An Experimental Study to Assess the Ecotoxicity of Warfarin and Tinzaparin on Meiobenthic Amphipods: Original Taxonomic Data from Saudi Arabia and Computational Modeling
Abstract
1. Introduction
2. Materials and Methods
2.1. Location of the Collection Field and Experimental Processing
2.2. Choice of Warfarin and Tinzaparin Concentrations
2.3. Experimental Design
2.4. Meiobenthos Counting and Amphipod Taxonomy (Figure 1)
2.5. Computational Modeling
2.6. Data Processing and Statistics
3. Results
3.1. Environmental Factors at the Prospected Site
3.2. Meiofaunal Abundances
3.3. Taxonomic Census and Diversity of Amphipods
3.4. Multivariate Analyses Based on Community Composition of Amphipods
- The species Stenothoe monoculoides showed a significant decline at all concentrations of tinzaparin and warfarin, both alone and in combination. This species completely disappeared from six out of the eight examined assemblages: T2, W1, W2, T1W1, T1W2, and T2W1.
- However, exposure to certain treatments was sometimes beneficial for specific species. This was the case for Longigammarus bruni (in treatments T1, T2, and T1W2), Microdeutopus versiculatus (in treatment T1), and Leptocheirus pilosus (in treatment T2).
- In treatments T1 and T2, there was a reduction in the abundance of several amphipods, including Stenothoe monoculoides, Ampithoe ramondi, and Microdeutopus gryllotalpa. Following the introduction of tinzaparin, Ampithoe ramondi was completely eradicated in treatment T1, and Microdeutopus gryllotalpa vanished from the T2 treatments.
- A notable decrease in the populations of seven species was observed across treatments W1 and W2, which included Stenothoe monoculoides, Ampithoe ramondi, and Lysianassina longicornis. Among these, both Stenothoe monoculoides and Ampithoe ramondi disappeared from W1 and W2.
- The third pattern emerged in the mixture treatments, where SIMPER analysis revealed that Lysianassina longicornis and Ampithoe ferox were diminished or eliminated (as shown in Table 3). Furthermore, Ampithoe ramondi was eradicated in treatment T2W2, and its relative abundance decreased in treatment T2W1.
3.5. Computational Modeling
4. Discussion
4.1. How Did Meiobenthic Organism Abundance Vary in Response to Stress?
4.2. How Do Amphipods Taxonomically Respond to Stress?
4.3. Does Computational Modeling Support Univariate and Multivariate Outcomes?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Du, Z.; Song, B.; Li, R.; Jia, X.; Chen, J.; Liu, X.; Zhong, S.A. A Natural Heparinoid from Mollusc Meretrix Lusoria: Purification, Structural Characterization, and Antithrombotic Evaluation. Curr. Res. Food Sci. 2022, 5, 1897–1905. [Google Scholar] [CrossRef]
- Fernández, I.; Santos, A.; Cancela, M.L.; Laizé, V.; Gavaia, P.J. Warfarin, a Potential Pollutant in Aquatic Environment Acting through Pxr Signaling Pathway and γ-Glutamyl Carboxylation of Vitamin K-Dependent Proteins. Environ. Pollut. 2014, 194, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.H.; Semprucci, F.; Raehyuk, J.; Kim, K.; Lee, S.; Jeon, D.; Yoo, H.; Kim, J.; Kim, J.; Yeom, J.; et al. Meiobenthic nematodes in the assessment of the relative impact of human activities on coastal marine ecosystems. Environ. Monit. Assess. 2020, 192, 81. [Google Scholar] [CrossRef] [PubMed]
