PCBs in Chinstrap Penguins from Deception Island (South Shetland Islands, Antarctica)
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. PCB Levels and Temporal Trend in Pygoscelis Antarctica
3.2. Tissue Distribution
3.3. PCB Fingerprint and Class of Isomer Analyses
3.4. TEQ Assessment
3.5. Distribution of PCBs in Penguins According to Directive 2013/39/UE and Commission Regulation (EU) No 277/2012
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sladen, W.J.L.; Menzie, C.M.; Reichel, W.L. DDT Residues in Adelie Penguins and a Crabeater Seal from Antarctica. Nature 1966, 210, 670–673. [Google Scholar] [CrossRef]
- Bargagli, R. Environmental contamination in Antarctic ecosystems. Sci. Total Environ. 2008, 400, 212–226. [Google Scholar] [CrossRef] [PubMed]
- van Boxtel, A.L.; Kamstra, J.H.; Fluitsma, D.M.; Legler, J. Dithiocarbamates are teratogenic to developing zebrafish through inhibition of lysyl oxidase activity. Toxicol. Appl. Pharmacol. 2010, 244, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Lee, H.; Kim, K.; Kim, S.; Kim, J.H.; Ko, Y.W.; Hawes, I.; Oh, J.-E.; Kim, J.-T. Persistent organic pollutants in the Antarctic marine environment: The influence impacts of human activity, regulations, and climate change. Environ. Pollut. 2024, 363, 125100. [Google Scholar] [CrossRef]
- Wild, S.; Eulaers, I.; Covaci, A.; Bossi, R.; Hawker, D.; Cropp, R.; Southwell, C.; Emmerson, L.; Lepoint, G.; Eisenmann, P.; et al. South polar skua (Catharacta maccormicki) as biovectors for long-range transport of persistent organic pollutants to Antarctica. Environ. Pollut. 2022, 292, 118358. [Google Scholar] [CrossRef] [PubMed]
- Wania, F.; Mackay, D. The global fractionation of persistent organic pollutants. NILU TR 1996, 1–25. Available online: https://hdl.handle.net/11250/2762224 (accessed on 12 February 2025).
- Luarte, T.; Gómez-Aburto, V.A.; Poblete-Castro, I.; Castro-Nallar, E.; Huneeus, N.; Molina-Montenegro, M.; Egas, C.; Azcune, G.; Pérez-Parada, A.; Lohmann, R.; et al. Levels of persistent organic pollutants (POPs) in the Antarctic atmosphere over time (1980 to 2021) and estimation of their atmospheric half-lives. Atmos. Chem. Phys. 2023, 23, 8103–8118. [Google Scholar] [CrossRef]
- Corsolini, S.; Covaci, A.; Ademollo, N.; Focardi, S.; Schepens, P. Occurrence of organochlorine pesticides (OCPs) and their enantiomeric signatures, and concentrations of polybrominated diphenyl ethers (PBDEs) in the Adélie penguin food web, Antarctica. Environ. Pollut. 2006, 140, 371–382. [Google Scholar] [CrossRef]
- Corsolini, S.; Focardi, S. Bioconcentration of Polychlorinated Biphenyls in the Pelagic Food Chain of the Ross Sea. In Ross Sea Ecology: Italiantartide Expeditions (1987–1995); Faranda, F.M., Guglielmo, L., Ianora, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 575–584. [Google Scholar]
- Hagen, P.E.; Walls, M.P. The Stockholm Convention on persistent organic pollutants. Nat. Resour. Environ. 2005, 19, 49–52. [Google Scholar]
- Lammel, G.; Ghim, Y.-S.; Grados, A.; Gao, H.; Hühnerfuss, H.; Lohmann, R. Levels of persistent organic pollutants in air in China and over the Yellow Sea. Atmos. Environ. 2007, 41, 452–464. [Google Scholar] [CrossRef]
- Jiang, S.; Wan, M.; Lin, K.; Chen, Y.; Wang, R.; Tan, L.; Wang, J. Spatiotemporal distribution, source analysis and ecological risk assessment of polychlorinated biphenyls (PCBs) in the Bohai Bay, China. Mar. Pollut. Bull. 2024, 198, 115780. [Google Scholar] [CrossRef] [PubMed]
- Martínez, A. Toxicity of persistent organic pollutants: A theoretical study. J. Mol. Model. 2024, 30, 97. [Google Scholar] [CrossRef] [PubMed]
- Burger, J. Metals in avian feathers: Bioindicators of environmental pollution. Rev. Environ. Toxicol. 1993, 5, 203–311. [Google Scholar]
- Carlini, A.R.; Coria, N.R.; Santos, M.M.; Negrete, J.; Juares, M.A.; Daneri, G.A. Responses of Pygoscelis adeliae and P. papua populations to environmental changes at Isla 25 de Mayo (King George Island). Polar Biol. 2009, 32, 1427–1433. [Google Scholar] [CrossRef]
- Morales, P.; Roscales, J.L.; Muñoz-Arnanz, J.; Barbosa, A.; Jiménez, B. Evaluation of PCDD/Fs, PCBs and PBDEs in two penguin species from Antarctica. Chemosphere 2022, 286, 131871. [Google Scholar] [CrossRef]
- Herman, R.W.; Valls, F.C.L.; Hart, T.; Petry, M.V.; Trivelpiece, W.Z.; Polito, M.J. Seasonal consistency and individual variation in foraging strategies differ among and within Pygoscelis penguin species in the Antarctic Peninsula region. Mar. Biol. 2017, 164, 115. [Google Scholar] [CrossRef]
- Rudolph, I.; Chiang, G.; Galban-Malagon, C.; Mendoza, R.; Martinez, M.; Gonzalez, C.; Becerra, J.; Servos, M.R.; Munkittrick, K.R.; Barra, R. Persistent organic pollutants and porphyrins biomarkers in penguin. faeces from Kopaitic Island and Antarctic Peninsula. Sci. Total Environ. 2016, 573, 1390–1396. [Google Scholar] [CrossRef]
- Jara-Carrasco, S.; Barra, R.; Espejo, W.; Celis, J.E.; Gonzalez-Acuna, D.; Chiang, G.; Sanchez-Hernandez, J. Persistent organic pollutants and porphyrin levels in excreta of penguin colonies from the Antarctic Peninsula area. Polar Rec. 2017, 53, 79–87. [Google Scholar] [CrossRef]
- Adkesson, M.J.; Levengood, J.M.; Scott, J.W.; Schaeffer, D.J.; Langan, J.N.; Cárdenas-Alayza, S.; de la Puente, S.; Majluf, P.; Yi, S. Assessment of polychlorinated biphenyls, organochlorine pesticides, and polybrominated diphenyl ethers in the blood of humboldt penguins (Spheniscus humboldti) from the Punta San Juan marine protected area, Peru. J. Wildl. Dis. 2018, 54, 304–314. [Google Scholar] [CrossRef]
- Adkesson, M.J.; Shlosberg, A.; Lehner, A.F.; Rumbeiha, W.K.; Cardenas-Alayza, S.; Cardena-Mormontoy, M.; Kannan, K. Measurement of persistent organic pollutants, perfluorinated compounds, and toxic metals in the blood of humboldt penguins (Spheniscus humboldti) at Punta San Juan, Peru using dried blood spots. J. Zoo. Wildl. Med. 2023, 54, 713–720. [Google Scholar] [CrossRef]
