Distribution, Sources, and Risks of Heavy Metal Contamination in Farmland Soils Surrounding Typical Industrial Areas of South Shanxi Province, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analytical Methods
2.3. Risk Assessment of Heavy Metal Indices
2.3.1. The Geoaccumulation Index
2.3.2. The Nemerow Comprehensive Index
2.3.3. The Potential Ecological Risk Index
2.3.4. Health Risk Assessment
2.4. Statistical Method
3. Results
3.1. Description and Spatial Distribution of Heavy Metals in Study Area
3.2. Source Analysis
3.3. Ecological Risk Assessment
3.4. Heath Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, R.; Sun, X.; Zhu, M.; Wang, Y.; Zhu, Y.; Fang, Z.; Du, S. Abscisic acid-producing bacterium Azospirillum brasilense effectively reduces heavy metals (cadmium, nickel, lead, and zinc) accumulation in pak choi across various soil types. Ecotoxicol. Environ. Saf. 2025, 298, 118277. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Lai, Y.; Wang, L.; Wang, F.; Chen, Z. Predicting future contents of soil heavy metals and related health risks by combining the models of source apportionment, soil metal accumulation and industrial economic theory. Ecotoxicol. Environ. Saf. 2019, 171, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.; Wang, Q.; Zhang, Z.; Shao, W.; Luo, H.; Xiao, X.; Guan, Q. Source-oriented health risk assessment of heavy metals in a soil-river continuum in northwest China. Int. J. Sediment. Res. 2024, 39, 916–928. [Google Scholar] [CrossRef]
- Xiao, M.; Xu, S.; Yang, B.; Zeng, G.; Qian, L.; Huang, H.; Ren, S. Contamination, source apportionment, and health risk assessment of heavy metals in farmland soils surrounding a typical copper tailings pond. Int. J. Environ. Res. Public Health 2022, 19, 14264. [Google Scholar] [CrossRef]
- Chen, L.; Ren, B.; Deng, X.; Yin, W.; Xie, Q.; Cai, Z.; Zou, H. Black shale bedrock control of soil heavy metal typical high geological background in China Loushao Basin: Pollution characteristics, source and influence assessment based on spatial analysis. J. Hazard. Mater. 2024, 477, 135072. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Shi, Y.; Chen, J.; Zhang, Z.; Cao, H.; Li, W.; Ye, M. Interspecific barrier effect driven by heavy metals makes soil bacterial functional assembly more stochastic. Environ. Res. 2024, 253, 119153. [Google Scholar] [CrossRef]
- Afrah, E.M.; Pawelzik, E.; Mudawi, M.N.; Alotaibi, M.O.; Abdelgawad, H.; Saleh, A.M. Mycorrhized wheat and bean plants tolerate bismuth contaminated soil via improved metal detoxification and antioxidant defense systems. Plant Physiol. Biochem. 2023, 205, 108148. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Gou, Z.; Ma, X.; Liao, G.; Deng, O.; Yang, Y. Quantification of sources and potential risks of cadmium, chromium, lead, mercury and arsenic in agricultural soils in a rapidly urbanizing region of southwest China: The case of Chengdu. Front. Public Health 2024, 12, 1400921. [Google Scholar] [CrossRef]
- Mor, S.; Vig, N.; Ravindra, K. Distribution of heavy metals in surface soil near a coal power production unit: Potential risk to ecology and human health. Environ. Monit. Assess. 2022, 194, 263. [Google Scholar] [CrossRef]
