Influence of Different Nicotine Sources on Exercise-Driven Immune Responses of Peripheral Blood Monocytes
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Cohort and Design
2.3. Consumption of Nicotine Delivery Systems and Combustible Cigarette
2.4. Ergospirometry
2.5. Staining of Monocyte Subsets in Whole Blood
2.6. FACS Analysis
2.7. Cytokine Analysis
2.8. Statistical Analyses
3. Results
3.1. Monocyte Subset Distribution and PD-L1 Expression
3.2. Cytokine Secretion upon Smoking and Acute Exercise
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnson, Y.; Shoenfeld, Y.; Amital, H. Effects of tobacco smoke on immunity, inflammation and autoimmunity. J. Autoimmun. 2010, 34, J258–J265. [Google Scholar] [CrossRef] [PubMed]
- Moszczynski, P.; Zabinski, Z.; Moszczynski, P., Jr.; Rutowski, J.; Slowinski, S.; Tabarowski, Z. Immunological findings in cigarette smokers. Toxicol. Lett. 2001, 118, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Kastelein, T.E.; Duffield, R.; Marino, F.E. Acute Immune-Inflammatory Responses to a Single Bout of Aerobic Exercise in Smokers; The Effect of Smoking History and Status. Front. Immunol. 2015, 6, 634. [Google Scholar] [CrossRef]
- Lushniak, B.D. A historic moment: The 50th anniversary of the first Surgeon General’s Report on Smoking and Health. Public Health Rep. 2014, 129, 5–6. [Google Scholar] [CrossRef] [PubMed]
- Klein, J.; Diaba-Nuhoho, P.; Giebe, S.; Brunssen, C.; Morawietz, H. Regulation of endothelial function by cigarette smoke and next-generation tobacco and nicotine products. Pflug. Arch. Eur. J. Physiol. 2023, 475, 835–844. [Google Scholar] [CrossRef]
- Kelesidis, T.; Tran, E.; Arastoo, S.; Lakhani, K.; Heymans, R.; Gornbein, J.; Middlekauff, H.R. Elevated Cellular Oxidative Stress in Circulating Immune Cells in Otherwise Healthy Young People Who Use Electronic Cigarettes in a Cross-Sectional Single-Center Study: Implications for Future Cardiovascular Risk. J. Am. Heart Assoc. 2020, 9, e016983. [Google Scholar] [CrossRef]
- Bracken-Clarke, D.; Kapoor, D.; Baird, A.M.; Buchanan, P.J.; Gately, K.; Cuffe, S.; Finn, S.P. Vaping and lung cancer—A review of current data and recommendations. Lung Cancer 2021, 153, 11–20. [Google Scholar] [CrossRef]
- Giebe, S.; Brux, M.; Hofmann, A.; Lowe, F.; Breheny, D.; Morawietz, H.; Brunssen, C. Comparative study of the effects of cigarette smoke versus next-generation tobacco and nicotine product extracts on inflammatory biomarkers of human monocytes. Pflug. Arch. Eur. J. Physiol. 2023, 475, 823–833. [Google Scholar] [CrossRef]
- Wadley, A.J.; Cullen, T.; Vautrinot, J.; Keane, G.; Bishop, N.C.; Coles, S.J. High intensity interval exercise increases the frequency of peripheral PD-1+ CD8(+) central memory T-cells and soluble PD-L1 in humans. Brain Behav. Immun. Health 2020, 3, 100049. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, D.Z.; Zhu, C.L.; Ren, S.C.; Sun, C.Y.; Wang, Y.; Wang, J.F. The implication of targeting PD-1:PD-L1 pathway in treating sepsis through immunostimulatory and anti-inflammatory pathways. Front. Immunol. 2023, 14, 1323797. [Google Scholar] [CrossRef]
- Falarowski, C.; Pieper, E.; Rabenstein, A.; Mallock-Ohnesorg, N.; Burgmann, N.; Franzen, K.; Gertzen, M.; Koller, G.; Nowak, D.; Rahofer, A.; et al. Disposable e-cigarettes and their nicotine delivery, usage pattern, and subjective effects in occasionally smoking adults. Sci. Rep. 2025, 15, 16270. [Google Scholar] [CrossRef]
- Mallock-Ohnesorg, N.; Rabenstein, A.; Stoll, Y.; Gertzen, M.; Rieder, B.; Malke, S.; Burgmann, N.; Laux, P.; Pieper, E.; Schulz, T.; et al. Small pouches, but high nicotine doses-nicotine delivery and acute effects after use of tobacco-free nicotine pouches. Front. Pharmacol. 2024, 15, 1392027. [Google Scholar] [CrossRef]