- Semprucci, F.; Cesaroni, L.; Guidi, L.; Balsamo, M. Do the Morphological and Functional Traits of Free-Living Marine Nematodes Mirror Taxonomical Diversity? Mar. Environ. Res. 2018, 135, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Flumignan, R.L.; Civile, V.T.; de Sá Tinôco, J.D.; Pascoal, P.I.; Areias, L.L.; Matar, C.F.; Tendal, B.; Trevisani, V.F.; Atallah, Á.N.; Nakano, L.C. Anticoagulants for People Hospitalised with COVID-19. Cochrane Database Syst. Rev. 2020, 10, CD013739. [Google Scholar]
- Neely, J.L.; Carlson, S.S.; Lenhart, S.E. Tinzaparin Sodium: A Low-Molecular-Weight Heparin. Am. J. Health-Syst. Pharm. 2002, 59, 1426–1436. [Google Scholar] [CrossRef]
- Harrison, L.; Johnston, M.; Massicotte, M.P.; Crowther, M.; Moffat, K.; Hirsh, J. Comparison of 5-Mg and 10-Mg Loading Doses in Initiation of Warfarin Therapy. Ann. Intern. Med. 1997, 126, 133–136. [Google Scholar] [CrossRef]
- Schoen, T.; Blum, J.; Paccaud, F.; Burnier, M.; Bochud, M.; Conen, D. Factors Associated with 24-Hour Urinary Volume: The Swiss Salt Survey. BMC Nephrol. 2013, 14, 246. [Google Scholar] [CrossRef]
- Komiyama, M.; Hasegawa, K. Anticoagulant Therapy for Patients with Coronavirus Disease 2019: Urgent Need for Enhanced Awareness. Eur. Cardiol. Rev. 2020, 15, e58. [Google Scholar] [CrossRef]
- Bin-Jumah, M.N. Are Anticoagulant Drugs Ecotoxic for Meiobenthic Nematodes from Saudi Arabia? First Data on Taxon/Functional Diversity and Computational Evidences. Mar. Pollut. Bull. 2024, 200, 116029. [Google Scholar] [CrossRef]
- Austen, M.C.; McEvoy, A.J.; Warwick, R.M. The Specificity of Meiobenthic Community Responses to Different Pollutants: Results from Microcosm Experiments. Mar. Pollut. Bull. 1994, 28, 557–563. [Google Scholar]
- Hubas, C.; Sachidhanandam, C.; Rybarczyk, H.; Lubarsky, H.; Rigaux, A.; Moens, T.; Paterson, D. Bacterivorous nematodes stimulate microbial growth and exopolymer production in marine sediment microcosms. Mar. Ecol. Prog. Ser. 2010, 419, 85–94. [Google Scholar]
- Armenteros, M.; Pérez-García, J.A.; Ruiz-Abierno, A.; Díaz-Asencio, L.; Helguera, Y.; Vincx, M.; Decraemer, W. Effects of organic enrichment on nematode assemblages in a microcosm experiment, Mar. Environ. Res. 2010, 70, 374–382. [Google Scholar]
- Hermi, M.; Mahmoudi, E.; Beyrem, H.; Aïssa, P.; Essid, N. Responses of a free-living marine nematode community to mercury contamination: Results from microcosm experiments. Arch. Environ. Contam. Toxicol. 2009, 56, 426–433. [Google Scholar] [CrossRef]
- Moccia, D.; Cau, A.; Meloni, M.C.; Pusceddu, A. Small-Scale Distribution of Metazoan Meiofauna and Sedimentary Organic Matter in Subtidal Sandy Sediments (Mediterranean Sea). Adv. Oceanogr. Limnol. 2019, 10, 57–66. [Google Scholar]
- Gyedu-Ababio, T.K.; Baird, D. Response of Meiofauna and Nematode Communities to Increased Levels of Contaminants in a Laboratory Microcosm Experiment. Ecotoxicol. Environ. Saf. 2006, 63, 443–450. [Google Scholar] [CrossRef]
- Louati, H.; Ben Said, O.; Soltani, A.; Cravo-Laureau, C.; Preud’Homme, H.; Duran, R.; Aissa, P.; Mahmoudi, E.; Pringault, O. Impacts of bioremediation schemes for the mitigation of a low-dose anthracene contamination on free-living marine benthic nematodes. Ecotoxicology 2014, 23, 201–212. [Google Scholar]