- Luchian, C.E.; Motescu, J.; Dumitrascu, A.I.; Scutaragu, E.C.; Cara, I.G.; Colibaba, L.C.; Cotea, V.V.; Jitáreanu, G. Comprehensive Assessment of Soil Heavy Metal Contamination in Agricultural and Protected Areas: A Case Study from Iasi County, Romania. Agriculture 2025, 15, 1070. [Google Scholar] [CrossRef]
- Zemanová, V.; Menšík, L.; Hangen, E.; Schilling, B.; Hlisnikovský, L.; Kunzová, E. Assessment of Potentially Toxic Element Pollution in Surface Soils of the Upper Ohře River Basin. Toxics 2025, 13, 644. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, T.; Tan, S. Comprehensive assessment of pollution status, health risks and source apportionment of heavy metals in surface wetland soils of Yellow River Delta using Monte Carlo simulation and positive matrix factorization. Environ. Geochem. Health 2024, 47, 29. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Dong, X.; Liu, J.; Yang, F.; Duan, W.; Xie, M. Characterization and source apportionment of heavy metal pollution in soil around red mud disposal sites using absolute principal component scores-multiple linear regression and positive matrix factorization models. Environ. Geochem. Health 2024, 46, 492. [Google Scholar] [CrossRef]
- Xie, X.; Liu, Y.; Qiu, H.; Yang, X. Quantifying ecological and human health risks of heavy metals from different sources in farmland soils within a typical mining and smelting industrial area. Environ. Geochem. Health 2020, 45, 5669–5683. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Sun, Z.; Bai, D.; Kong, L.; Zhang, X.; Chen, J.; Chen, D. The Identification of Soil Heavy Metal Sources and Environmental Risks in Industrial City Peri-Urban Areas: A Case Study from a Typical Peri-Urban Area in Western Laizhou, Shandong, China. Sustainability 2024, 16, 4655. [Google Scholar] [CrossRef]
- Jia, Y.; Yang, X.; Yan, X.; Duguer, W.; Hu, H.; Chen, J. Accumulation, potential risk and source identification of toxic metal elements in soil: A case study of a coal-fired power plant in Western China. Environ. Sci. Pollut. Res. 2021, 28, 58740–58752. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. (In Chinese) [Google Scholar]
- Zhang, F.; Zhang, G. Chinese Soil Series: Central and Western Volume, Shanxi Volume; Longmen Books: Beijing, China, 2021. [Google Scholar]
- Xie, W.Y.; Zhou, H.P.; Yang, Z.X.; Liu, Z.P. Current situation and change characteristics in recent 10 years of farmland soil fertility in Shanxi province based on location monitoring. Soil Fertil. Sci. China 2022, 10, 1–10. (In Chinese) [Google Scholar]
- GB/T 17141-1997; Soil Quality—Determination of Lead, Cadmium-Graphite Furnace Atomic Absorption Spectrophotometry. NEPC&NTSBC (National Environmental Protection of China, National Technical Supervision Bureau of China): Beijing, China, 1997. (In Chinese)
- GB/T22105.2-2008; Soil Quality—Determination of Total Mercury, Total Arsenic and Total Lead—Atomic Fluorescence Spectrometry—Part 2: Determination of Total Arsenic in Soil. AQSIQ & SAC (General Administration of Quality Supervision, Inspection and Quarantine, Standardization Administration of China): Beijing, China, 2008. (In Chinese)