- Dehnhard, N.; Jaspers, V.L.B.; Demongin, L.; Van den Steen, E.; Covaci, A.; Pinxten, R.; Crossin, G.T.; Quillfeldt, P.; Eens, M.; Poisbleau, M. Organohalogenated contaminants in plasma and eggs of rockhopper penguins: Does vitellogenin affect maternal transfer? Environ. Pollut. 2017, 226, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Corsolini, S.; Borghesi, N.; Schiamone, A.; Focardi, S. Polybrominated diphenyl ethers, polychlorinated dibenzo-dioxins, -furans, and -biphenyls in three species of antarctic penguins. Environ. Sci. Pollut. Res. 2007, 14, 421–429. [Google Scholar] [CrossRef]
- Van den Steen, E.; Poisbleau, M.; Demongin, L.; Covaci, A.; Dirtu, A.C.; Pinxten, R.; van Noordwijk, H.J.; Quillfeldt, P.; Eens, M. Organohalogenated contaminants in eggs of rockhopper penguins (Eudyptes chrysocome) and imperial shags (Phalacrocorax atriceps) from the Falkland Islands. Sci. Total Environ. 2011, 409, 2838–2844. [Google Scholar] [CrossRef]
- Corsolini, S.; Kannan, K.; Imagawa, T.; Focardi, S.; Giesy, J.P. Polychloronaphthalenes and Other Dioxin-like Compounds in Arctic and Antarctic Marine Food Webs. Environ. Sci. Technol. 2002, 36, 3490–3496. [Google Scholar] [CrossRef]
- Mello, F.V.; Roscales, J.L.; Guida, Y.S.; Menezes, J.F.S.; Vicente, A.; Costa, E.S.; Jimenez, B.; Torres, J.P.M. Relationship between legacy and emerging organic pollutants in Antarctic seabirds and their foraging ecology as shown by δ13C and δ15N. Sci. Total Environ. 2016, 573, 1380–1389. [Google Scholar] [CrossRef]
- Bouwman, H.; Govender, D.; Underhill, L.; Polder, A. Chlorinated, brominated and fluorinated organic pollutants in African Penguin eggs: 30 years since the previous assessment. Chemosphere 2015, 126, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Corsolini, S.; Borghesi, N.; Ademollo, N.; Focardi, S. Chlorinated biphenyls and pesticides in migrating and resident seabirds from East and West Antarctica. Environ. Int. 2011, 37, 1329–1335. [Google Scholar] [CrossRef] [PubMed]
- Schiavone, A.; Corsolini, S.; Borghesi, N.; Focardi, S. Contamination profiles of selected PCB congeners, chlorinated pesticides, PCDD/Fs in Antarctic fur seal pups and penguin eggs. Chemosphere 2009, 76, 264–269. [Google Scholar] [CrossRef]
- Cipro, C.V.Z.; Taniguchi, S.; Montone, R.C. Occurrence of organochlorine compounds in Euphausia superba and unhatched eggs of Pygoscelis genus penguins from Admiralty Bay (King George Island, Antarctica) and estimation of biomagnification factors. Chemosphere 2010, 78, 767–771. [Google Scholar] [CrossRef]
- Quinete, N.; Hauser-Davis, R.A.; Lemos, L.S.; Moura, J.F.; Siciliano, S.; Gardinali, P.R. Occurrence and tissue distribution of organochlorinated compounds and polycyclic aromatic hydrocarbons in Magellanic penguins (Spheniscus magellanicus) from the southeastern coast of Brazil. Sci. Total Environ. 2020, 749, 141473. [Google Scholar] [CrossRef]
- Baldassin, P.; Taniguchi, S.; Gallo, H.; Silva, R.J.; Montone, R.C. Persistent organic pollutants in juvenile Magellan penguins (Spheniscus magellanicus) found on the northern shore of the state of Sao Paulo and southern shore of the state of Rio de Janeiro, Brazil. Mar. Pollut. Bull. 2012, 64, 2502–2506. [Google Scholar] [CrossRef] [PubMed]
- Baldassin, P.; Taniguchi, S.; Gallo, H.; Maranho, A.; Kolesnikovas, C.; Amorim, D.B.; Mansilla, M.; Navarro, R.M.; Tabeira, L.C.; Bicego, M.C.; et al. Persistent organic pollutants in juvenile Magellanic Penguins (Spheniscus magellanicus) in South America. Chemosphere 2016, 149, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, S.; Montone, R.C.; Bicego, M.C.; Colabuono, F.I.; Weber, R.R.; Sericano, J.L. Chlorinated pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons in the fat tissue of seabirds from King George Island, Antarctica. Mar. Pollut. Bull. 2009, 58, 129–133. [Google Scholar] [CrossRef]
- Montone, R.C.; Taniguchi, S.; Colabuono, F.I.; Martins, C.C.; Cipro, C.V.Z.; Barroso, H.S.; da Silva, J.; Bícego, M.C.; Weber, R.R. Persistent organic pollutants and polycyclic aromatic hydrocarbons in penguins of the genus Pygoscelis in Admiralty Bay—An Antarctic specially managed area. Mar. Pollut. Bull. 2016, 106, 377–382. [Google Scholar] [CrossRef]
- Inomata, O.N.K.; Montone, R.C.; Lara, W.H.; Weber, R.R.; Toledo, H.H.B. Tissue distribution of organochlorine residues—PCBs and pesticides—In Antarctic penguins. Antarct. Sci. 1996, 8, 253–255. [Google Scholar] [CrossRef]
- Jara-Carrasco, S.; Gonzalez, M.; Gonzalez-Acuna, D.; Chiang, G.; Celis, J.; Espejo, W.; Mattatall, P.; Barra, R. Potential immunohaematological effects of persistent organic pollutants on chinstrap penguin. Antarct. Sci. 2015, 27, 373–381. [Google Scholar] [CrossRef]
- Dekock, A.C.; Randall, R.M. Organochlorine insecticide and polychlorinated biphenyl residues in eggs of coastal birds from the eastern Cape, South-Africa. Environ. Pollut. Ser. A-Ecol. Biol. 1984, 35, 193–201. [Google Scholar] [CrossRef]
- Court, G.S.; Davies, L.S.; Focardi, S.; Bargargli, R.; Fossi, C.; Leonzio, C.; Marili, L. Chlorinated hydrocarbons in the tissues of South Polar Skuas (Catharacta maccormicki) and Adelie Penguins (Pygoscelis adeliea) from Ross Sea, Antarctica. Environ. Pollut. 1997, 97, 295–301. [Google Scholar] [CrossRef]
- Kumar, K.S.; Kannan, K.; Corsolini, S.; Evans, T.; Giesy, J.P.; Nakanishi, J.; Masunaga, S. Polychlorinated dibenzo-p-dioxins, dibenzofurans and polychlorinated biphenyls in polar bear, penguin and south polar skua. Environ. Pollut. 2002, 119, 151–161. [Google Scholar] [CrossRef]
- Kim, J.-T.; Choi, Y.-J.; Barghi, M.; Kim, J.-H.; Jung, J.-W.; Kim, K.; Kang, J.-H.; Lammel, G.; Chang, Y.-S. Occurrence, distribution, and bioaccumulation of new and legacy persistent organic pollutants in an ecosystem on King George Island, maritime Antarctica. J. Hazard. Mater. 2021, 405, 124141. [Google Scholar] [CrossRef]
