Toxicity Assessment of Organophosphate Flame Retardants Using New Approach Methodologies
Abstract
1. Introduction
2. New Approach Methodologies to Study OPFR Toxicity
2.1. Biological Models
2.2. Toxicity Assessment Methods
3. Toxicological Studies of OPFRs in Vitro
3.1. Liver Toxicity
3.2. Neurotoxicity
3.3. Endocrine Disruption
3.4. Reproductive and Developmental Toxicity
3.5. Lung Toxicity
3.6. Other Tissues
4. Discussion and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, P.I.; Stapleton, H.M.; Sjodin, A.; Meeker, J.D. Relationships between polybrominated diphenyl ether concentrations in house dust and serum. Environ. Sci. Technol. 2010, 44, 5627–5632. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, H.M.; Klosterhaus, S.; Keller, A.; Ferguson, P.L.; Van Bergen, S.; Cooper, E.; Webster, T.F.; Blum, A. Identification of flame retardants in polyurethane foam collected from baby products. Environ. Sci. Technol. 2011, 45, 5323–5331. [Google Scholar] [CrossRef] [PubMed]
- Blum, A.; Behl, M.; Birnbaum, L.S.; Diamond, M.L.; Phillips, A.; Singla, V.; Sipes, N.S.; Stapleton, H.M.; Venier, M. Organophosphate Ester Flame Retardants: Are They a Regrettable Substitution for Polybrominated Diphenyl Ethers? Environ. Sci. Technol. Lett. 2019, 6, 638–649. [Google Scholar] [CrossRef] [PubMed]
- Meeker, J.D.; Cooper, E.M.; Stapleton, H.M.; Hauser, R. Urinary metabolites of organophosphate flame retardants: Temporal variability and correlations with house dust concentrations. Environ. Health Perspect. 2013, 121, 580–585. [Google Scholar] [CrossRef]
- U.S. EPA, Furniture Flame Retardancy Partnership: Environmental Profiles of Chemical Flame-Retardant Alternatives for Low-Density Polyurethane Foam, Volume1, Environmental Protection Agency, Sep. 2005. Available online: http://www.epa.gov/dfe (accessed on 24 September 2013).
- van der Veen, I.; de Boer, J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere 2012, 88, 1119–1153. [Google Scholar] [CrossRef]
- Wei, G.L.; Li, D.Q.; Zhuo, M.N.; Liao, Y.S.; Xie, Z.Y.; Guo, T.L.; Li, J.J.; Zhang, S.Y.; Liang, Z.Q. Organophosphorus flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure. Environ. Pollut. 2015, 196, 29–46. [Google Scholar] [CrossRef]
- Reemtsma, T.; García-López, M.; Rodríguez, I.; Quintana, J.B.; Rodil, R. Organophosphorus flame retardants and plasticizers in water and air I. Occurrence and fate. TrAC—Trends Anal. Chem. 2008, 27, 727–737. [Google Scholar] [CrossRef]
- Sundkvist, A.M.; Olofsson, U.; Haglund, P. Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk. J. Environ. Monit. 2010, 12, 943–951. [Google Scholar] [CrossRef]
- Meyer, J.; Bester, K. Organophosphate flame retardants and plasticisers in wastewater treatment plants. J. Environ. Monit. 2004, 6, 599–605. [Google Scholar] [CrossRef]
- Cristale, J.; Katsoyiannis, A.; Sweetman, A.J.; Jones, K.C.; Lacorte, S. Occurrence and risk assessment of organophosphorus and brominated flame retardants in the River Aire (UK). Environ. Pollut. 2013, 179, 194–200. [Google Scholar] [CrossRef]
- Velázquez-Gómez, M.; Hurtado-Fernández, E.; Lacorte, S. Differential occurrence, profiles and uptake of dust contaminants in the Barcelona urban area. Sci. Total Environ. 2019, 648, 1354–1370. [Google Scholar] [CrossRef] [PubMed]