- GB/T 22105.1-2008; Soil Quality—Determination of Total Mercury, Total Arsenic and Total Lead—Atomic Fluorescence Spectrometry—Part 1: Determination of Total Mercury in Soil. AQSIQ & SAC (General Administration of Quality Supervision, Inspection and Quarantine, Standardization Administration of China): Beijing, China, 2008. (In Chinese)
- HJ 491-2019; Soil and Sediment—Determination of Copper, Zinc, Lead, Nickel and Chromium—Flame Atomic Absorption Spectrophotometry. MEE (Ministry of Ecology and Environment): Beijing, China, 2019. (In Chinese)
- HJ/T 166-2004; Technical Specification for Soil Environmental Monitoring. SEPA (State Environmental Protection Administration): Beijing, China, 2004. (In Chinese)
- Müller, G. Index of geoaccumulation in sediments of the Rhine river. Geojournal 1969, 2, 109–118. [Google Scholar]
- China National Environmental Monitoring Centre. Background Values of Soil Elements in China; China Environmental Science Press: Beijing, China, 1990; pp. 330–382. (In Chinese) [Google Scholar]
- Nemerow, N. Scientific Stream Pollution Analysis; McGraw Hill: New York, NY, USA, 1974. [Google Scholar]
- Khademi, H.; Gabarrón, M.; Abbaspour, A.; Martínez-Martínez, S.; Faz, A.; Acosta, J.A. Environmental impact assessment of industrial activities on heavy metals distribution in street dust and soil. Chemosphere 2019, 217, 695–705. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, J.; Mazurek, R.; Gąsiorek, M.; Setlak, M.; Zaleski, T.; Waroszewski, J. Soil pollution indices conditioned by medieval metallurgical activity—A case study from Krakow (Poland). Environ. Pollut. 2016, 218, 1023–1036. [Google Scholar] [CrossRef]
- Ma, Y.; Gong, M.; Zhao, H.; Li, X. Influence of low impact development construction on pollutant process of road-deposited sediments and associated heavy metals. Sci. Total Environ. 2018, 613, 1130–1139. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Q. Risk assessment and seasonal variations of dissolved trace elements and heavy metals in the Upper Han River, China. J. Hazard. Mater. 2010, 181, 1051–1058. [Google Scholar] [CrossRef]
- Li, B.; Deng, J.; Li, Z.; Chen, J.; Zhan, F.; He, Y.; He, L.; Li, Y. Contamination and health risk assessment of heavy metals in soil and ditch sediments in long-term mine wastes area. Toxics 2022, 10, 607. [Google Scholar] [CrossRef]
- USEPA. Exposure Factors Handbook, 2011th ed.; U.S. Environmental Protection Agency: Washington, DC, USA, 2011.
- Zheng, S.; Wang, Q.; Yuan, Y.; Sun, W. Human Health Risk Assessment of Heavy Metals in Soil and Food Crops in the Pearl River Delta Urban Agglomeration of China. Food Chem. 2020, 316, 126213. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.H.; Cai, L.M.; Wen, H.H.; Hu, G.C.; Chen, L.G.; Luo, J. An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals. Sci. Total Environ. 2020, 701, 134466. [Google Scholar] [CrossRef]
- Zhou, L.; Zhao, X.; Meng, Y.; Fei, Y.; Teng, M.; Song, F.; Wu, F. Identification priority source of soil heavy metals pollution based on source-specific ecological and human health risk analysis in a typical smelting and mining region of South China. Ecotoxicol. Environ. Saf. 2022, 242, 113864. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Peng, Y.; Li, R.; Liu, C.; Luo, X.; Zhao, Y. Spatial distribution and source apportionment of agricultural soil heavy metals in a rapidly developing area in East China. Bull. Environ. Contam. Toxicol. 2021, 106, 33–39. [Google Scholar] [CrossRef] [PubMed]