- Ben Said, O.; Louati, H.; Soltani, A.; Preud’homme, H.; Cravo-Laureau, C.; Got, P.; Pringault, O.; Aissa, P.; Duran, R. Changes of benthic bacteria and meiofauna assemblages during bio-treatments of anthracene-contaminated sediments from Bizerta lagoon (Tunisia). Environ. Sci. Pollut. Res. 2015, 22, 15319–15331. [Google Scholar]
- Schratzberger, M.; Warwick, R.M. Effects of the Intensity and Frequency of Organic Enrichment on Two Estuarine Nematode Communities. Mar. Ecol. Prog. Ser. 1998, 164, 83–94. [Google Scholar]
- Boufahja, F.; Semprucci, F.; Beyrem, H. An Experimental Protocol to Select Nematode Species from an Entire Community Using Progressive Sedimentary Enrichment. Ecol. Indic. 2016, 60, 292–309. [Google Scholar]
- Boufahja, F.; Semprucci, F. Stress-Induced Selection of a Single Species from an Entire Meiobenthic Nematode Assemblage: Is This Possible Using Iron Enrichment and Does Pre-Exposure Affect the Ease of the Process? Environ. Sci. Pollut. Res. 2015, 22, 1979–1998. [Google Scholar]
- Vitiello, P.; Dinet, A. Définition et Échantillonnage Du Méiobenthos. Rapp. Comm. Int. Mer Médit. 1979, 25, 279–283. [Google Scholar]
- Bin-Jumah, M.N. Do functional traits and biochemical biomarkers of the nematode Oncholaimus campylocercoides De Coninck and Schuurmans Stekhoven, 1933 affected by fluoranthene and polystyrene microplastics? Results from a microcosm bioassay and molecular modeling. Mar. Pollut. Bull. 2023, 194 Pt B, 115294. [Google Scholar]
- Grego, M.; Stachowitsch, M.; De Troch, M.; Riedel, B. CellTracker Green labelling vs. rose bengal staining: CTG wins by points in distinguishing living from dead anoxia-impacted copepods and nematodes. Biogeosciences 2013, 10, 4565–4575. [Google Scholar]
- Guo, Y.; Somerfield, P.J.; Warwick, R.M.; Zhang, Z. Large-Scale Patterns in the Community Structure and Biodiversity of Freeliving Nematodes in the Bohai Sea, China. J. Mar. Biol. Assoc. U. K. 2001, 81, 755–763. [Google Scholar]
- Bellan Santini, D.; Karaman, G.; Krapp-Schickel, G.; Ledoyer, M.; Myers, A.; Ruffo, S.; Schiecke, U. The Amphipoda of the Mediterranean; Musée Océanographique: Monaco, France, 1998; pp. 815–959. [Google Scholar]
- Bellan Santini, D.; Diviacco, G.; Krapp-Schickel, G.; Myers, A.; Ruffo, S. Gammaridea (Haustoriidae to Lysianassidae). In The Amphipoda of the Mediterranean, Part II; Ruffo, S., Ed.; Memories De l’ Institut Océanographique: Monaco, France, 1989. [Google Scholar]
- Bellan Santini, D.; Karaman, G.; Krapp-Schickel, G.; Ledoyer, M.; Myers, A.; Ruffo, S. Gammaridae (Melphidippidae to Talitridae) Ingolfiellidae, Caprellidae. In The Amphipoda of the Mediterranean, Part III; Ruffo, S., Ed.; Memories De l’ Institut Océanographique: Monaco, France, 1989. [Google Scholar]
- Bellan Santini, D.; Karaman, G.; Krapp-Schickel, G.; Ledoyer, M.; Myers, A.; Ruffo, S.; Schiecke, U. Gammaridea (Acanthonozomatidae to Gammaridae). In The Amphipoda of the Mediterranean, Part I; Ruffo, S., Ed.; Memories De l’ Institut Océanographique: Monaco, France, 1982. [Google Scholar]
- d’Acoz, U.; Vader, W. The Mediterranean Bathyporeia Revisited (Crustacea, Amphipoda, Pontoporeiidae), with the Description of a New Species. Boll. Mus. Civ. Stor. Nat. Verona 2005, 29, 3–38. [Google Scholar]
- ERMS European Register of Marine Species. Available online: https://www.marbef.org/data/erms.php (accessed on 12 February 2025).