- Cequier, E.; Marcé, R.M.; Becher, G.; Thomsen, C. A high-throughput method for determination of metabolites of organophosphate flame retardants in urine by ultra performance liquid chromatography-high resolution mass spectrometry. Anal. Chim. Acta 2014, 845, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.W.; Ding, W.H. Determination of organophosphate flame retardants in sediments by microwave-assisted extraction and gas chromatography-mass spectrometry with electron impact and chemical ionization. Anal. Bioanal. Chem. 2009, 395, 2325–2334. [Google Scholar] [CrossRef]
- Gao, Z.; Deng, Y.; Yuan, W.; He, H.; Yang, S.; Sun, C. Determination of organophosphorus flame retardants in fish by pressurized liquid extraction using aqueous solutions and solid-phase microextraction coupled with gas chromatography-flame photometric detector. J. Chromatogr. A 2014, 1366, 31–37. [Google Scholar] [CrossRef]
- Kim, J.W.; Isobe, T.; Chang, K.H.; Amano, A.; Maneja, R.H.; Zamora, P.B.; Siringan, F.P.; Tanabe, S. Levels and distribution of organophosphorus flame retardants and plasticizers in fishes from Manila Bay, the Philippines. Environ. Pollut. 2011, 159, 3653–3659. [Google Scholar] [CrossRef]
- Hou, R.; Xu, Y.; Wang, Z. Review of OPFRs in animals and humans: Absorption, bioaccumulation, metabolism, and internal exposure research. Chemosphere 2016, 153, 78–90. [Google Scholar] [CrossRef]
- Malarvannan, G.; Belpaire, C.; Geeraerts, C.; Eulaers, I.; Neels, H.; Covaci, A. Organophosphorus flame retardants in the European eel in Flanders, Belgium: Occurrence, fate and human health risk. Environ. Res. 2015, 140, 604–610. [Google Scholar] [CrossRef]
- Tajima, S.; Araki, A.; Kawai, T.; Tsuboi, T.; Bamai, Y.A.; Yoshioka, E.; Kanazawa, A.; Cong, S.; Kishi, R. Detection and intake assessment of organophosphate flame retardants in house dust in Japanese dwellings. Sci. Total Environ. 2014, 478, 190–199. [Google Scholar] [CrossRef]
- Yang, F.; Ding, J.; Huang, W.; Xie, W.; Liu, W. Particle size-specific distributions and preliminary exposure assessments of organophosphate flame retardants in office air particulate matter. Environ. Sci. Technol. 2014, 48, 63–70. [Google Scholar] [CrossRef]
- Pyambri, M.; Lacorte, S.; Jaumot, J.; Bedia, C. Effects of Indoor Dust Exposure on Lung Cells: Association of Chemical Composition with Phenotypic and Lipid Changes in a 3D Lung Cancer Cell Model. Environ. Sci. Technol. 2023, 57, 20532–20541. [Google Scholar] [CrossRef]
- Abdallah, M.A.E.; Covaci, A. Organophosphate flame retardants in indoor dust from Egypt: Implications for human exposure. Environ. Sci. Technol. 2014, 48, 4782–4789. [Google Scholar] [CrossRef] [PubMed]
- Campone, L.; Piccinelli, A.L.; Östman, C.; Rastrelli, L. Determination of organophosphorous flame retardants in fish tissues by matrix solid-phase dispersion and gas chromatography. Anal. Bioanal. Chem. 2010, 397, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Stackelberg, P.E.; Gibs, J.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Lippincott, R.L. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Sci. Total Environ. 2007, 377, 255–272. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, N.; Zhang, B.; Jin, L.; Li, M.; Hu, M.; Zhang, X.; Wei, S.; Yu, H. Occurrence of organophosphate flame retardants in drinking water from China. Water Res. 2014, 54, 53–61. [Google Scholar] [CrossRef]
