Dioxins and the One Health Paradigm: An Interdisciplinary Challenge in Environmental Toxicology
Abstract
1. Introduction
2. Methods
2.1. Search Strategy
2.2. One Health Framework Application to Dioxin Contamination
3. Environmental Sources, Fate, and Distribution of Dioxins
3.1. Environmental Fate and Transport
3.2. Climate Change and Microplastics as a Vector
3.3. Soil and Sediment Reservoirs of Dioxins
4. Mechanisms of Toxicity
4.1. AhR Signaling Pathways
- Transgenerational Epigenetics: TCDD exposure in zebrafish induces DNA methylation changes in CYP1A promoters, which persist for three generations and impair the detoxification capacity [78,79,80]. Additionally, recent studies have demonstrated transgenerational epigenetic effects in mammals, with paternal TCDD exposure altering sperm DNA methylation patterns in mice, linked to metabolic disorders in offspring [81,82,83]. These findings highlight the potential of dioxins to induce transgenerational health effects in both wildlife and humans, remarking the need for a One Health approach to long-term chemical exposure.
- Non-Canonical Immune Effects: AhR signaling can modulate immune responses. AhR activation in dendritic cells suppresses IL-12 production, increasing susceptibility to viral infections in mice [84,85]. Such effects show another layer of vulnerability in exposed populations, with possible implications for disease resilience across species. Immune suppression in wildlife populations could increase their susceptibility to emerging infectious diseases, while parallel immune effects in human populations could compromise responses to vaccination programs or seasonal infectious diseases, demonstrating how dioxin exposure creates shared vulnerabilities across the human–animal interface.
4.2. Cross-Species Vulnerabilities and One Health Implications
5. Human Health Implications
- Carcinogenicity: In 1997, based on animal and human epidemiology data, the International Agency for Research on Cancer (IARC) classified TCDD as a known human carcinogen [98]. This was supported by limited evidence in humans, sufficient evidence in experimental animals, and extensive mechanistic information, which was supported by subsequent evidence [99]. Other PCDDs, the non-chlorinated dibenzo-p-dioxin, and PCDFs were evaluated as not classifiable for their carcinogenicity to humans (Group 3) [100]. Epidemiological studies have linked high exposures (occupational, accidental) to increased risk of all cancers combined, as well as specific types like soft-tissue sarcoma and non-Hodgkin lymphoma [101,102,103].
- Reproductive and Developmental Toxicity: Prenatal and early-life exposure are critical concerns. Effects observed in humans include subtle developmental delays, altered thyroid hormone levels, effects on tooth development, potential impacts on sex ratio, and links to endometriosis [104,105,106]. Transgenerational effects via epigenetic modifications (e.g., DNA methylation changes) have been shown in animal models and are suspected in humans, potentially extending health impacts across generations [82].
- Neurological Effects: Developmental exposure to dioxins has been linked to cognitive and behavioral deficits in children, as well as impairments in motor function [112].
6. Animal and Ecosystem Health Effects
6.1. Wildlife Case Studies
6.2. Microbial Remediation and Ecosystem Impacts
7. One Health Perspective on Dioxin Exposure Management
7.1. Integrated Surveillance Systems: Moving Beyond Siloed Monitoring
7.2. Transdisciplinary Risk Assessment
7.3. Cross-Sectoral Coordinated Response
7.4. Knowledge Translation and Co-Production
7.5. Risk Communication and Public Engagement
7.6. Economic Considerations
7.7. Policy Innovations
8. Case Studies and Policy Responses
8.1. High-Profile Incidents Underscore the Need for Integrated Approaches
8.2. More Recent Contamination Incidents
8.3. Policy Responses
8.4. Global Policy Alignment
9. Challenges and Future Directions
10. General Overview and Final Considerations
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tuomisto, J. Dioxins and dioxin-like compounds: Toxicity in humans and animals, sources, and behaviour in the environment. WikiJ. Med. 2019, 6, 1–26. [Google Scholar] [CrossRef]
- Li, Y.; Sidikjan, N.; Huang, L.; Chen, Y.; Zhang, Y.; Li, Y.; Yang, J.; Shen, G.; Liu, M.; Huang, Y. Multi-media environmental fate of polychlorinated dibenzo-p-dioxins and dibenzofurans in China: A systematic review of emissions, presence, transport modeling and health risks. Environ. Pollut. 2024, 362, 124970. [Google Scholar] [CrossRef]