- Polasky, C.; Steffen, A.; Loyal, K.; Lange, C.; Bruchhage, K.L.; Pries, R. Redistribution of Monocyte Subsets in Obstructive Sleep Apnea Syndrome Patients Leads to an Imbalanced PD-1/PD-L1 Cross-Talk with CD4/CD8 T Cells. J. Immunol. 2021, 206, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Schrank, T.; Weir, W.; Lal, A.; Landess, L.; Lenze, N.; Hackman, T. Quantifying smoking exposure, genomic correlates, and related risk of treatment failure in p16+ squamous cell carcinoma of the oropharynx. Laryngoscope Investig. Otolaryngol. 2021, 6, 1376–1382. [Google Scholar] [CrossRef] [PubMed]
- Piaggeschi, G.; Rolla, S.; Rossi, N.; Brusa, D.; Naccarati, A.; Couvreur, S.; Spector, T.D.; Roederer, M.; Mangino, M.; Cordero, F.; et al. Immune Trait Shifts in Association With Tobacco Smoking: A Study in Healthy Women. Front. Immunol. 2021, 12, 637974. [Google Scholar] [CrossRef]
- Mohr, T.; Probst, E.; Idel, C.; Plotze-Martin, K.; Fleckner, J.; Rades, D.; Dromann, D.; Bohnet, S.; Bruchhage, K.L.; Franzen, K.F.; et al. Different Influence Pattern of Conventional and Alternative Sources of Smoking on Adhesion Molecules and Cytokine Secretion in THP-1 Monocytes. Anticancer. Res. 2024, 44, 1455–1464. [Google Scholar] [CrossRef] [PubMed]
- Cass, S.P.; Mekhael, O.; Thayaparan, D.; McGrath, J.J.C.; Revill, S.D.; Fantauzzi, M.F.; Wang, P.; Reihani, A.; Hayat, A.I.; Stevenson, C.S.; et al. Increased Monocyte-Derived CD11b(+) Macrophage Subpopulations Following Cigarette Smoke Exposure Are Associated With Impaired Bleomycin-Induced Tissue Remodelling. Front. Immunol. 2021, 12, 740330. [Google Scholar] [CrossRef]
- Simpson, R.J.; McFarlin, B.K.; McSporran, C.; Spielmann, G.; Hartaigh, B.O.; Guy, K. Toll-like receptor expression on classic and pro-inflammatory blood monocytes after acute exercise in humans. Brain Behav. Immun. 2009, 23, 232–239. [Google Scholar] [CrossRef]
- Dave, K.; Ali, A.; Magalhaes, M. Increased expression of PD-1 and PD-L1 in oral lesions progressing to oral squamous cell carcinoma: A pilot study. Sci. Rep. 2020, 10, 9705. [Google Scholar] [CrossRef]
- Ishida, Y.; Agata, Y.; Shibahara, K.; Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992, 11, 3887–3895. [Google Scholar] [CrossRef]
- Sharpe, A.H.; Pauken, K.E. The diverse functions of the PD1 inhibitory pathway, Nature reviews. Immunology 2018, 18, 153–167. [Google Scholar] [PubMed]
- Thibult, M.L.; Mamessier, E.; Gertner-Dardenne, J.; Pastor, S.; Just-Landi, S.; Xerri, L.; Chetaille, B.; Olive, D. PD-1 is a novel regulator of human B-cell activation. Int. Immunol. 2013, 25, 129–137. [Google Scholar] [CrossRef]
- Sun, Y.; Tan, J.; Miao, Y.; Zhang, Q. The role of PD-L1 in the immune dysfunction that mediates hypoxia-induced multiple organ injury. Cell Commun. Signal. 2021, 19, 76. [Google Scholar] [CrossRef] [PubMed]
- Kurobe, H.; Urata, M.; Ueno, M.; Ueki, M.; Ono, S.; Izawa-Ishizawa, Y.; Fukuhara, Y.; Lei, Y.; Ripen, A.M.; Kanbara, T.; et al. Role of hypoxia-inducible factor 1alpha in T cells as a negative regulator in development of vascular remodeling. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 210–217. [Google Scholar] [CrossRef]
- Domagala-Kulawik, J.; Osinska, I.; Piechuta, A.; Bielicki, P.; Skirecki, T. T, B, and NKT Cells in Systemic Inflammation in Obstructive Sleep Apnoea. Mediat. Inflamm. 2015, 2015, 161579. [Google Scholar] [CrossRef]
- Cubillos-Zapata, C.; Avendano-Ortiz, J.; Hernandez-Jimenez, E.; Toledano, V.; Casas-Martin, J.; Varela-Serrano, A.; Torres, M.; Almendros, I.; Casitas, R.; Fernandez-Navarro, I.; et al. Hypoxia-induced PD-L1/PD-1 crosstalk impairs T-cell function in sleep apnoea. Eur. Respir. J. 2017, 50, 1700833. [Google Scholar] [CrossRef] [PubMed]
- Ryan, S.; Taylor, C.T.; McNicholas, W.T. Systemic inflammation: A key factor in the pathogenesis of cardiovascular complications in obstructive sleep apnoea syndrome? Thorax 2009, 64, 631–636. [Google Scholar] [CrossRef]