- Benotti, M.J.; Trenholm, R.A.; Vanderford, B.J.; Holady, J.C.; Stanford, B.D.; Snyder, S.A. Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ. Sci. Technol. 2009, 43, 597–603. [Google Scholar] [CrossRef]
- Di Bona, S.; Artino, E.; Buiarelli, F.; Di Filippo, P.; Galarini, R.; Lorenzetti, S.; Lucarelli, F.; Cruciani, G.; Goracci, L. Metabolic Stability of Eight Airborne OrganoPhosphate Flame Retardants (OPFRs) in Human Liver, Skin Microsomes and Human Hepatocytes. Separations 2023, 10, 548. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, C.; Fu, L.; Gu, S.; Wang, C. New Insights in the Endocrine Disrupting Effects of Three Primary Metabolites of Organophosphate Flame Retardants. Environ. Sci. Technol. 2020, 54, 4465–4474. [Google Scholar] [CrossRef]
- Behl, M.; Hsieh, J.H.; Shafer, T.J.; Mundy, W.R.; Rice, J.R.; Boyd, W.A.; Freedman, J.H.; Hunter, E.S.; Jarema, K.A.; Padilla, S.; et al. Use of alternative assays to identify and prioritize organophosphorus flame retardants for potential developmental and neurotoxicity. Neurotoxicol. Teratol. 2015, 52, 181–193. [Google Scholar] [CrossRef]
- Schang, G.; Robaire, B.; Hales, B.F. Organophosphate Flame Retardants act as Endocrine-Disrupting Chemicals in MA-10 Mouse Tumor Leydig Cells Running title: Effects of OPFRs on MA-10 Leydig Cells. Toxicol Sci. 2016, 150, 499–509. [Google Scholar] [CrossRef]
- Wang, X.; Rowan-Carroll, A.; Meier, M.J.; Yauk, C.L.; Wade, M.G.; Robaire, B.; Hales, B.F. House dust-derived mixtures of organophosphate esters alter the phenotype, function, transcriptome, and lipidome of KGN human ovarian granulosa cells. Toxicol. Sci. 2024, 200, 95–113. [Google Scholar] [CrossRef]
- Ji, X.; Li, N.; Ma, M.; Rao, K.; Wang, Z. In vitro estrogen-disrupting effects of organophosphate flame retardants. Sci. Total Environ. 2020, 727, 138484. [Google Scholar] [CrossRef] [PubMed]
- Rosenmai, A.K.; Winge, S.B.; Möller, M.; Lundqvist, J.; Wedebye, E.B.; Nikolov, N.G.; Johansson, H.K.L.; Vinggaard, A.M. Organophosphate ester flame retardants have antiandrogenic potential and affect other endocrine related endpoints in vitro and in silico. Chemosphere 2021, 263, 127703. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Cao, L.; Li, X.; Li, N.; Wang, Z.; Wu, H. Affinities of organophosphate flame retardants to tumor suppressor gene p53: An integrated in vitro and in silico study. Toxicol. Lett. 2015, 232, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liang, J.; Gu, H.; Du, T.; Xu, P.; Yu, T.; He, Q.; Huang, Z.; Lei, S.; Li, J. Activation of LXRα attenuates 2-Ethylhexyl diphenyl phosphate (EHDPP) induced placental dysfunction. Ecotoxicol. Environ. Saf. 2023, 266, 115605. [Google Scholar] [CrossRef]
- Chen, Y.; Song, Y.; Chen, Y.J.; Zhang, Y.; Li, R.; Wang, Y.; Qi, Z.; Chen, Z.F.; Cai, Z. Contamination profiles and potential health risks of organophosphate flame retardants in PM2.5 from Guangzhou and Taiyuan, China. Environ. Int. 2020, 134, 105343. [Google Scholar] [CrossRef]
- Negi, C.K.; Bajard, L.; Kohoutek, J.; Blaha, L. An adverse outcome pathway based in vitro characterization of novel flame retardants-induced hepatic steatosis. Environ. Pollut. 2021, 289, 117855. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, C.; Liu, Y.; Ma, H.; Wu, F.; Jia, Y.; Hu, J. Amniogenesis in Human Amniotic Sac Embryoids after Exposures to Organophosphate Flame Retardants. Environ. Health Perspect. 2023, 131, 47007. [Google Scholar] [CrossRef]