- Alreshidi, M.; Abdulhakeem, M.A.; Badraoui, R.; Amato, G.; Caputo, L.; De Martino, L.; Nazzaro, F.; Fratianni, F.; Formisano, C.; De Feo, V. Pulicaria incisa (Lam.) DC. as a Potential Source of Antioxidant, Antibacterial, and Anti-Enzymatic Bioactive Molecules: Phytochemical Constituents, in Vitro and in Silico Pharmacological Analysis. Molecules 2023, 28, 7439. [Google Scholar] [CrossRef]
- Bédoui, I.; Nasr, H.B.; Ksouda, K.; Ayadi, W.; Louati, N.; Chamkha, M.; Choura, S.; Gargouri, J.; Hammami, S.; Affes, H. Phytochemical Composition, Bioavailability and Pharmacokinetics of Scorzonera Undulata Methanolic Extracts: Antioxidant, Anticancer, and Apoptotic Effects on MCF7 Cells. Pharmacogn. Mag. 2024, 20, 218–229. [Google Scholar] [CrossRef]
- Akacha, A.; Badraoui, R.; Rebai, T.; Zourgui, L. Effect of Opuntia Ficus Indica Extract on Methotrexate-Induced Testicular Injury: A Biochemical, Docking and Histological Study. J. Biomol. Struct. Dyn. 2022, 40, 4341–4351. [Google Scholar] [CrossRef]
- Ben Saad, H.; Frikha, D.; Bouallegue, A.; Badraoui, R.; Mellouli, M.; Kallel, H.; Pujo, J.M.; Ben Amara, I. Mitigation of Hepatic Impairment with Polysaccharides from Red Alga Albidum corallinum Supplementation through Promoting the Lipid Profile and Liver Homeostasis in Tebuconazole-Exposed Rats. Pharmaceuticals 2023, 16, 1305. [Google Scholar] [CrossRef]
- Rahmouni, F.; Hamdaoui, L.; Saoudi, M.; Badraoui, R.; Rebai, T. Antioxidant and Antiproliferative Effects of Teucrium polium Extract: Computational and in Vivo Study in Rats. Toxicol. Mech. Methods 2024, 34, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Clarke, K.R. Non-parametric Multivariate Analyses of Changes in Community Structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Clarke, K.R.; Gorley, R.N. PRIMER v5: User Manual/Tutorial, PRIMER-E, Plymouth UK. Bull. Mar. Coast. Res. 2001, 50, 91. [Google Scholar]
- Othman, I.M.; Gad-Elkareem, M.A.; Radwan, H.A.; Badraoui, R.; Aouadi, K.; Snoussi, M.; Kadri, A. Synthesis, Structure-Activity Relationship and in silico Studies of Novel Pyrazolothiazole and Thiazolopyridine Derivatives as Prospective Antimicrobial and Anticancer Agents. ChemistrySelect 2021, 6, 7860–7872. [Google Scholar]
- Bakir, K.; Sezgin, M.; Katagan, T. Alien Amphipods on the Turkish Coasts. Zool. Baetica 2010, 21, 191–196. [Google Scholar]
- Bakir, K.; Katağan, T.; Sezgin, M. Parhyale Explorator Arresti, 1989 (Amphipoda, Talitroidea): First Mediterranean Record of This Atlantic Amphipod. Crustaceana 2008, 81, 557–562. [Google Scholar]
- Bellan-Santini, D.; Ruffo, S. Biogeography of Benthic Marine Amphipods in Mediterranean Sea. Biogeogr. J. Integr. Biogeogr. 2003, 24, 273–292. [Google Scholar]
- Greze, I.I. Amphipods of the Black Sea and Its Biology; Nauk. Dumka: Kiev, Ukraine, 1977; 156p. [Google Scholar]