- Kim, J.-T.; Son, M.-H.; Kang, J.-H.; Kim, J.-H.; Jung, J.-W.; Chang, Y.-S. Occurrence of Legacy and New Persistent Organic Pollutants in Avian Tissues from King George Island, Antarctica. Environ. Sci. Technol. 2015, 49, 13628–13638. [Google Scholar] [CrossRef] [PubMed]
- Jara, S.; Celis, J.E.; Araneda, A.; Gonzalez, M.; Espejo, W.; Barra, R. Assessment of persistent organic pollutants and their relationship with immunoglobulins in blood of penguin colonies from Antarctica. Austral J. Vet. Sci. 2018, 50, 43–49. [Google Scholar] [CrossRef]
- Souza, J.S.; Pacyna-Kuchta, A.D.; Teixeira da Cunha, L.S.; Costa, E.S.; Niedzielski, P.; Machado Torres, J.P. Interspecific and intraspecific variation in organochlorine pesticides and polychlorinated biphenyls using non-destructive samples from Pygoscelis penguins. Environ. Pollut. 2021, 275, 116590. [Google Scholar] [CrossRef] [PubMed]
- Lewis, P.J.; McGrath, T.J.; Chiaradia, A.; McMahon, C.R.; Emmerson, L.; Allinson, G.; Shimeta, J. A baseline for POPs contamination in Australian seabirds: Little penguins vs. short-tailed shearwaters. Mar. Pollut. Bull. 2020, 159, 111488. [Google Scholar] [CrossRef]
- Mwangi, J.K.; Lee, W.-J.; Wang, L.-C.; Sung, P.-J.; Fang, L.-S.; Lee, Y.-Y.; Chang-Chien, G.-P. Persistent organic pollutants in the Antarctic coastal environment and their bioaccumulation in penguins. Environ. Pollut. 2016, 216, 924–934. [Google Scholar] [CrossRef] [PubMed]
- Colabuono, F.I.; Taniguchi, S.; Petry, M.V.; Montone, R.C. Organochlorine contaminants and polybrominated diphenyl ethers in eggs and embryos of Antarctic birds. Antarct. Sci. 2015, 27, 355–361. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Lu, B.; Zhu, C.; Wu, G.; Vetter, W. Occurrence of organochlorine pollutants in the eggs and dropping-amended soil of Antarctic large animals and its ecological significance. Sci. China Ser. D—Earth Sci. 2007, 50, 1086–1096. [Google Scholar] [CrossRef]
- Pala, N.; Vorkamp, K.; Bossi, R.; Ancora, S.; Ademollo, N.; Baroni, D.; Sara, G.; Corsolini, S. Chemical threats for the sentinel Pygoscelis adeliae from the Ross Sea (Antarctica): Occurrence and levels of persistent organic pollutants (POPs), perfluoroalkyl substances (PFAS) and mercury within the largest marine protected area worldwide. Sci. Total Environ. 2024, 947, 174562. [Google Scholar] [CrossRef]
- Focardi, S.; Bargagli, R.; Corsolini, S. Isomer-specific analysis and toxic potential evaluation of polychlorinated biphenyls in Antarctic fish, seabirds and Weddell seals from Terra Nova Bay (Ross Sea). Antarct. Sci. 1995, 7, 31–35. [Google Scholar] [CrossRef]
- van den Brink, N.W.; van Franeker, J.A.; de Ruiter-Dijkman, E.M. Fluctuating concentrations of organochlorine pollutants during a breeding season in two Antarctic seabirds: Adelie penguin and southern fulmar. Environ. Toxicol. Chem. 1998, 17, 702–709. [Google Scholar] [CrossRef]
- Pala, N.; Vorkamp, K.; Bossi, R.; Bignert, A.; Traversa, G.; Fugazza, D.; Ancora, S.; Ademollo, N.; Baroni, D.; Corsolini, S. Temporal trends of persistent organic pollutants (POPs) and perfluoroalkyl substances (PFAS) in Adelie penguin (Pygoscelis adeliae) eggs from the Ross Sea (Antarctica), including their relationship with climate parameters. Environ. Pollut. 2025, 373, 126130. [Google Scholar] [CrossRef] [PubMed]
- Terajima, T.; Shibahara, A.; Nakano, Y.; Kobayashi, S.; Godwin, J.R.; Nagaoka, K.; Watanabe, G.; Takada, H.; Mizukawa, K. Age-related accumulation of persistent organic chemicals in captive king penguins (Aptenodytes patagonicus). J. Vet. Med. Sci. 2022, 84, 1551–1555. [Google Scholar] [CrossRef]
- Lewis, P.J.; Lashko, A.; Chiaradia, A.; Allinson, G.; Shimeta, J.; Emmerson, L. New and legacy persistent organic pollutants (POPs) in breeding seabirds from the East Antarctic. Environ. Pollut. 2022, 309, 119734. [Google Scholar] [CrossRef]
- Weichbrodt, M.; Vetter, W.; Scholza, E.; Luckas, B.; Reinhardt, K. Determination of Organochlorine Levels in Antarctic Skua and Penguin Eggs by Application of Combined Focused Open-Vessel Microwave-Assisted Extraction, Gel-Permeation Chromatography, Adsorption Chromatography, and GC/ECD. Int. J. Environ. Anal. Chem. 1999, 73, 309–328. [Google Scholar] [CrossRef]
- Luke, B.G.; Johnstone, G.W.; Woehler, E.J. Organochlorine pesticides, pcbs and mercury in antarctic and sub-antarctic seabirds. Chemosphere 1989, 19, 2007–2021. [Google Scholar] [CrossRef]
- Van den Berg, M.; Birnbaum, L.S.; Denison, M.; De Vito, M.; Farland, W.; Feeley, M.; Fiedler, H.; Hakansson, H.; Hanberg, A.; Haws, L.; et al. The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol. Sci. 2006, 93, 223–241. [Google Scholar] [CrossRef]
- Deheyn, D.D.; Gendreau, P.; Baldwin, R.J.; Latz, M.I. Evidence for enhanced bioavailability of trace elements in the marine ecosystem of Deception Island, a volcano in Antarctica. Mar. Environ. Res. 2005, 60, 1–33. [Google Scholar] [CrossRef]
- Baker, P.E.; Davies, T.G.; Roobol, M.J. Volcanic Activity at Deception Island in 1967 and 1969. Nature 1969, 224, 553–560. [Google Scholar] [CrossRef]
- Barbosa, A.; Benzal, J.; De León, A.; Moreno, J. Population decline of chinstrap penguins (Pygoscelis antarctica) on Deception Island, South Shetlands, Antarctica. Polar Biol. 2012, 35, 1453–1457. [Google Scholar] [CrossRef]
- Gales, R.P. Validation of the stomach-flushing technique for obtaining stomach contents of Penguins. Ibis 1987, 129, 335–343. [Google Scholar] [CrossRef]
- Wilson, R. An improved stomach pump for penguins and other seabirds. J. Field Ornithol. 1984, 55, 109–112. [Google Scholar]
- Kannan, K.; Hilscherova, K.; Imagawa, T.; Yamashita, N.; Williams, L.L.; Giesy, J.P. Polychlorinated naphthalenes, -biphenyls,-dibenzo-p-dioxins, and -dihenzofurans in double-crested cormorants and herring gulls from Michigan waters of the Great Lakes. Environ. Sci. Technol. 2001, 35, 441–447. [Google Scholar] [CrossRef]