- Kim, S.; Kang, K.; Kim, H.; Seo, M. In Vitro Toxicity Screening of Fifty Complex Mixtures in HepG2 Cells. Toxics 2024, 12, 126. [Google Scholar] [CrossRef]
- Zhang, J.; Williams, T.D.; Chipman, J.K.; Viant, M.R. Defensive and adverse energy-related molecular responses precede tris (1, 3-dichloro-2-propyl) phosphate cytotoxicity. J. Appl. Toxicol. 2016, 36, 649–658. [Google Scholar] [CrossRef]
- Gu, Y.; Yang, Y.; Wan, B.; Li, M.; Guo, L.H. Inhibition of O-linked N-acetylglucosamine transferase activity in PC12 cells—A molecular mechanism of organophosphate flame retardants developmental neurotoxicity. Biochem. Pharmacol. 2018, 152, 21–33. [Google Scholar] [CrossRef]
- Hogberg, H.T.; de Cássia da Silveira E Sá, R.; Kleensang, A.; Bouhifd, M.; Ulker, O.C.; Smirnova, L.; Behl, M.; Maertens, A.; Zhao, L.; Hartung, T. Organophosphorus flame retardants are developmental neurotoxicants in a rat primary brainsphere in vitro model. Arch. Toxicol. 2021, 95, 207–228. [Google Scholar] [CrossRef] [PubMed]
- Tastet, V.; Le Vée, M.; Kerhoas, M.; Zerdoug, A.; Jouan, E.; Bruyère, A.; Fardel, O. Interactions of organophosphate flame retardants with human drug transporters. Ecotoxicol. Environ. Saf. 2023, 263, 115348. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Hu, J.; Shang, Y.; Zhong, Y.; Zhang, X.; Yu, Z. The cytotoxicity of organophosphate flame retardants on HepG2, A549 and Caco-2 cells. J. Environ. Sci. Health Part A 2016, 51, 980–988. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Chu, M.; Lin, S.; Lou, J.; Wang, C. Partitioning behavior-oriented health risk assessment on internal organophosphorus flame retardants exposure. Environ. Res. 2023, 216, 114704. [Google Scholar] [CrossRef]
- Li, Z.; Tang, X.; Zhu, L.; Qi, X.; Cao, G.; Lu, G. Cytotoxic Screening and Transcriptomics Reveal Insights into the Molecular Mechanisms of Trihexyl Phosphate-Triggered Hepatotoxicity. Environ. Sci. Technol. 2020, 54, 11464–11475. [Google Scholar] [CrossRef]
- Kojima, H.; Takeuchi, S.; Itoh, T.; Iida, M.; Kobayashi, S.; Yoshida, T. In vitro endocrine disruption potential of organophosphate flame retardants via human nuclear receptors. Toxicology 2013, 314, 76–83. [Google Scholar] [CrossRef]
- Mokra, K.; Bukowski, K.; Woźniak, K. Effects of tris(1-chloro-2-propyl)phosphate and tris(2-chloroethyl)phosphate on cell viability and morphological changes in peripheral blood mononuclear cells (in vitro study). Hum. Exp. Toxicol. 2018, 37, 1336–1345. [Google Scholar] [CrossRef]
- Yuan, S.; Zhang, H.; Wang, S.; Jiang, X.; Ma, M.; Xu, Y.; Han, Y.; Wang, Z. Do the same chlorinated organophosphorus flame retardants that cause cytotoxicity and DNA damage share the same pathway? Ecotoxicol. Environ. Saf. 2024, 273, 116158. [Google Scholar] [CrossRef]
- Deepika, D.; Sharma, R.P.; Schuhmacher, M.; Kumar, V. Development of a rat physiologically based kinetic model (PBK) for three organophosphate flame retardants (TDCIPP, TCIPP, TCEP). Toxicol. Lett. 2023, 383, 128–140. [Google Scholar] [CrossRef]
- Crump, D.; Chiu, S.; Kennedy, S.W. Effects of tris(1,3-dichloro-2-propyl) phosphate and tris(1-chloropropyl) phosphate on cytotoxicity and mrna expression in primary cultures of avian hepatocytes and neuronal cells. Toxicol. Sci. 2012, 126, 140–148. [Google Scholar] [CrossRef]