- Mülayim, A.; Balkis, H.; Sezgin, M. Benthic Amphipod (Crustacea) Fauna of the Bandırma and Erdek Gulfs and Some Environmental Factors Affecting Their Distribution. Acta Adriat. 2015, 56, 171–188. [Google Scholar]
- Sezgin, M.; Katağan, T. An Account of Our Knowledge of the Amphipod Fauna of the Black Sea. Crustaceana 2007, 80, 1–11. [Google Scholar]
- Badraoui, R.; Adnan, M.; Bardakci, F.; Alreshidi, M.M. Chloroquine and Hydroxychloroquine Interact Differently with ACE2 Domains Reported to Bind with the Coronavirus Spike Protein: Mediation by ACE2 Polymorphism. Molecules 2021, 26, 673. [Google Scholar] [CrossRef]
Taxa | UC | T1 | T2 | W1 | W2 | T1W1 | T2W2 | T1W2 | T2W1 |
---|---|---|---|---|---|---|---|---|---|
Nematodes | 606 ± 43 | 411 ± 67 (*) | 172 ± 59 (****) | 538 ± 72 | 345 ± 26 (***) | 419 ± 37 (*) | 616 ± 54 | 322 ± 40 (***) | 206 ± 32 (****) |
Amphipods | 27 ± 6 | 51 ± 3 (***) | 34 ± 2 | 21 ± 7 | 25 ± 7 | 26 ± 2 | 37 ± 2 (*) | 34 ± 7 | 17 ± 4 (***) |
Polychaetes | 31 ± 3 | 17 ± 5 (**) | 5 ± 2 (****) | 21 ± 4 (*) | 13 ± 4 (**) | 26 ± 5 | 17 ± 2 (**) | 18 ± 3 (**) | |
Oligochaetes | 29 ± 10 | 17 ± 3 (**) | 8 ± 5 (***) | 4 ± 4 (****) | 8 ± 2 (***) | 15 ± 3 (**) | 2 ± 3 (****) | ||
Turbellaria | 22 ± 8 | 23 ± 3 | 2 ± 1 (****) | 5 ± 6 (***) | 12 ± 4 (**) | 16 ± 5 (*) | 7 ± 2 (***) | 4 ± 0 (****) | |
Copepods | 19 ± 4 | 3 ± 0 (****) | 9 ± 4 (**) | 2 ± 1 (****) | 7 ± 5 (**) | 6 ± 1 (**) | |||
Tardigrada | 9 ± 2 | 3 ± 4 (**) | 7 ± 2 | 3 ± 0 (**) | |||||
Gastrotricha | 10 ± 2 | 5 ± 1 (**) | 3 ± 1 (***) | 8 ± 3 | 9 ± 3 | 4 ± 4 (*) | 2 ±1 (****) | 1 ± 1 (****) |
Order | Family | Species | UC | T1 | T2 | W1 | W2 | T1W1 | T2W2 | T1W2 | T2W1 |
---|---|---|---|---|---|---|---|---|---|---|---|
Amphipoda | Ampithoidae | Ampithoe ferox | 15.26 ± 3.98 | 7.88 ± 5.35 | 2.08 ± 3.61 | 2.38 ± 4.12 | 1.28 ± 2.22 | 1.96 ± 3.40 | |||
Amphipoda | Ampithoidae | Ampithoe ramondi | 9.32 ± 4.86 | 5.24 ± 5.84 | 2.73 ± 0.18 | 1.63 ± 2.82 | |||||
Amphipoda | Corophiidae | Apocorophium acutum | 1.04 ± 1.80 | 2.30 ± 3.98 | 1.19 ± 2.06 | ||||||
Amphipoda | Dexaminidae | Dexamine spinosa | 3.70 ± 6.42 | 9.76 ± 4.41 | 1.28 ± 2.22 | 1.23 ± 2.14 | 20.03 ± 7.79 | ||||
Amphipoda | Nuuanuidae | Gammarella fucicola | 7.53 ± 3.32 | 11.15 ± 5.16 | 15.65 ± 9.41 | 15.92 ± 3.68 | 16.03 ± 14.13 | 14.06 ± 1.46 | 15.33 ± 3.35 | 10.80 ± 6.80 | |
Amphipoda | Corophiidae | Leptocheirus hirsutimanus | 4.17 ± 7.22 | 16.47 ± 6.17 | 7.54 ± 7.18 | 1.96 ± 3.40 | |||||
Amphipoda | Gammaridae | Longigammarus bruni | 15.26 ± 3.98 | 20.64 ± 5.33 | 1.39 ± 2.41 | 19.06 ± 7.15 | 11.37 ± 3.66 | ||||
Amphipoda | Lysianassidae | Lysianassina longicornis | 3.13 ± 5.41 | 7.19 ± 1.10 | 1.11 ± 1.92 | 10.06 ± 9.33 | |||||
Amphipoda | Maeridae | Maera grossimana | 6.53 ± 7.56 | 6.57 ± 1.40 | 1.96 ± 3.40 | 4.39 ± 4.02 | |||||