- WHO. Dioxins and Their Effects on Human Health; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Kirkok, S.K.; Kibet, J.K.; Kinyanjui, T.K.; Okanga, F.I. A review of persistent organic pollutants: Dioxins, furans, and their associated nitrogenated analogues. SN Appl. Sci. 2020, 2, 1729. [Google Scholar] [CrossRef]
- Hays, S.M.; Aylward, L.L. Dioxin risks in perspective: Past, present, and future. Regul. Toxicol. Pharmacol. 2003, 37, 202–217. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J. 2018, 16, e05333. [Google Scholar]
- Jeno, J.G.A.; Rathna, R.; Nakkeeran, E. Biological implications of dioxins/furans bioaccumulation in ecosystems. In Environmental Pollution and Remediation; Springer: Singapore, 2021; pp. 395–420. [Google Scholar]
- Mathew, N.; Somanathan, A.; Tirpude, A.; Pillai, A.M.; Mondal, P.; Arfin, T. Dioxins and their impact: A review of toxicity, persistence, and novel remediation strategies. Anal. Methods 2025, 17, 1698–1748. [Google Scholar] [CrossRef] [PubMed]
- Hamza, I.S.; Jarallah, A.L.; Mahmoud, T.Y. Dioxins and their effect on human toxicity. J. Biotechnol. Res. Cent. 2023, 17, 26–32. [Google Scholar] [CrossRef]
- Kanan, S.; Samara, F. Dioxins and furans: A review from chemical and environmental perspectives. Trends Environ. Anal. Chem. 2018, 17, 1–13. [Google Scholar] [CrossRef]
- Malisch, R.; Kotz, A. Dioxins and PCBs in feed and food-review from European perspective. Sci. Total Environ. 2014, 491, 2–10. [Google Scholar] [CrossRef]
- Mandal, P.K. Dioxin: A review of its environmental effects and its aryl hydrocarbon receptor biology. J. Comp. Physiol. B 2005, 175, 221–230. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Learn About Dioxin; United States Environmental Protection Agency: Washington, DC, USA, 2025.
- Stockholm Convention Secretariat. Stockholm Convention Secretariat. Stockholm Convention on Persistent Organic Pollutants (POPs). In Outcomes of the Effectiveness Evaluation of the Stockholm Convention (2023); Stockholm Convention Secretariat: Geneva, Switzerland, 2023. [Google Scholar]
- AMAP. Arctic Climate Change Update 2021: Key Trends and Impacts; Arctic Monitoring and Assessment Programme: Tromsø, Norway, 2023. [Google Scholar]
- Levy, W.; Pandelova, M.; Henkelmann, B.; Bernhöft, S.; Fischer, N.; Antritter, F.; Schramm, K.-W. Persistent organic pollutants in shallow percolated water of the Alps Karst system (Zugspitze summit, Germany). Sci. Total Environ. 2017, 579, 1269–1281. [Google Scholar] [CrossRef]
- Pescatore, T.; Spataro, F.; Rauseo, J.; Scoto, F.; Spolaor, A.; Crocchianti, S.; Cappelletti, D.; Patrolecco, L. Spatial distribution, temporal trends, and environmental fate of legacy contaminants in the cryosphere of Spitsbergen, Svalbard Islands. Environ. Res. 2025, 286 Pt 3, 122943. [Google Scholar] [CrossRef]
- Reiersen, L.O.; Vorkamp, K.; Kallenborn, R. The role of the Arctic Monitoring and Assessment Programme (AMAP) in reducing pollution of the Arctic and around the globe. Environ. Sci. Ecotechnol. 2023, 17, 100302. [Google Scholar] [CrossRef]
- WHO. One Health; World Health Organization: Geneva, Switzerland, 2021.
- CDC. About One Health; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2024. [Google Scholar]
- Dar, O.A.; Akhbari, M.; Nacer, H. Multisectoral One Health collaborations across human, animal and environmental health: A protocol paper for an umbrella systematic review of conceptual and analytical approaches to sustainability. BMJ Open 2024, 14, e086248. [Google Scholar] [CrossRef]
- Togami, E.; Behravesh, C.B.; Dutcher, T.V.; Hansen, G.R.; King, L.J.; Pelican, K.M.; Mazet, J.A.K. Characterizing the One Health workforce to promote interdisciplinary, multisectoral approaches in global health problem-solving. PLoS ONE 2023, 18, e0285705. [Google Scholar] [CrossRef]
- Wang, F.; Xiang, L.; Leung, K.S.-Y.; Elsner, M.; Zhang, Y.; Guo, Y.; Pan, B.; Sun, H.; An, T.; Ying, G.; et al. Emerging contaminants: A One Health perspective. Innovation 2024, 5, 100612. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, A.; Lee, J.; Kang, H. Navigating the Interconnected Web of Health: A Comprehensive Review of the One Health Paradigm and Its Implications for Disease Management. Yonsei Med. J. 2025, 66, 203–210. [Google Scholar] [CrossRef] [PubMed]