- Saquib, Q.; Siddiqui, M.; Al-Khedhairy, A. Organophosphorus flame-retardant tris(1-chloro-2-propyl)phosphate is genotoxic and apoptotic inducer in human umbilical vein endothelial cells. J. Appl. Toxicol. 2021, 41, 861–873. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.H.; Zhang, S.H.; Jia, S.M.; Wang, L.J.; Ma, W.L. In vitro biotransformation of tris(1,3-dichloro-2-propyl) phosphate and triphenyl phosphate by mouse liver microsomes: Kinetics and key CYP isoforms. Chemosphere 2022, 288, 132504. [Google Scholar] [CrossRef] [PubMed]
- Esplugas, R.; Linares, V.; Bellés, M.; Domingo, J.L.; Schuhmacher, M. In vitro neurotoxic potential of emerging flame retardants on neuroblastoma cells in an acute exposure scenario. Toxicol. Vitr. 2023, 87, 105523. [Google Scholar] [CrossRef]
- Zhong, X.; Wu, J.; Ke, W.; Yu, Y.; Ji, D.; Kang, J.; Qiu, J.; Wang, C.; Yu, P.; Wei, Y. Neonatal exposure to organophosphorus flame retardant TDCPP elicits neurotoxicity in mouse hippocampus via microglia-mediated inflammation in vivo and in vitro. Arch. Toxicol. 2020, 94, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Jin, L.; Yin, H.; Tang, S.; Yu, Y.; Yang, Y. Assessments of the effects of tris(1,3-dichloro-2-propyl) phosphate (TDCPP) on human intestinal health from the aspects of intestinal flora changes and cytotoxicity to human cells. Sci. Total Environ. 2023, 894, 164823. [Google Scholar] [CrossRef]
- Li, Z.; Sun, J.; Liu, W.; Wu, J.; Peng, H.; Zhao, Y.; Qio, H.; Fang, Y. Changes in the circRNA expression profile of PC12 cells induced by TDCIPP exposure may regulate the downstream NF-κB pathway via the Traf2 gene. Chemosphere 2020, 254, 126834. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Z.; Duan, H.; Shao, B. Tris(1,3-dichloro-2-propyl) phosphate induces endoplasmic reticulum stress and mitochondrial-dependent apoptosis in mouse spermatocyte GC-2 cells. Food Chem. Toxicol. 2024, 185, 114506. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, R.; Zhao, M.; Li, S.; Yin, N.; Zhang, A.; Faiola, F. Typical neonicotinoids and organophosphate esters, but not their metabolites, adversely impact early human development by activating BMP4 signaling. J. Hazard. Mater. 2024, 465, 133028. [Google Scholar] [CrossRef]
- Zhao, B.; Zheng, S.; Yang, G.; He, Z.; Deng, J.; Luo, L.; Li, X.; Luan, T. Rap1 and mTOR signaling pathways drive opposing immunotoxic effects of structurally similar aryl-OPFRs, TPHP and TOCP. Environ. Int. 2025, 195, 109215. [Google Scholar] [CrossRef]
- Feng, Y.; Shi, J.; Li, M.; Duan, H.; Shao, B. Evaluation of the cytotoxic activity of triphenyl phosphate on mouse spermatocytes cells. Toxicol. Vitr. 2023, 90, 109215. [Google Scholar] [CrossRef]
- Chen, C.; Cui, D.; Li, J.; Ren, C.; Yang, D.; Xiang, P.; Liu, J. Organophosphorus Flame Retardant TPP-Induced Human Corneal Epithelial Cell Apoptosis through Caspase-Dependent Mitochondrial Pathway. Int. J. Mol. Sci. 2024, 25, 4155. [Google Scholar] [CrossRef] [PubMed]
- European Parliament Council of the European Union. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes Text with EEA Relevance. Off. J. Eur. Union 2010, 53, 33–79. Available online: http://data.europa.eu/eli/dir/2010/63/oj (accessed on 12 February 2025).