- Kapellos, T.S.; Bonaguro, L.; Gemund, I.; Reusch, N.; Saglam, A.; Hinkley, E.R.; Schultze, J.L. Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases. Front. Immunol. 2019, 10, 2035. [Google Scholar] [CrossRef]
- Chakraborty, A.; Gupta, A.; Singh, A.K.; Patni, P. Effect of Oxidative Phytochemicals on Nicotine-stressed UMNSAH/DF-1 Cell Line. J. Tradit. Complement. Med. 2014, 4, 126–131. [Google Scholar] [CrossRef]
- Valdez-Miramontes, C.E.; Martinez, L.A.T.; Torres-Juarez, F.; Carlos, A.R.; Marin-Luevano, S.P.; de Haro-Acosta, J.P.; Enciso-Moreno, J.A.; Rivas-Santiago, B. Nicotine modulates molecules of the innate immune response in epithelial cells and macrophages during infection with M. tuberculosis. Clin. Exp. Immunol. 2020, 199, 230–243. [Google Scholar] [CrossRef]
- Godfrey, R.J.; Madgwick, Z.; Whyte, G.P. The exercise-induced growth hormone response in athletes. Sports Med. 2003, 33, 599–613. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, J.N.; Carlson, H.E.; Van Vunakis, H.; Hill, M.A.; Gritz, E.; Jarvik, M.E. Nicotine from cigarette smoking increases circulating levels of cortisol, growth hormone, and prolactin in male chronic smokers. Psychopharmacology 1982, 78, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Warwick-Davies, J.; Lowrie, D.B.; Cole, P.J. Growth hormone activation of human monocytes for superoxide production but not tumor necrosis factor production, cell adherence, or action against Mycobacterium tuberculosis. Infect. Immun. 1995, 63, 4312–4316. [Google Scholar] [CrossRef] [PubMed]
- Warwick-Davies, J.; Lowrie, D.B.; Cole, P.J. Growth hormone is a human macrophage activating factor. Priming of human monocytes for enhanced release of H2O2. J. Immunol. 1995, 154, 1909–1918. [Google Scholar] [CrossRef]
- Schneider, A.; Wood, H.N.; Geden, S.; Greene, C.J.; Yates, R.M.; Masternak, M.M.; Rohde, K.H. Growth hormone-mediated reprogramming of macrophage transcriptome and effector functions. Sci. Rep. 2019, 9, 19348. [Google Scholar] [CrossRef]
Sex | All (n = 16) | Male (n = 10) | Female (n = 6) |
---|---|---|---|
Age [years] | 24.0 ± 3.8 | 24.6 ± 4.3 | 23.0 ± 2.8 |
Weight [kg] | 72.2 ± 9.3 | 75.5 ± 9.1 | 66.7 ± 7.4 |
Height [cm] | 179.4 ± 8.8 | 184.0 ± 7.1 | 171.7 ± 4.9 |
BMI [kg/m2] | 22.4 ± 1.9 | 22.3 ± 2.2 | 22.6 ± 1.4 |
Exercise per Week [h] | |||
<3/3–10/>10 | 2/9/1 | 2/6/2 | 0/5/1 |
Tiffeneau Index | 0.79 ± 0.09 | 0.81 ± 0.09 | 0.76 ± 0.09 |
Cigarettes per week | 4.0 ± 4.1 | 4.8 ± 4.2 | 2.9 ± 4.0 |
Fagerström Test for Nicotine Dependence [points] | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Axt, P.N.; Mohr, T.; Steffen, A.; Plötze-Martin, K.; Jagodzinski, N.; Bohnet, S.; Drömann, D.; Bruchhage, K.-L.; Franzen, K.F.; Pries, R. Influence of Different Nicotine Sources on Exercise-Driven Immune Responses of Peripheral Blood Monocytes. Toxics 2025, 13, 472. https://doi.org/10.3390/toxics13060472
Axt PN, Mohr T, Steffen A, Plötze-Martin K, Jagodzinski N, Bohnet S, Drömann D, Bruchhage K-L, Franzen KF, Pries R. Influence of Different Nicotine Sources on Exercise-Driven Immune Responses of Peripheral Blood Monocytes. Toxics. 2025; 13(6):472. https://doi.org/10.3390/toxics13060472
Chicago/Turabian StyleAxt, Paul N., Theresa Mohr, Armin Steffen, Kirstin Plötze-Martin, Nele Jagodzinski, Sabine Bohnet, Daniel Drömann, Karl-Ludwig Bruchhage, Klaas F. Franzen, and Ralph Pries. 2025. "Influence of Different Nicotine Sources on Exercise-Driven Immune Responses of Peripheral Blood Monocytes" Toxics 13, no. 6: 472. https://doi.org/10.3390/toxics13060472
APA StyleAxt, P. N., Mohr, T., Steffen, A., Plötze-Martin, K., Jagodzinski, N., Bohnet, S., Drömann, D., Bruchhage, K.-L., Franzen, K. F., & Pries, R. (2025). Influence of Different Nicotine Sources on Exercise-Driven Immune Responses of Peripheral Blood Monocytes. Toxics, 13(6), 472. https://doi.org/10.3390/toxics13060472