- Corsolini, S.; Ademollo, N.; Romeo, T.; Greco, S.; Focardi, S. Persistent organic pollutants in edible fish: A human and environmental health problem. Microchem. J. 2005, 79, 115–123. [Google Scholar] [CrossRef]
- Safe, S. Polychlorinated Biphenyls (PCBs), Dibenzo-p-Dioxins (PCDDs), Dibenzofurans (PCDFs), and Related Compounds: Environmental and Mechanistic Considerations Which Support the Development of Toxic Equivalency Factors (TEFs). Crit. Rev. Toxicol. 1990, 21, 51–88. [Google Scholar] [CrossRef]
- Nyeste, K.; Zulkipli, N.; Uzochukwu, I.E.; Somogyi, D.; Nagy, L.; Czeglédi, I.; Harangi, S.; Baranyai, E.; Simon, E.; Nagy, S.A.; et al. Assessment of trace and macroelement accumulation in cyprinid juveniles as bioindicators of aquatic pollution: Effects of diets and habitat preferences. Sci. Rep. 2024, 14, 11288. [Google Scholar] [CrossRef]
- Yancheva, V.; Georgieva, E.; Velcheva, I.; Iliev, I.; Stoyanova, S.; Vasileva, T.; Bivolarski, V.; Todorova-Bambaldokova, D.; Zulkipli, N.; Antal, L.; et al. Assessment of the exposure of two pesticides on common carp (Cyprinus carpio Linnaeus, 1758): Are the prolonged biomarker responses adaptive or destructive? Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 261, 109446. [Google Scholar] [CrossRef] [PubMed]
- Cuenca-Martínez, J.J.; Veiga-del-Baño, J.M.; Andreo-Martínez, P.; Oliva, J.; Cámara, M.Á.; Motas, M. Analysis of cleaning water used in the wine industry: Part I—Pesticide selection. Microchem. J. 2024, 204, 111059. [Google Scholar] [CrossRef]
- Wu, X.; Chen, A.; Yuan, Z.; Kang, H.; Xie, Z. Atmospheric organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in the Antarctic marginal seas: Distribution, sources and transportation. Chemosphere 2020, 258, 127359. [Google Scholar] [CrossRef]
- Montone, R.C.; Taniguchi, S.; Weber, R.R. PCBs in the atmosphere of King George Island, Antarctica. Sci. Total Environ. 2003, 308, 167–173. [Google Scholar] [CrossRef]
- Ellis, D.S.; Cipro, C.V.Z.; Ogletree, C.A.; Smith, K.E.; Aronson, R.B. A 50-year retrospective of persistent organic pollutants in the fat and eggs of penguins of the Southern Ocean. Environ. Pollut. 2018, 241, 155–163. [Google Scholar] [CrossRef]
- Corsolini, S. Contamination Profile and Temporal Trend of POPs in Antarctic Biota. In Global Contamination Trends of Persistent Organic Chemicals; Loganathan, B.G., Lam, P.K.-S., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 571–591. [Google Scholar]
- Wilcox, R. Chapter 5—Comparing Two Groups. In Introduction to Robust Estimation and Hypothesis Testing, 3rd ed.; Wilcox, R., Ed.; Academic Press: Cambridge, MA, USA, 2012; pp. 137–213. [Google Scholar]
- Braune, B.M.; Mallory, M.L.; Grant Gilchrist, H.; Letcher, R.J.; Drouillard, K.G. Levels and trends of organochlorines and brominated flame retardants in Ivory Gull eggs from the Canadian Arctic, 1976 to 2004. Sci. Total Environ. 2007, 378, 403–417. [Google Scholar] [CrossRef] [PubMed]
- Bustnes, J.O.; Tveraa, T.; Henden, J.A.; Varpe, Ø.; Janssen, K.; Skaare, J.U. Organochlorines in Antarctic and Arctic Avian Top Predators: A Comparison between the South Polar Skua and Two Species of Northern Hemisphere Gulls. Environ. Sci. Technol. 2006, 40, 2826–2831. [Google Scholar] [CrossRef]
- Gesi, M. Distribuzione di PCB e pesticidi clorurati in tessuti del pinguino di Adѐlia (Pygoscelis adeliae), del pinguino antartico (Pygoscelis antarctica) e del pinguino papua (Pygoscelis papua). Bachelor’s Thesis, University of Siena, Siena, Italy, 2009. [Google Scholar]
- Corsolini, S. Industrial contaminants in Antarctic biota. J. Chromatogr. A 2009, 1216, 598–612. [Google Scholar] [CrossRef] [PubMed]
- Maisano, F. PCB e pesticidi clorurati in uova e tessuti di pinguino di Adelia (Pygoscelis adéliae), di pinguino papua (Pygoscelis papua) e krill (Euphasia superba) provenienti dallo Stretto di Bransfield. Bachelor’s Thesis, University of Siena, Siena, Italy, 2009. [Google Scholar]
- Pastor, D.; Ruiz, X.; Barceló, D.; Albaigés, J. Dioxins, furans and AHH-active PCB congeners in eggs of two gull species from the Western Mediterranean. Chemosphere 1995, 31, 3397–3411. [Google Scholar] [CrossRef] [PubMed]
- Zell, M.; Neu, H.J.; Ballschmter, K. Single component analysis of PCB and chlorinated pesticides residues in marine fish samples. Fresenius J. Anal. Chem. 1978, 292, 97–107. [Google Scholar] [CrossRef]
- Bright, D.A.; Grundy, S.L.; Reimer, K.J. Differential Bioaccumulation of Non-ortho-Substituted and Other PCB Congeners in Coastal Arctic Invertebrates and Fish. Environ. Sci. Technol. 1995, 29, 2504–2512. [Google Scholar] [CrossRef]
- Wanwimolruk, S.; Zhang, H.; Coville, P.F.; Saville, D.J.; Davis, L.S. In vitro hepatic metabolism of a CYP3A-mediated drug, quinine, in Adélie penguins. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 1999, 124, 301–307. [Google Scholar] [CrossRef]
- Corsolini, S.; Ademollo, N.; Romeo, T.; Olmastroni, S.; Focardi, S. Persistent organic pollutants in some species of a Ross Sea pelagic trophic web. Antarct. Sci. 2003, 15, 95–104. [Google Scholar] [CrossRef]
- Wania, F.; Mackay, D. Global fractionation and cold condensation of low volatility organochlorine compounds in polar regions. Ambio 1993, 22, 10–18. [Google Scholar]
- EU. Commission Regulation (EU) No 277/2012 of 28 March 2012 Amending Annexes I and II to Directive 2002/32/EC of the European Parliament and of the Council as Regards Maximum Levels and Action Thresholds for Dioxins and Polychlorinated Biphenyls Text with EEA Relevance. 2012. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32012R0277 (accessed on 12 February 2025).
- Colborn, T.; vom Saal, F.S.; Soto, A.M. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ. Impact Assess. Rev. 1994, 14, 469–489. [Google Scholar] [CrossRef]
- EC. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy. Available online: https://eur-lex.europa.eu/eli/dir/2013/39/oj/eng (accessed on 12 February 2025).