- Wambaugh, J.F.; Bare, J.C.; Carignan, C.C.; Dionisio, K.L.; Dodson, R.E.; Jolliet, O.; Liu, X.; Meyer, D.E.; Newton, S.R.; Phillips, K.A.; et al. New approach methodologies for exposure science. Curr. Opin. Toxicol. 2019, 15, 76–92. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Li, H.; Xu, S.; Zhou, Q.; Jin, M.; Tang, J. A review of organophosphorus flame retardants (OPFRs): Occurrence, bioaccumulation, toxicity, and organism exposure. Environ. Sci. Pollut. Res. 2019, 26, 22126–22136. [Google Scholar] [CrossRef]
- Segeritz, C.P.; Vallier, L. Cell Culture: Growing Cells as Model Systems In Vitro. In Basic Science Methods for Clinical Researchers; Academic Press: Cambridge, MA, USA, 2017; pp. 151–172. [Google Scholar] [CrossRef]
- Lee, S.Y.; Koo, I.S.; Hwang, H.J.; Lee, D.W. In Vitro three-dimensional (3D) cell culture tools for spheroid and organoid models. SLAS Discov. 2023, 28, 119–137. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Q.; Li, X.; Zou, W.; Hu, X. Integrating omics and traditional analyses to profile the synergistic toxicity of graphene oxide and triphenyl phosphate. Environ. Pollut. 2020, 263, 114473. [Google Scholar] [CrossRef]
- Ju, J.; Wu, X.; Mao, W.; Zhang, C.; Ge, W.; Wang, Y.; Ma, S.; Zhu, Y. The growth toxicity and neurotoxicity mechanism of waterborne TBOEP to nematodes: Insights from transcriptomic and metabolomic profiles. Aquat. Toxicol. 2023, 256, 106401. [Google Scholar] [CrossRef]
- Krivoshiev, B.V.; Beemster, G.T.S.; Sprangers, K.; Blust, R.; Husson, S.J. A toxicogenomics approach to screen chlorinated flame retardants tris(2-chloroethyl) phosphate and tris(2-chloroisopropyl) phosphate for potential health effects. J. Appl. Toxicol. 2018, 38, 459–470. [Google Scholar] [CrossRef]
- Zhu, L.; Huang, X.; Li, Z.; Cao, G.; Zhu, X.; She, S.; Huang, T.; Lu, G. Evaluation of hepatotoxicity induced by 2-ethylhexyldiphenyl phosphate based on transcriptomics and its potential metabolism pathway in human hepatocytes. J. Hazard. Mater. 2021, 413, 125281. [Google Scholar] [CrossRef]
- Zhang, J.; Abdallah, M.A.-E.; Williams, T.D.; Harrad, S.; Chipman, J.K.; Viant, M.R. Gene expression and metabolic responses of HepG2/C3A cells exposed to flame retardants and dust extracts at concentrations relevant to indoor environmental exposures. Chemosphere 2016, 144, 1996–2003. [Google Scholar] [CrossRef]