- GB 15618-2018; Soil Environmental Quality—Risk Control Standard for Soil Contamination of Agricultural Land. MEE & SAMR (Ministry of Ecology and Environment, State Administration for Market Regulation): Beijing, China, 2018. (In Chinese)
- Lahori, A.H.; Zhang, Z.; Guo, Z.; Mahar, A.; Li, R.; Ma, Y.; Yangt, Z. Potential use of lime combined with additives on (im) mobilization and phytoavailability of heavy metals from Pb/Zn smelter contaminated soils. Ecotoxicol. Environ. Saf. 2017, 145, 313–323. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Nakamura, T.; Dong, D.; Takahashi, Y.; Amachi, S.; Makino, T. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere 2011, 83, 925–932. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Liu, J.; Zhuang, Z.; Wang, Q.; Li, H. Heavy metals in agricultural soils: Sources, influencing factors, and remediation strategies. Toxics 2024, 12, 63. [Google Scholar] [CrossRef]
- Hussain, B.; Ashraf, M.N.; Rahman, S.U.; Abbas, A.; Lia, J.; Farooq, M. Cadmium stress in paddy fields: Effects of soil conditions and remediation strategies. Sci. Total Environ. 2021, 754, 142188. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Fu, P.F.; Li, S.; Deng, W.; Guo, L.Y.; Li, S.; Wang, X.F. Remediation of multiple heavy metals contaminated soils by Mn and Fe-added solid wastes: Effect and mechanisms. Chem. Eng. J. 2024, 497, 154649. [Google Scholar] [CrossRef]
- Huang, S.; Xiao, L.S.; Zhang, Y.C.; Wang, L.; Tang, L. Interactive effects of natural and anthropogenic factors on heterogenetic accumulations of heavy metals in surface soils through geodetector analysis. Sci. Total Environ. 2021, 789, 147937. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.W.; Kang, H.; Tao, W.D.; Li, H.Y.; He, D.; Ma, L.X.; Tang, H.J.; Wu, S.Q.; Yang, K.X.; Li, X.X. A spatial distribution—Principal component analysis (SD—PCA) model to assess pollution of heavy metals in soil. Sci. Total Environ. 2023, 859, 160112. [Google Scholar] [CrossRef]
- Ravichandran, M. Interactions between mercury and dissolved organic matter—A review. Chemosphere 2004, 55, 319–331. [Google Scholar] [CrossRef]
- Asgari, K.; Cornelis, W.M. Heavy metal accumulation in soils and grains, and health risks associated with use of treated municipal wastewater in subsurface drip irrigation. Environ. Monit. Assess. 2015, 187, 410. [Google Scholar] [CrossRef]
- Rahman, Z.; Singh, V.P. The relative impact of toxic heavy metals (THMs)(arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Lu, X.; Deng, Y.; Urpelainen, J.; Liu, L.C.; Zhang, Z.; Wang, H. Air pollutant emissions induced by population migration in China. Environ. Sci. Technol. 2020, 54, 6308–6318. [Google Scholar] [CrossRef]
- Long, H.; Li, J.; Liu, H. Internal migration and associated carbon emission changes: Evidence from cities in China. Energy Econ. 2022, 110, 106010. [Google Scholar] [CrossRef]
- Reeves, P.G.; Chaney, R.L. Bioavailability as an issue in risk assessment and management of food cadmium: A review. Sci. Total Environ. 2008, 398, 13–19. [Google Scholar] [CrossRef]