Amphipoda | Melitidae | Paraniphargus valesi | 6.49 ± 2.92 | 11.65 ± 4.80 | 19.89 ± 10.14 | 23.79 ± 13.58 | 10.83 ± 0.89 | 12.58 ± 4.85 | 11.61 ± 6.34 | 11.60 ± 5.36 | 11.69 ± 10.85 |
Amphipoda | Aoridae | Microdeutopus algicola | 7.92 ± 4.23 | 7.92 ± 2.33 | 16.54 ± 5.29 | 14.86 ± 7.61 | 23.43 ± 12.72 | 23.09 ± 10.01 | 15.63 ± 5.03 | 13.43 ± 8.24 | 23.61 ± 2.73 |
Amphipoda | Aoridae | Microdeutopus gryllotalpa | 5.10 ± 2.16 | 14.23 ± 7.41 | 22.14 ± 2.95 | 20.80 ± 2.89 | 13.95 ± 5.46 | 16.72 ± 9.32 | 16.93 ± 2.04 | 18.90 ± 12.76 | |
Amphipoda | Aoridae | Microdeutopus versiculatus | 8.96 ± 2.48 | 6.19 ± 5.38 | 1.52 ± 2.62 | ||||||
Amphipoda | Atylidae | Nototropis massiliensis | 6.33 ± 4.22 | 1.63 ± 2.82 | |||||||
Amphipoda | Ischyroceridae | Siphonoecetes dellavallei | 7.53 ± 3.32 | 8.47 ± 0.68 | 1.04 ± 1.80 | 16.95 ± 4.14 | 24.23 ± 12.47 | 19.60 ± 7.75 | 14.45 ± 3.51 | 15.53 ± 1.34 | 12.89 ± 5.53 |
Amphipoda | Stenothoidae | Stenothoe monoculoides | 1.04 ± 1.80 | 15.62 ± 4.98 | 7.12 ± 3.85 |
Comparisons | UC vs. T1 | UC vs. T2 | UC vs. W1 | UC vs. W2 |
---|---|---|---|---|
R-statistics | 1 | 1 | 0.926 | 1 |
p-value | 0.01 | 0.01 | 0.01 | 0.01 |
AD (%) | 47.87 | 64.31 | 40.89 | 41.23 |
Stenothoe monoculoides (13.44%) − | Stenothoe monoculoides (12.01%) Ø | Stenothoe monoculoides (20.97%) Ø | Stenothoe monoculoides (20.42%) Ø | |
Ampithoe ramondi (11.39%) Ø | Longigammarus bruni (11.29%) + | Ampithoe ramondi (15.81%) Ø | Ampithoe ramondi (15.40%) Ø | |
Longigammarus bruni (10.72%) + | Microdeutopus gryllotalpa (11.25%) Ø | Lysianassina longicornis (14.32%) Ø | Maera grossimana (13.30%) Ø | |
Microdeutopus versiculatus (8.21%) + | Leptocheirus pilosus (10.04%) + | Lysianassina longicornis (11.62%) − | ||
Microdeutopus gryllotalpa (8.02%) − | Ampithoe ramondi (9.05%) Ø | |||
Comparisons | UC vs. T1W1 | UC vs. T2W2 | UC vs. T1W2 | UC vs. T2W1 |
R-statistics | 1 | 0.963 | 0.778 | 0.889 |
p-value | 0.01 | 0.01 | 0.01 | 0.01 |
AD (%) | 40.71 | 20.38 | 47.26 | 61.56 |
Stenothoe monoculoides (19.50%) Ø | Ampithoe ferox (18.24%) − | Stenothoe monoculoides (15.65%) Ø | Stenothoe monoculoides (14.32%) Ø | |
Lysianassina longicornis (13.32%) Ø | Stenothoe monoculoides (15.37%) − | Longigammarus bruni (13.94%) + | Gammarella fucicola (11.96%) Ø | |
Maera grossimana (12.70%) Ø | Ampithoe ramondi (13.92%) − | Ampithoe ferox (10.81%) Ø | Ampithoe ramondi (10.80%) Ø | |
Ampithoe ferox (11.18%) − | Lysianassina longicornis (11.43%) st | Lysianassina longicornis (10.69%) Ø | Ampithoe ferox (9.88%) Ø | |
Lysianassina longicornis (9.78%) Ø |
Warfarin | Tinzaparin | |
---|---|---|
Physicochemical properties | ||
Molecular weight (g × mol−1) | 303.33 | 458.39 |
Num. of heavy atoms | 23 | 31 |
Num. of arom. heavy atoms | 16 | 0 |
Fraction of Csp3 | 0.16 | 0.88 |
Num. of rotatable bonds | 4 | 5 |