- Lambiase, S.; Fiorito, F.; Serpe, F.P.; Trifuoggi, M.; Gallo, P.; Esposito, M. Bioaccumulation of PCDD/Fs and PCBs in free-range hens: Congener fingerprints and biotransfer factors. Chemosphere 2022, 309, 136602. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, S.; Kannan, N.; Subramanian, A.; Watanabe, S.; Tatsukawa, R. Highly toxic coplanar PCBs: Occurrence, source, persistency and toxic implications to wildlife and humans. Environ. Pollut. 1987, 47, 147–163. [Google Scholar] [CrossRef] [PubMed]
- Safe, S.; Safe, L.; Mullin, M. Polychlorinated biphenyls: Congener-specific analysis of a commercial mixture and a human milk extract. J. Agric. Food Chem. 1985, 33, 24–29. [Google Scholar] [CrossRef]
Penguin Specie | Location | Sampled | Tissue | ∑ PCBs | Reference |
---|---|---|---|---|---|
Pygoscelis adeliae | General Bernardo O′Higgins Chilean Military Base and Kopaitic Island (Antarctica) | 2009 | Feces | 12,930 ± 2500 a | [18] |
Pygoscelis antarctica | 4700 ± 1200 a | ||||
Pygoscelis gentoo | 35,520 ± 38,450 a | ||||
Pygoscelis antarctica | King George Island (Antarctica) | 2011 | Feces | 1450 ± 650 a | [19] |
Pygoscelis adeliae | 1610 ± 470 a | ||||
Pygoscelis papua | 2350 ± 760 a | ||||
Spheniscus humboldti (n = 29) | Punta San Juan (Perú) | 2009 | Blood | 4590 ± 8240 a | [20] |
Spheniscus humboldti (n = 30) | Punta San Juan (Perú) | 2011 | Blood | 1700–1750 b | [21] |
Eudyptes chrysocome (n = 17) | New Island (Falkland/Malvinas Islands) | 2008/2009 | Blood | 550–1020 b | [22] |
Eggs | 25,800–27,800 c | ||||
Pygoscelis adeliae (n = 12) | Admiralty Bay, King George Island (Antarctica) | 2004 | Blood | 9800 ± 3800 a | [23] |
Pygoscelis antarctica (n = 13) | 4500 ± 2400 a | ||||
Pygoscelis gentoo (n = 16) | 3400 ± 1600 a | ||||
Eudyptes chrysocome (n = 34) | New Island, (Falkland/Malvinas Islands) | 2008 | Eggs | 27,550 ± 700 c | [24] |
Pygoscelis adeliae (n = 6) | Edmonson Point Rookery (Antarctica) | 1995/1996 | Eggs | 24,900 ± 21,600 a | [8] |
Euphausia superba (krill) | Ross Sea (Antarctica) | 2000 2001/2002 | Wholebody | 1670 ± 850 a | |
Pygoscelis adeliae (n = 5) | Ross Sea Terra Nova Bay (Antarctica) | 1994/1995 1995/1996 | Eggs | 2800 a | [25] |
Euphausia superba (krill) | Wholebody | 1900 a | |||
Pygoscelis adeliae (n = 21) | Admiralty Bay, King George Island (Antarctica) | 2010/2011 2011/2012 | Eggs | 57,300 ± 30,400 c | [26] |
Pygoscelis papua (n = 16) | 44,310 ± 21,330 c | ||||
Spheniscus demersus | Robben Island (n = 10) (Africa) | 2010/2011 | Eggs | 42,000 ± 12,000 a | [27] |
Bird Island (n = 10) (Africa) | 64,000 ± 16,000 a | ||||
Pygoscelis adeliae (n = 37) | Admiralty Bay, King George Island (Antarctica) | 1995/1996 1998/1999 2000/2001 2001/2002 2004/2005 | Eggs | 4340 ± 2150 a | [28] |
Pygoscelis emperor (n = 6) | 21,990 ± 25,580 a | ||||
Pygoscelis adeliae (n = 13) | Livingston Island, South Shetland, Antarctic Peninsula, | 2004 | Eggs | 12,000 ± 4000 a | [29] |
Pygoscelis papua (n = 13) | 5000 ± 3000 a | ||||
Pygoscelis antarcticus (n = 9) | 6000 ± 4000 a | ||||
Pygoscelis adeliae (n = 3) | Admiralty Bay, King George Island, (Antarctica) | 2004–2006 | Eggs | 32,500 a | [30] |
Pygoscelis antarctica (n = 26) | 37,300 a | ||||
Pygoscelis papua (n = 9) | 26,000 a | ||||
Euphausia superba (krill) | 12,300 a | ||||
Spheniscus magellanicus | Região dos Lagos, Rio de Janeiro (Brazil) | 2012 | Muscle (n = 13) | <LOQ-1,500,000 d | [31] |
Liver (n = 9) | <LOQ-1,163,000 d | ||||
Spheniscus magellanicus (n = 25) | Ubatuba, São Paulo (Brazil) | 2008 | Liver | 18,900–775,800 e | [32] |
Spheniscus magellanicus (n = 116) | Six areas located in South America (Chile, Uruguay y Brasil) | 2008–2012 except 2009 | Liver | 9900–818,000 a (2008) 203,000–835,000 a (2010) 13,300–456,000 a (2011) 500–492,000 a (2012) | [33] |
Pygoscelis adeliae (n = 2) and Pygoscelis papua (n = 5) pooled together | Admiralty Bay, King George Island (Antarctica) | 1997/1998 | Fat | 256,000 ± 125,000 c | [34] |
Pygoscelis adeliae (n = 4) | Admiralty Bay, King George Island (Antarctica) | 2005/2006 2006/2007 | Fat | 114,000–325,000 a | [35] |
Pygoscelis papua (n = 2) | 304,000–627,000 a | ||||
Pygoscelis antarcticus (n = 3) | 221,000–550,000 a | ||||
Pygoscelis papua (n = 4) | Admiralty Bay, King George Island (Antarctica) | 1991–1993 | Brain | nd-7800 a | [36] |
Liver | nd-1100 a | ||||
Muscle | nd | ||||
Blood | 2200–4800 a | ||||
Bone | 2100–16,500 a | ||||
Uropygeal gland | 48,200–1,047,300 a | ||||
Fat | 43,200–1,583,600 a | ||||
Brain | 4800 a | ||||
Pygoscelis adeliae (n = 1) | Liver | nd | |||
Muscle | nd | ||||
Blood | |||||
Bone | 32,100 a | ||||
Uropygeal gland | 77,300 a | ||||
Fat | 72,700 a | ||||
Pygoscelis antarctica (n = 15) | Cape Shirreff, King George Island (Antanrtica) | 2012 | Blood | 80,024 ± 1240 a | [37] |
Kopaitic Island, King George Island (Antanrtica) | 7580 ± 900 a | ||||
Narębski Poon, King George Island (Antanrtica) | 7305 ± 1090 a | ||||