- Mukherjee, A.B.; Zevenhoven, R.; Brodersen, J.; Hylander, L.D.; Bhattacharya, P. Mercury in waste in the European Union: Sources, disposal methods and risks. Resour. Conserv. Recycl. 2004, 42, 155–182. [Google Scholar] [CrossRef]
- Cohen Hubal, E.A.; Sheldon, L.S.; Burke, J.M.; McCurdy, T.R.; Berry, M.R.; Rigas, M.L.; Freeman, N.C. Children’s exposure assessment: A review of factors influencing Children’s exposure, and the data available to characterize and assess that exposure. Environ. Health Perspect. 2000, 108, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Mo, L.; Liang, J.; Shi, H.; Yao, J.; Lun, X. Heavy Metal Pollution and Health-Ecological Risk Assessment in Agricultural Soils: A Case Study from the Yellow River Bend Industrial Parks. Toxics 2025, 13, 834. [Google Scholar] [CrossRef] [PubMed]
- Siddoo-Atwal, C. A role for heavy metal toxicity and air pollution in respiratory tract cancers. In Heavy Metal Toxicity in Public Health; IntechOpen: London, UK, 2019. [Google Scholar]
- Yousefi, H.; Lak, E.; Mohammadi, M.J.; Shahriyari, H.A. Carcinogenic risk assessment among children and adult due to exposure to toxic air pollutants. Environ. Sci. Pollut. Res. 2022, 29, 23015–23025. [Google Scholar] [CrossRef] [PubMed]




| Pb | Cd | As | Hg | Cr | Zn | Cu | Ni | |
|---|---|---|---|---|---|---|---|---|
| Min. (mg/kg) | 20.10 | 0.14 | 10.80 | 0.01 | 51.00 | 59.02 | 19.03 | 23.10 |
| Max. (mg/kg) | 34.80 | 2.02 | 16.00 | 0.19 | 81.00 | 120.10 | 49.22 | 44.30 |
| Mean (mg/kg) | 26.11 | 0.29 | 13.40 | 0.05 | 61.40 | 72.94 | 27.15 | 32.33 |
| Median (mg/kg) | 26.05 | 0.24 | 13.40 | 0.04 | 60.00 | 70.00 | 24.50 | 31.50 |
| Standard deviation (SD) | 2.72 | 0.26 | 1.12 | 0.03 | 7.52 | 10.29 | 6.25 | 3.96 |
| Coefficient of variation (CV,%) | 10.40 | 90.79 | 8.38 | 69.97 | 12.24 | 14.11 | 23.02 | 12.24 |
| Element | Pb | Cd | As | Hg | Cr | Zn | Cu | Ni |
|---|---|---|---|---|---|---|---|---|
| Pb | 1 | |||||||
| Cd | −0.198 | 1 | ||||||
| As | 0.446 ** | 0.107 | 1 | |||||
| Hg | 0.476 ** | −0.013 | 0.142 | 1 | ||||
| Cr | 0.182 | 0.211 | 0.425 ** | 0.108 | 1 | |||
| Zn | 0.143 | 0.710 ** | 0.417 ** | 0.218 | 0.447 ** | 1 | ||
| Cu | 0.23 | 0.381 ** | 0.335 * | 0.159 | 0.109 | 0.584 ** | 1 | |
| Ni | 0.349 * | 0.083 | 0.623 ** | 0.132 | 0.492 ** | 0.458 ** | 0.448 ** | 1 |
| Element | PC1 | PC2 | PC3 |
|---|---|---|---|
| Pb | 0.374 | −0.119 | 0.792 |
| Cd | 0.000 | 0.898 | −0.209 |
| As | 0.798 | 0.127 | 0.237 |
| Hg | −0.052 | 0.151 | 0.852 |
| Cr | 0.749 | 0.173 | −0.082 |
| Zn | 0.381 | 0.850 | 0.110 |
| Cu | 0.233 | 0.670 | 0.298 |
| Ni | 0.824 | 0.186 | 0.175 |
| Variance contribution/% | 27.75 | 26.20 | 19.89 |
| Cumulative variance contribution/% | 27.75 | 53.95 | 73.84 |
| Elements | Geo-Accumulation Index (Igeo) | Single Factor Index (Pi) | Single Potential Ecological Risk Index () | |||
|---|---|---|---|---|---|---|
| Mean | Level | Mean | Level | Mean | Level | |
| Pb | −0.21 | EU | 1.31 | US | 39.17 | LR |
| Cd | 0.64 | SC | 2.62 | SC | 78.52 | MR |
| As | −0.17 | EU | 1.34 | US | 26.80 | LR |
| Hg | −0.46 | EU | 1.31 | US | 52.35 | MR |
| Cr | −0.74 | EU | 0.90 | US | 1.81 | LR |