- Al-Salem, A.M.; Saquib, Q.; Al-Khedhairy, A.A.; Siddiqui, M.A.; Ahmad, J. Tris(2-chloroethyl) phosphate (tcep) elicits hepatotoxicity by activating human cancer pathway genes in hepg2 cells. Toxics 2020, 8, 109. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Wang, M.; Zheng, C.; Zhang, X.; Chen, Y.; Wang, L. Organophosphate flame retardant triphenyl phosphate (TPhP) induced colonic fibrosis by bringing about epithelial-mesenchymal transition. Ecotoxicol. Environ. Saf. 2025, 291, 117913. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Zhang, Y.; Wang, G.; Peng, J.; Wang, Z.; Gao, S. TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver. Sci. Rep. 2016, 6, 21827. [Google Scholar] [CrossRef] [PubMed]
- Morris, P.J.; Medina-Cleghorn, D.; Heslin, A.; King, S.M.; Orr, J.; Mulvihill, M.M.; Krauss, R.M.; Nomura, D.K. Organophosphorus flame retardants inhibit specific liver carboxylesterases and cause serum hypertriglyceridemia. ACS Chem. Biol. 2014, 9, 1097–1103. [Google Scholar] [CrossRef]
- Wang, X.; Li, F.; Liu, J.; Ji, C.; Wu, H. Transcriptomic, proteomic and metabolomic profiling unravel the mechanisms of hepatotoxicity pathway induced by triphenyl phosphate (TPP). Ecotoxicol. Environ. Saf. 2020, 205, 111126. [Google Scholar] [CrossRef]
- Saquib, Q.; Al-Salem, A.M.; Siddiqui, M.A.; Ansari, S.M.; Zhang, X.; Al-Khedhairy, A.A. Cyto-Genotoxic and Transcriptomic Alterations in Human Liver Cells by Tris (2-Ethylhexyl) Phosphate (TEHP): A Putative Hepatocarcinogen. Int. J. Mol. Sci. 2022, 23, 3998. [Google Scholar] [CrossRef]
- Saquib, Q.; Al-Salem, A.M.; Siddiqui, M.A.; Ansari, S.M.; Zhang, X.; Al-Khedhairy, A.A. Organophosphorus Flame Retardant TDCPP Displays Genotoxic and Carcinogenic Risks in Human Liver Cells. Cells 2022, 11, 195. [Google Scholar] [CrossRef]
- Aluru, N.; Hallanger, I.G.; McMonagle, H.; Harju, M. Hepatic Gene Expression Profiling of Atlantic Cod (Gadus morhua) Liver after Exposure to Organophosphate Flame Retardants Revealed Altered Cholesterol Biosynthesis and Lipid Metabolism. Environ. Toxicol. Chem. 2021, 40, 1639–1648. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, F.; Zhao, T.; Du, J.; Li, N.; Qiao, X.; Yao, Y.; Wu, D.; Peng, F.; Wang, D.; et al. Melatonin improves mouse oocyte quality from 2-ethylhexyl diphenyl phosphate-induced toxicity by enhancing mitochondrial function. Ecotoxicol. Environ. Saf. 2024, 280, 116559. [Google Scholar] [CrossRef]
- European Parliament and Council of the European Union. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), Establishing a European Chemicals Agency. Off. J. Eur. Union 2006, 396, 1–850. Available online: http://data.europa.eu/eli/reg/2006/1907/oj (accessed on 12 February 2019).
- ICCVAM Validation Workgroup. Validation, Qualification, and Regulatory Acceptance of New Approach Methodologies; National Toxicology Program: Research Triangle Park, NC, USA, 2024. Available online: https://ntp.niehs.nih.gov/sites/default/files/2024-03/VWG_Report_27Feb2024_FD_508.pdf (accessed on 1 February 2025).