Num. of H-bond acceptors | 4 | 15 |
Num. of H-bond donors | 1 | 8 |
Molar refractivity | 88.58 | 92.52 |
TPSA (Å2) | 67.51 | 232.24 |
Water solubility/lipophilicity | ||
Log S (ESOL) | −3.70 | −0.22 |
Log S (Ali) | −3.77 | −0.91 |
Log S (SILICOS-IT) | −6.33 | 4.49 |
Consensus Log Po/w | 3.12 | −4.17 |
Oral toxicity and toxicokinetics | ||
GI absorption | High | Low |
BBB permeant | Yes | No |
P-gp substrate | No | Yes |
CYP1A2 inhibitor | No | No |
CYP2C19 inhibitor | Yes | No |
CYP2C9 inhibitor | Yes | No |
CYP2D6 inhibitor | No | No |
CYP3A4 inhibitor | No | No |
Log Kp (cm/s) | −6.26 | −11.50 |
Affinity (Kcal/Mol) | Molecular Interactions | ||
---|---|---|---|
Closest Interacting Residues | No. of Closest Interacting Residues (Å) | ||
Warfarin | −4.9 | Conventional H-Bond: LYS227 (2.386), GOL501 (2.504) | 7 |
π-Anion (Electrostatic): ASP197 (3.983), ASP203 (3.507), ASP203 (3.708), ASP405 (3.375), ASP405 (4.189) | |||
π-π T-shaped: TRP401 (5.023) | |||
π-Alkyl: ILE219 (5.015) | |||
Tinzaparin | −7.6 | Attarctive Charge: ASP403 (2.88), ASP405 (2.607) | 9 |
Conventional H-Bond: ARG130 (2.447), TYR169 (1.967), ARG275 (2.460), TYR195 (3.335) | |||
π-Cation: TRP410 (3.818) | |||
π-Anion: TRP410 (4.785), TRP401 (3.849) | |||
π-Sulfur: TRP410 (4.427), TYR195 (5.28), HIS252 (5.393) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lassoued, A.; Boufahja, F.; Plavan, G.; Ben Hamadi, N.; Ali, M.A.M.; Elfalleh, W.; Badraoui, R.; Bendif, H.; Hedfi, A. An Experimental Study to Assess the Ecotoxicity of Warfarin and Tinzaparin on Meiobenthic Amphipods: Original Taxonomic Data from Saudi Arabia and Computational Modeling. Toxics 2025, 13, 264. https://doi.org/10.3390/toxics13040264
Lassoued A, Boufahja F, Plavan G, Ben Hamadi N, Ali MAM, Elfalleh W, Badraoui R, Bendif H, Hedfi A. An Experimental Study to Assess the Ecotoxicity of Warfarin and Tinzaparin on Meiobenthic Amphipods: Original Taxonomic Data from Saudi Arabia and Computational Modeling. Toxics. 2025; 13(4):264. https://doi.org/10.3390/toxics13040264
Chicago/Turabian StyleLassoued, Amal, Fehmi Boufahja, Gabriel Plavan, Naoufel Ben Hamadi, Mohamed A. M. Ali, Walid Elfalleh, Riadh Badraoui, Hamdi Bendif, and Amor Hedfi. 2025. "An Experimental Study to Assess the Ecotoxicity of Warfarin and Tinzaparin on Meiobenthic Amphipods: Original Taxonomic Data from Saudi Arabia and Computational Modeling" Toxics 13, no. 4: 264. https://doi.org/10.3390/toxics13040264
APA StyleLassoued, A., Boufahja, F., Plavan, G., Ben Hamadi, N., Ali, M. A. M., Elfalleh, W., Badraoui, R., Bendif, H., & Hedfi, A. (2025). An Experimental Study to Assess the Ecotoxicity of Warfarin and Tinzaparin on Meiobenthic Amphipods: Original Taxonomic Data from Saudi Arabia and Computational Modeling. Toxics, 13(4), 264. https://doi.org/10.3390/toxics13040264