Spheniscus demersus (n = 21) | The Eastern Cape, South Africa (Africa) | 1981/1983 | Eggs | 240 a | [38] |
Pygoscelis adeliea (n = 27) | Cape Bird, Ross Island (Antarctica) | 1988/1989 1989/1990 | Eggs | 8800 a | [39] |
Pygoscelis adeliae (n = 5) | Terra Nova Bay (Antarctica) | 1995/1996 | Eggs | 30,000 e | [40] |
Euphausia superba (krill) | 900 e | ||||
Pygoscelis papua (n = 21) | King George Island (Antarctica) | 2013/2014 | Muscle | 382–526,000 c | [41] |
Pygoscelis antartica (n = 8) | 9050–124,000 c | ||||
Pygoscelis papua (n = 2) | Barton peninsula of King George Island (Antarctica) | 2008/2009 | Pectoralis | 2506–5650 c | [42] |
Pygoscelis adeliae (n = 2) | |||||
Pygoscelis antárctica (n = 15) | Cape Shirreff, Nar bski Point, and Kopaitic Island (Antarctica) | 2013/2014 | Blood | 1200–2900 a | [43] |
Pygoscelis antarticus (n = 20) | Deception Island and Livingston Island (Antarctica) | 2016–2017 | Eggs | 4710 c | [16] |
Pygoscelis papua (n = 10) | 3200 c | ||||
Pygosceli adeliae (n = 13) | Admiralty Bay, King George Island (Antarctica) | 2013–2014 | Breast feathers | 15,180 ± 9004 d | [44] |
Pygoscelis antarcticus (n = 14) | 11,810 ± 4430 d | ||||
Pygoscelis papua (n = 14) | 18,650 ± 5620 d | ||||
Eudyptula minor (n = 15) | Phillip Island, Victoria (Australia) | 2018 | Blood | 12,900 ± 11,300 a | [45] |
Pygoscelis adeliae (n = 1) | Larsemann Hills, Prydz Bay (Antarctica) | 2009 | Composite | 144,000 c | [46] |
Aptenodytes forsteri (n = 1) | Brisket | 12,500 c | |||
Back leg fat | 17,700 c | ||||
Abdominal fat | 17,400 c | ||||
Breast fat | 15,300 c | ||||
Liver | 6300 c | ||||
Pygoscelis antarcticus (n = 7) | South Shetland Islands (Antarctica) | 2011/2012 | Eggs | 2110–5160 a | [47] |
Pygoscelis papua (n = 4) | Adeliae Island (Antarctica) | 2001/2002 | Eggs | 500–800 e | [48] |
Pygoscelis adeliae | Adèlie Cove (Antarctica) (n = 8) | 2018/2019 2021/2022 | Eggs | 20,900 ± 6640 a | [49] |
Edmonson Point (Antarctica) (n = 5) | 24,300 ± 6620 a | ||||
Inexpressible Island (Antarctica) (n = 5) | 22,600 ± 8870 a | ||||
Pygoscelis adeliae (n = 6) | Terra Nova Bay (Antarctica) | 101,000 a | [50] | ||
Pygoscelis adeliae (n = 15) | Hop Island (Antarctica) | 1993/1994 | Blood | 4660–5660 c | [51] |
Uropygial oil | |||||
Pygoscelis adeliae (n = 50) | 1997/1998 2000/2001 2002/2003 2004/2005 2010/2011 2018/2019 2021/2022 | Eggs | [52] | ||
Aptenodytes patagonicus (n = 8) | Kamogawa city, Chiba Prefecture (Japan) | 2020 | Blood | 19,100 b | [53] |
Pygoscelis adeliae (n = 24) | Hop Island (n = 8), Gardner Island (n = 8) and Rookery Lake (n = 8) (Antarctica) | 2016/2017 | Blood | 61,100 ± 87,600 a | [54] |
Pygoscelis adeliae (n = 2) | Potter peninsula (Antarctica) | 1993/1994 | Eggs | 200–300 a | [55] |
Pygoscelis antarctica (n = 3) | 300–1500 a | ||||
Pygoscelis papua (n = 2) | 100–300 a | ||||
Aptenodytes forsteri, Pygoscelis adeliae, Eudyptes chrysocome, Eudyptes schlegeli, and Pygoscelis papua | Davis and Casey stations and Macquarie Island (Antarctica) | 1981–1983 1978–1983 | Eggs | <100 a | [56] |
# Sample | Life Stage | Weight | Tissue |
---|---|---|---|
1A | adult | 2.55 | L, K, M, H |
2A | adult | ND | L, K, M, H, B |
3A | adult | 3.50 | L, K, M, H, B |
4A | adult | ND | L, K, M, H, B |
1C | pullus | 2.65 | L, K, M, H, B |
2C | pullus | 2.15 | L, K, M, H, B |
3C | pullus | ND | L, K, M, H, B |
4C | pullus | 1.85 | L, K, M, H, B |
5C | pullus | 2.00 | L, K, M, H, B |
6C | pullus | ND | L, K, M, H, B |
Chicks | |||
tissue | no. of pool | no. of specimen | |
liver | 3 | 1C + 6C, 3C + 4C, 2C + 5C | |
kidney | 3 | 1C + 2C, 3C + 4C, 5C + 6C | |
muscle | 5 single sample | (sample no. 4C: n.a.) | |
heart | 2 | 1C + 2C + 3C, 4C + 5C + 6C | |
brain | 2 | 1C + 2C + 3C, 4C + 5C + 6C | |
Krill | 5.1127 g |
Samples | 28 | (%) | 52 | (%) | 37 | (%) | 95 | (%) | 101 | (%) |
Liver (A) | 87.174 ± 172.442 <1.907–345.837 | (25) | 100.788 ± 58.821 31.620–153.568 | (100) | 322.266 ± 403.934 <1.842–839.107 | (50) | 112.249 ± 49.122 70.281–183.022 | (100) | 73.673 ± 87.445 <1.426–175.328 | (50) |
Liver (C) | 71.101 ± 121.499 <1.907–211.395 | (33) | 41.617 ± 14.519 27.044–56.081 | (100) | 126.986 ± 218.352 <1.842–379.118 | (33) | 180.245 ± 96.753 111.150–290.822 | (100) | 39.956 ± 67.972 <1.426–118.444 | (33) |
Kidney (A) | 126.191 ± 250.475 <1.907–501.903 | (25) | 52.545 ± 54.678 <0.199–119.486 | (75) | <1.842 | (0) | 139.039 ± 51.894 85.189–209.574 | (100) | 32.616 ± 63.806 <1.426–128.325 | (25) |
Kidney (C) | 125.103 ± 107.873 <1.907–195.941 | (66) | <0.199 | (0) | 135.592 ± 233.257 <1.842–404.934 | (33) | 118.081 ± 204.511 <0.012–354.230 | (33) | 59.088 ± 101.109 <1.426–175.839 | (33) |
Muscle (A) | 64.199 ± 126.490 <1.907–253.934 | (25) | <0.199 | (0) | 151.035 ± 300.228 <1.842–601.376 | (25) | 74.574 ± 55.421 <0.012–126.569 | (75) | 45.247 ± 89.068 <1.426–178.849 | (25) |
Muscle (C) | 80.776 ± 109.644 <1.907–212.753 | (40) | 46.299 ± 103.306 <0.199–231.100 | (20) | <1.842 | (0) | 92.548 ± 131.903 <0.012–319.631 | (60) | <1.426 | (0) |