| Zn | −0.29 | EU | 1.24 | US | 1.24 | LR |
| Cu | −0.25 | EU | 1.29 | US | 6.46 | LR |
| Ni | −0.34 | EU | 1.20 | US | 5.99 | LR |
| Metal | Adults | Children | ||||||
|---|---|---|---|---|---|---|---|---|
| Risking | Riskinh | Riskder | Total | Risking | Riskinh | Riskder | Total | |
| Pb | 7.30 × 10−3 | 7.16 × 10−6 | 3.77 × 10−3 | 1.11 × 10−2 | 1.70 × 10−2 | 3.34 × 10−6 | 6.16 × 10−3 | 2.32 × 10−2 |
| Cd | 2.82 × 10−4 | 4.14 × 10−6 | 1.46 × 10−2 | 1.49 × 10−2 | 6.57 × 10−4 | 1.93 × 10−6 | 2.39 × 10−2 | 2.46 × 10−2 |
| As | 4.37 × 10−2 | 6.43 × 10−6 | 5.53 × 10−2 | 9.90 × 10−2 | 1.02 × 10−1 | 3.00 × 10−6 | 9.06 × 10−2 | 1.93 × 10−1 |
| Hg | 1.54 × 10−4 | 7.91 × 10−8 | 1.14 × 10−3 | 1.29 × 10−3 | 3.59 × 10−4 | 3.69 × 10−8 | 1.86 × 10−3 | 2.22 × 10−3 |
| Cr | 2.00 × 10−2 | 3.09 × 10−4 | 1.25 × 10−1 | 1.45 × 10−1 | 4.67 × 10−2 | 1.44 × 10−4 | 2.04 × 10−1 | 2.51 × 10−1 |
| Zn | 2.38 × 10−4 | 3.50 × 10−13 | 6.17 × 10−4 | 8.55 × 10−4 | 5.55 × 10−4 | 1.63 × 10−8 | 1.01 × 10−3 | 1.57 × 10−3 |
| Cu | 6.64 × 10−4 | 9.72 × 10−8 | 1.15 × 10−3 | 1.81 × 10−3 | 1.55 × 10−3 | 4.53 × 10−8 | 1.88 × 10−3 | 3.43 × 10−3 |
| Ni | 1.58 × 10−3 | 2.26 × 10−7 | 3.04 × 10−3 | 4.62 × 10−3 | 3.69 × 10−3 | 1.05 × 10−7 | 4.98 × 10−3 | 8.67 × 10−3 |
| Total | 7.40 × 10−2 | 3.27 × 10−4 | 2.04 × 10−1 | 2.79 × 10−1 | 1.73 × 10−1 | 1.53 × 10−4 | 3.34 × 10−1 | 5.07 × 10−1 |
| Contribution | 26.55% | 0.12% | 73.33% | 100.00% | 34.02% | 0.03% | 65.95% | 100.00% |
| Metal | Adults | Children | ||||||
|---|---|---|---|---|---|---|---|---|
| Risking | Riskinh | Riskder | Total | Risking | Riskinh | Riskder | Total | |
| Cd | 4.93 × 10−8 | 8.95 × 10−11 | 1.00 × 10−6 | 1.05 × 10−6 | 1.15 × 10−7 | 4.18 × 10−11 | 1.64 × 10−6 | 1.76 × 10−6 |
| As | 6.74 × 10−6 | 9.98 × 10−9 | 8.54 × 10−6 | 1.53 × 10−5 | 1.57 × 10−5 | 4.66 × 10−9 | 1.40 × 10−5 | 2.97 × 10−5 |
| Cr | 3.00 × 10−5 | 3.71 × 10−7 | — | 3.04 × 10−5 | 7.01 × 10−5 | 1.73 × 10−7 | — | 7.03 × 10−5 |
| Total | 3.68 × 10−5 | 3.81 × 10−7 | 9.54 × 10−6 | 4.67 × 10−5 | 8.59 × 10−5 | 1.78 × 10−7 | 1.56 × 10−5 | 1.02 × 10−4 |
| Contribution | 78.78% | 0.82% | 20.40% | 100.00% | 84.47% | 0.17% | 15.35% | 100.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Ren, Y.; Wang, F. Distribution, Sources, and Risks of Heavy Metal Contamination in Farmland Soils Surrounding Typical Industrial Areas of South Shanxi Province, China. Toxics 2025, 13, 984. https://doi.org/10.3390/toxics13110984
Zhao Y, Ren Y, Wang F. Distribution, Sources, and Risks of Heavy Metal Contamination in Farmland Soils Surrounding Typical Industrial Areas of South Shanxi Province, China. Toxics. 2025; 13(11):984. https://doi.org/10.3390/toxics13110984
Chicago/Turabian StyleZhao, Ying, Yirong Ren, and Fei Wang. 2025. "Distribution, Sources, and Risks of Heavy Metal Contamination in Farmland Soils Surrounding Typical Industrial Areas of South Shanxi Province, China" Toxics 13, no. 11: 984. https://doi.org/10.3390/toxics13110984
APA StyleZhao, Y., Ren, Y., & Wang, F. (2025). Distribution, Sources, and Risks of Heavy Metal Contamination in Farmland Soils Surrounding Typical Industrial Areas of South Shanxi Province, China. Toxics, 13(11), 984. https://doi.org/10.3390/toxics13110984

