 | 0.869 | 0.992 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Tang, J.; Wang, Z.; Wang, H.; Feng, W.; Chen, J.; Yan, Q.; Ning, S.; Li, W.; Wei, Y.; et al. Adsorptive Removal Behavior of Two Activated Carbons for Bis(2-ethylhexyl) Phosphate Dissolved in Water. Toxics 2025, 13, 624. https://doi.org/10.3390/toxics13080624
Chen L, Tang J, Wang Z, Wang H, Feng W, Chen J, Yan Q, Ning S, Li W, Wei Y, et al. Adsorptive Removal Behavior of Two Activated Carbons for Bis(2-ethylhexyl) Phosphate Dissolved in Water. Toxics. 2025; 13(8):624. https://doi.org/10.3390/toxics13080624
Chicago/Turabian StyleChen, Lifeng, Jing Tang, Zhuo Wang, Hongling Wang, Wannian Feng, Junjie Chen, Qingqing Yan, Shunyan Ning, Wenlong Li, Yuezhou Wei, and et al. 2025. "Adsorptive Removal Behavior of Two Activated Carbons for Bis(2-ethylhexyl) Phosphate Dissolved in Water" Toxics 13, no. 8: 624. https://doi.org/10.3390/toxics13080624
APA StyleChen, L., Tang, J., Wang, Z., Wang, H., Feng, W., Chen, J., Yan, Q., Ning, S., Li, W., Wei, Y., & Wu, D. (2025). Adsorptive Removal Behavior of Two Activated Carbons for Bis(2-ethylhexyl) Phosphate Dissolved in Water. Toxics, 13(8), 624. https://doi.org/10.3390/toxics13080624