- Zuang, V.; Dura, A.; Asturiol Bofill, D.; Batista Leite, S.; Berggren, E.; Bernasconi, C.; Bopp, S.; Bowe, G.; Campia, I.; Carpi, D.; et al. EUR 30100 EN; EURL ECVAM Status Report on the Development, Validation and Regulatory Acceptance of Alternative Methods and Approaches (2019); Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-16368-8. [Google Scholar] [CrossRef]
- European Chemicals Agency. The Use of Alternatives to Testing on Animals for the REACH Regulation, 4th ed.; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-9481-734-1. [Google Scholar] [CrossRef]
- Parish, S.T.; Aschner, M.; Casey, W.; Corvaro, M.; Embry, M.R.; Fitzpatrick, S.; Kidd, D.; Kleinstreuer, N.C.; Lima, B.S.; Settivari, R.S.; et al. An evaluation framework for new approach methodologies (NAMs) for human health safety assessment. Regul. Toxicol. Pharmacol. 2020, 112, 104592. [Google Scholar] [CrossRef]
Acronym | Full Name | References |
---|---|---|
BCIPP | Bis(2-chloroisopropyl) phosphate | [28] |
BDCIPP | Bis(dichloropropyl) phosphate | [28] |
BPDP | Bisphenol diphenyl phosphate | [29,30,31] |
CDP | Cresyl diphenyl phosphate | [31,32,33] |
DnBP | Di-n-butyl phosphate | [34] |
DPHP | Diphenyl phosphate | [28,33,35] |
EDHP | Ethyldiphenyl phosphate | [30] |
EHDPHP | Ethylhexyl diphenyl phosphate | [29,31,33,35,36,37,38,39,40,41] |
IDDP | Isodecyldiphenyl phosphate | [29,30,32,38,42] |
IPP | Isopropylphenyl phosphate | [29,30,31,42] |
IPPDP | Isopropylphenyl diphenyl phosphate | [32] |
MDPP | Methyl diphenyl phosphate | [32] |
MPhP | Methylphenyl phosphate | [32] |
TBOEP | Tris(butoxyethyl) phosphate | [31,36,37,39,40,41,43,44,45,46,47] |
TBPP | Tris(2,3-dibromopropyl) phosphate | [45] |
TCEP | Tris(2-chloroethyl) phosphate | [29,31,33,34,36,37,40,41,43,45,47,48,49] |
TCIPP | Tris(2-chloroisopropyl) phosphate | [31,33,37,50] |
TCP | Tricresyl phosphate | [32,36,40,41,47] |
TCPP | Tris(2-chloropropyl) phosphate | [34,36,39,41,43,44,45,47,48,49,51,52] |
TDCPP TDCIPP | Tris(1,3-dichloro-2-propyl) phosphate Tris 1,3-dichloroisopropyl) phosphate | [29,31,33,37,39,43,47,50,51,53,54,55,56,57,58,59] |
TEHP | Tris(2-ethylhexyl) phosphate | [29,31,33,36,37,39,43,47,50,51,53,54,55,56,57,58] |
TEP | Triethyl phosphate | [32,36,41,46,47,60] |
TiBP | Triisobutyl phosphate | [32,36,46] |
TIPPP | Tris(isopropylphenyl) phosphate | [33] |
TMP | Trimethyl phosphate | [32,34,41,46,47] |
TMPP | Trimethylphenyl phosphate | [29,30,31,33,37,42] |
TnBP | Tri-n-butyl phosphate | [31,32,36,37,39,41,43] |
TOCP | Tris(orthocresyl) phosphate | [30,43,61] |
TPhP | Triphenyl phosphate | [29,30,31,32,33,34,36,37,39,40,41,42,43,44,45,47,50,53,54,60,62,63] |
TPrP | Tripropyl phosphate | [41,47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pyambri, M.; Jaumot, J.; Bedia, C. Toxicity Assessment of Organophosphate Flame Retardants Using New Approach Methodologies. Toxics 2025, 13, 297. https://doi.org/10.3390/toxics13040297
Pyambri M, Jaumot J, Bedia C. Toxicity Assessment of Organophosphate Flame Retardants Using New Approach Methodologies. Toxics. 2025; 13(4):297. https://doi.org/10.3390/toxics13040297
Chicago/Turabian StylePyambri, Maryam, Joaquim Jaumot, and Carmen Bedia. 2025. "Toxicity Assessment of Organophosphate Flame Retardants Using New Approach Methodologies" Toxics 13, no. 4: 297. https://doi.org/10.3390/toxics13040297
APA StylePyambri, M., Jaumot, J., & Bedia, C. (2025). Toxicity Assessment of Organophosphate Flame Retardants Using New Approach Methodologies. Toxics, 13(4), 297. https://doi.org/10.3390/toxics13040297