Heart (A) | 245.137 ± 217.542 <1.907–530.572 | (75) | 51.394 ± 44.296 <0.199–107.512 | (75) | <1.842 | (0) | 28.185 ± 56.358 <0.012–112.722 | (25) | <1.426 | (0) |
Heart (C) | <1.907 | (0) | 74.645 ± 54.542 36.078–113.212 | (100) | <1.842 | (0) | <0.012 | (0) | <1.426 | (0) |
Brain (A) | <1.907 | (0) | 35.404 ± 61.149 <0.199–106.012 | (33) | 80.086 ± 137.119 <1.842–238.417 | (33) | <0.012 | (0) | <1.426 | (0) |
Brain (C) | <1.907 | (0) | 31.903 ± 44.977 <0.199–63.706 | (50) | 151.702 ± 213.237 <1.842–302.483 | (50) | 112.971 ± 66.868 65.689–160.254 | (100) | 52.025 ± 72.566 <1.426–103.337 | (50) |
Krill | <1.907 | (0) | <0.199 | (0) | <1.842 | (0) | 144.233 | (100) | <1.426 | (0) |
Samples | 99 | (%) | 110 | (%) | 151 | (%) | 149 | (%) | 123 | (%) |
Liver (A) | 110.939 ± 101.227 <0.002–219.834 | (75) | 131.032 ± 41.309 89.957–167.070 | (100) | 22.350 ± 31.892 <0.520–67.885 | (50) | 14.481 ± 21.750 <0.011–46.002 | (50) | <1.066 | (0) |
Liver (C) | <0.002 | (0) | 70.280 ± 67.952 <0.012–135.644 | (66) | <0.520 | (0) | 40.684 ± 49.534 <0.011–95.846 | (66) | <1.066 | (0) |
Kidney (A) | 27.264 ± 35.091 <0.002–73.516 | (50) | 59.897 ± 61.867 <0.012–146.243 | (75) | 11.936 ± 23.352 <0.520–46.963 | (25) | 5.994 ± 11.977 <0.011–23.959 | (25) | <1.066 | (0) |
Kidney (C) | 26.720 ± 46.278 <0.002–80.158 | (33) | 29.988 ± 40.883 <0.012–76.558 | (66) | 12.628 ± 12.960 <0.520–26.109 | (66) | 6.142 ± 10.628 <0.011–18.414 | (33) | <1.066 | (0) |
Muscle (A) | 43.910 ± 50.718 <0.002–89.369 | (50) | 5.700 ± 11.389 <0.012–22.783 | (25) | 33.475 ± 47.326 <0.520–100.647 | (50) | 29.331 ± 46.861 <0.011–99.239 | (75) | <1.066 | (0) |
Muscle (C) | 28.604 ± 39.747 <0.002–95.664 | (60) | <0.012 | (0) | <0.520 | (0) | <0.011 | (0) | <1.066 | (0) |
Heart (A) | 42.504 ± 85.006 <0.002–170.013 | (25) | <0.012 | (0) | <0.520 | (0) | 6.336 ± 12.660 <0.011–25.325 | (25) | <1.066 | (0) |
Heart (C) | 30.040 ± 42.481 <0.002–60.079 | (50) | 43.637 ± 61.703 <0.012–87.268 | (50) | <0.520 | (0) | <0.011 | (0) | <1.066 | (0) |
Brain (A) | 35.045 ± 34.218 <0.002–68.373 | (66) | 78.745 ± 136.379 <0.012–236.222 | (33) | <0.520 | (0) | 21.785 ± 37.723 <0.011–65.343 | (33) | <1.066 | (0) |
Brain (C) | <0.002 | (0) | <0.012 | (0) | 37.468 ± 52.621 <0.520–74.677 | (50) | <0.011 | (0) | <1.066 | (0) |
Krill | 35.551 | (0) | <0.012 | (0) | <0.520 | (0) | <0.011 | (0) | <1.066 | (0) |
Samples | 118 | (%) | 114 | (%) | 146 | (%) | 153 | (%) | 105 | (%) |
Liver (A) | <0.427 | (0) | <0.003 | (0) | <0.011 | (0) | 91.611 ± 69.333 41.784–193.596 | (100) | 34.656 ± 30.576 <0.462–61.992 | (75) |
Liver (C) | 33.953 ± 29.246 <0.427–52.067 | (66) | <0.003 | (0) | 22.491 ± 38.945 <0.011–67.461 | (33) | 37,787 ± 33,551 <2.541–67.251 | (75) | 6.870 ± 11.500 <0.462–20.149 | (33) |
Kidney (A) | 91.532 ± 39.741 50.726–146.019 | (100) | <0.003 | (0) | 9.152 ± 18.292 <0.011–36.590 | (25) | <2.541 | (0) | <0.462 | (0) |
Kidney (C) | 56.284 ± 52.180 <0.427–103.418 | (66) | 88.570 ± 153.405 <0.003–265.706 | (33) | <0.011 | (0) | 16.739 ± 26.792 <2.541–47.676 | (33) | 16.005 ± 27.322 <0.462–47.555 | (33) |
Muscle (A) | <0.427 | (0) | 46.914 ± 93.825 <0.003–187.652 | (25) | 20.994 ± 26.923 <0.011–56.344 | (50) | 197.599 ± 392.657 <2.541–786.585 | (25) | 14.972 ± 29.483 <0.462–59.197 | (25) |
Muscle (C) | 62.375 ± 116.234 <0.427–267.556 | (40) | 16.715 ± 37.373 <0.003–83.569 | (20) | <0.011 | (0) | 41.148 ± 43.891 <2.541–100.448 | (60) | <0.462 | (0) |
Heart (A) | 9.168 ± 17.908 <0.427–36.030 | (25) | 29.691 ± 43.883 <0.003–92.931 | (50) | <0.011 | (0) | 14.235 ± 25.928 <2.541–53.127 | (25) | <0.462 | (0) |
Heart (C) | <0.427 | (0) | 47.115 ± 66.629 <0.003–94.230 | (50) | <0.011 | (0) | 64.045 ± 18.763 50.778–77.312 | (100) | <0.462 | (0) |
Brain (A) | <0.427 | (0) | 65.531 ± 57.007 <0.003–103.699 | (66) | <0.011 | (0) | <2.541 | (0) | <0.462 | (0) |
Brain (C) | 7.027 ± 9.636 <0.427–13.841 | (0) | 51.881 ± 73.369 <0.003–103.761 | (50) | <0.011 | (0) | 320.642 ± 451.660 <2.541–640.014 | (50) | 25.028 ± 35.068 <0.462–49.825 | (50) |
Krill | <0.427 | (0) | <0.003 | (0) | <0.011 | (0) | <2.541 | (0) | <0.462 | (0) |
Samples | 138 | (%) | 187 | (%) | 183 | (%) | 128 | (%) | 167 | (%) |
Liver (A) | 79.363 ± 86.872 <0.010–194.561 | (75) | <0.430 | (0) | <0.003 | (0) | 2.563 ± 4.032 <1.093–8.610 | (25) | <0.010 | (0) |
Liver (C) | <0.010 | (0) | <0.430 | (0) | <0.003 | (0) | <1.093 | (0) | <0.010 | (0) |
Kidney (A) | 62.475 ± 77.945 <0.010–161.112 | (50) | 21.867 ± 33.130 <0.430–70.142 | (50) | <0.003 | (0) | <1.093 | (0) | <0.010 | (0) |
Kidney (C) | 13.123 ± 22.722 <0.010–39.360 | (33) | <0.430 | (0) | <0.003 | (0) | <1.093 | (0) | <0.010 | (0) |
Muscle (A) | 118.561 ± 150.871 <0.010–333.966 | (75) | <0.430 | (0) | <0.003 | (0) | <1.093 | (0) | <0.010 | (0) |
Muscle (C) | 12.591 ± 28.144 <0.010–62.937 | (20) | 11.839 ± 25.991 <0.430–58.332 | (20) | <0.003 | (0) | <1.093 | (0) | <0.010 | (0) |
Heart (A) | <0.010 | (0) | <0.430 | (0) | <0.003 | (0) | <1.093 | (0) | <0.010 | (0) |
Heart (C) | <0.010 | (0) | <0.430 | (0) | <0.003 | (0) | <1.093 | (0) | <0.010 | (0) |
Brain (A) | <0.010 | (0) | <0.430 | (0) | <0.003 | (0) | 28.442 ± 48.316 <1.093–84.233 | (33) | 50.116 ± 86.795 <0.010–150.339 | (33) |
Brain (C) | <0.010 | (0) | <0.430 | (0) | <0.003 | (0) | <1.093 | (0) | 150.220 ± 212.436 <0.010–300.435 | (50) |
Krill | <0.010 | (0) | 40.891 | (0) | <0.003 | (0) | <1.093 | (0) | <0.010 | (0) |
Samples | 177 | (%) | 156 | (%) | 157 | (%) | 180 | (%) | 170 | (%) |
Liver (A) | <0.003 | (0) | <1.845 | (0) | <0.010 | (0) | <0.003 | (0) | 145.761 ± 291.519 <0.003–583.039 | (25) |
Liver (C) | <0.003 | (0) | <1.845 | (0) | <0.010 | (0) | <0.003 | (0) | <0.003 | (0) |
Kidney (A) | <0.003 | (0) | <1.845 | (0) | <0.010 | (0) | <0.003 | (0) | 35.611 ± 71.219 <0.003–142.440 | (25) |
Kidney (C) | <0.003 | (0) | <1.845 | (0) | <0.010 | (0) | 108.207 ± 127.177 <0.003–248.291 | (66) | <0.003 | (0) |
Muscle (A) | 180.663 ± 361.323 <0.003–722.648 | (25) | <1.845 | (0) | <0.010 | (0) | <0.003 | (0) | <0.003 | (0) |
Muscle (C) | <0.003 | (0) | <1.845 | (0) | <0.010 | (0) | 19.159 ± 42.836 <0.003–95.787 | (20) | <0.003 | (0) |
Heart (A) | 52.975 ± 105.948 <0.003–211.897 | (25) | 43.606 ± 85.368 <1.845–171.658 | (25) | <0.010 | (0) | <0.003 | (0) | 60.454 ± 120.905 <0.003–241.812 | (25) |
Heart (C) | <0.003 | (0) | <1.845 | (0) | <0.010 | (0) | <0.003 | (0) | <0.003 | (0) |
Brain (A) | <0.003 | (0) | <1.845 | (0) | <0.010 | (0) | <0.003 | (0) | 35.756 ± 61.929 <0.003–107.265 | (33) |
Brain (C) | <0.003 | (0) | <1.845 | (0) | 271.753 ± 384.310 <0.010–543.501 | (50) | <0.003 | (0) | <0.003 | (0) |
Krill | <0.003 | (0) | <1.845 | (0) | <0.010 | (0) | <0.003 | (0) | <0.003 | (0) |
Samples | 189 | (%) | 209 | (%) | ΣPCBs | ΣPCBs * | ||||
Liver (A) | <0.007 | (0) | <0.007 | (0) | 1330.819 ± 733.689 730.216–2252.976 | 60,292.998 ± 33,239.914 33,082.569–102,071.490 | ||||
Liver (C) | <0.007 | (0) | <0.007 | (0) | 674.478 ± 177.533 476.717–820.113 | 21,008.794 ± 5529.838 14,848.889–25,545.066 | ||||
Kidney (A) | <0.007 | (0) | <0.007 | (0) | 680.565 ± 191.311 491.279–914.887 | 21,741.224 ± 6111.592 15,694.323–29,226.838 | ||||
Kidney (C) | <0.007 | (0) | <0.007 | (0) | 814.613 ± 383.012 421.575–1186.743 | 19,584.246 ± 9208.055 10,135.154–28,530.685 | ||||
Muscle (A) | <0.007 | (0) | <0.007 | (0) | 1029.727 ± 823.394 285.248–2150.527 | 74,343.653 ± 59,446.939 20,594.175–15,5262.543 | ||||
Muscle (C) | <0.007 | (0) | <0.007 | (0) | 416.220 ± 252.869 144.322–762.238 | 22,630.902 ± 13,749.108 7847.141–41,444.749 | ||||
Heart (A) | <0.007 | (0) | <0.007 | (0) | 587.141 ± 407.879 140.375–1056.493 | 40,068.400 ± 27,834.982 9579.644–72,098.498 | ||||
Heart (C) | <0.007 | (0) | <0.007 | (0) | 265.036 ± 121.631 179.030–351.042 | 10,575.446 ± 4853.311 7143.641–14,007.251 | ||||
Brain (A) | <0.007 | (0) | <0.007 | (0) | 436.254 ± 234.244 290.773–706.470 | 10,255.191 ± 5506.464 6835.313–16,607.262 | ||||
Brain (C) | <0.007 | (0) | <0.007 | (0) | 1215.829 ± 955.189 540.408–1891.249 | 58,279.209 ± 45,785.764 25,903.767–90,654.603 | ||||
Krill | <0.007 | (0) | <0.007 | (0) | 227.384 | 5535.934 |
Mono-ortho PCBs | Concentrations | TEQ Concentrations |
---|---|---|
PCB 105 | Liver adults 34.656 ± 30.576, <0.462–61.992 Brain chicks 25.028 ± 35.068, <0.462–49.825 | 0.00003 |
PCB 114 | Brain chicks 51.881 ± 73.369, <0.003–103.761 | 0.00003 |
PCB 118 | Brain chicks 7.027 ± 9.636, <0.427–13.841 | 0.00003 |
PCB 157 | Brain chicks 271.753 ± 384.310, <0.010–543.501 | 0.00003 |
PCB 167 | Brain chicks 150.220 ± 212.436, <0.010–300.435 | 0.00003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motas, M.; Jerez-Rodríguez, S.; Veiga-del-Baño, J.M.; Ramos, J.J.; Oliva, J.; Cámara, M.Á.; Andreo-Martínez, P.; Corsolini, S. PCBs in Chinstrap Penguins from Deception Island (South Shetland Islands, Antarctica). Toxics 2025, 13, 430. https://doi.org/10.3390/toxics13060430
Motas M, Jerez-Rodríguez S, Veiga-del-Baño JM, Ramos JJ, Oliva J, Cámara MÁ, Andreo-Martínez P, Corsolini S. PCBs in Chinstrap Penguins from Deception Island (South Shetland Islands, Antarctica). Toxics. 2025; 13(6):430. https://doi.org/10.3390/toxics13060430
Chicago/Turabian StyleMotas, Miguel, Silvia Jerez-Rodríguez, José Manuel Veiga-del-Baño, Juan José Ramos, José Oliva, Miguel Ángel Cámara, Pedro Andreo-Martínez, and Simonetta Corsolini. 2025. "PCBs in Chinstrap Penguins from Deception Island (South Shetland Islands, Antarctica)" Toxics 13, no. 6: 430. https://doi.org/10.3390/toxics13060430
APA StyleMotas, M., Jerez-Rodríguez, S., Veiga-del-Baño, J. M., Ramos, J. J., Oliva, J., Cámara, M. Á., Andreo-Martínez, P., & Corsolini, S. (2025). PCBs in Chinstrap Penguins from Deception Island (South Shetland Islands, Antarctica). Toxics, 13(6), 430. https://doi.org/10.3390/toxics13060430