- UNEP. Quadripartite Call to Action for One Health for a Safer World; United Nations Environmental Programme: Geneva, Switzerland, 2023. [Google Scholar]
- Milazzo, A.; Liu, J.; Multani, P.; Steele, S.; Hoon, E.; Chaber, A.L. One Health implementation: A systematic scoping review using the Quadripartite One Health Joint Plan of Action. One Health 2025, 20, 101008. [Google Scholar] [CrossRef] [PubMed]
- Sauvé, S. Toxicology, environmental chemistry, ecotoxicology, and One Health: Definitions and paths for future research. Front. Environ. Sci. 2024, 12, 1303705. [Google Scholar] [CrossRef]
- Feng, W.; Deng, Y.; Yang, F.; Miao, Q.; Ngien, S.K. Systematic review of contaminants of emerging concern (CECs): Distribution, risks, and implications for water quality and health. Water 2023, 15, 3922. [Google Scholar] [CrossRef]
- Marjadi, M.N.; Drakopulos, L.; Guo, L.W.; Koehn, J.Z.; Panchang, S.V.; Robertson, D. Negative socio-environmental feedback loop may foster inequality for urban marine subsistence fishers. Environ. Sci. Policy 2021, 121, 68–77. [Google Scholar] [CrossRef]
- Domingo, J.L.; Marquès, M.; Mari, M.; Schuhmacher, M. Adverse health effects for populations living near waste incinerators with special attention to hazardous waste incinerators. A review of the scientific literature. Environ. Res. 2020, 187, 109631. [Google Scholar] [CrossRef]
- Domingo, J.L.; Nadal, M.; Rovira, J. Regulatory compliance of PCDD/F emissions by a municipal solid waste incinerator. A case study in Sant Adrià de Besòs, Catalonia, Spain. J. Environ. Sci. Health A Tox Hazard Subst. Environ. Eng. 2024, 59, 273–279. [Google Scholar] [CrossRef]
- Mukerjee, D. Health impact of polychlorinated dibenzo-p-dioxins: A critical review. J. Air Waste Manag. Assoc. 1998, 48, 157–165. [Google Scholar] [CrossRef]
- Rathna, R.; Varjani, S.; Nakkeeran, E. Recent developments and prospects of dioxins and furans remediation. J. Environ. Manag. 2018, 223, 797–806. [Google Scholar] [CrossRef]
- Rovira, J.; Mari, M.; Schuhmacher, M.; Domingo, J.L. Environmental levels and human health risks of metals and PCDD/Fs near cement plants co-processing alternative fuels in Catalonia, NE Spain: A mini-review. J. Environ. Sci. Health A Tox Hazard Subst. Environ. Eng. 2021, 56, 379–385. [Google Scholar] [CrossRef]
- Shen, J.; Yang, L.; Liu, G.; Zhao, X.; Zheng, M. Occurrence, profiles, and control of unintentional POPs in the steelmaking industry: A review. Sci. Total Environ. 2021, 773, 145692. [Google Scholar] [CrossRef] [PubMed]
- Weichenthal, S.; Van Rijswijk, D.; Kulka, R.; You, H.; Van Ryswyk, K.; Willey, J.; Dugandzic, R.; Sutcliffe, R.; Moulton, J.; Baike, M.; et al. The impact of a landfill fire on ambient air quality in the north: A case study in Iqaluit, Canada. Environ. Res. 2015, 142, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Bai, L.; Yao, Q.; Li, J.; Wang, H.; Shen, L.; Sippula, O.; Yang, J.; Zhao, J.; Liu, J.; et al. Emission characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans from industrial combustion of biomass fuels. Environ. Pollut. 2022, 292 Pt A, 118265. [Google Scholar] [CrossRef] [PubMed]
- Gupta, G.K.; Kapoor, R.K. Recent advances in eco-friendly technology for decontamination of pulp and paper mill industrial effluent: A review. Environ. Monit. Assess. 2024, 196, 275. [Google Scholar] [CrossRef]
- Thacker, N.P.; Nitnaware, V.C.; Das, S.K.; Devotta, S. Dioxin formation in pulp and paper mills of India. Environ. Sci. Pollut. Res. Int. 2007, 14, 225–226. [Google Scholar] [CrossRef]
- Feshin, D.; Poberezhnaya, T.; Shelepchikov, A.; Brodsky, E.; Levin, B. PCDD/Fs in emissions of dirt volcano. Organohalogen Compd. 2006, 68, 2240–2243. [Google Scholar]
- Pagano, J.J.; Garner, A.J.; Hopke, P.K.; Pagano, J.K.; Gawley, W.G.; Holsen, T.M. Atmospheric concentrations and potential sources of dioxin-like contaminants to Acadia National Park. Environ. Pollut. 2024, 356, 124287. [Google Scholar] [CrossRef] [PubMed]
- Baran, A.; Urbaniak, M.; Szara, M.; Tarnawski, M. Concentration of dioxin and screening level ecotoxicity of pore water from bottom sediments in relation to organic carbon contents. Ecotoxicology 2021, 30, 57–66. [Google Scholar] [CrossRef]
- Weber, R.; Gaus, C.; Tysklind, M.; Johnston, P.; Forter, M.; Hollert, H.; Heinisch, E.; Holoubek, I.; Lloyd-Smith, M.; Masunaga, S.; et al. Dioxin- and POP-contaminated sites--contemporary and future relevance and challenges: Overview on background, aims and scope of the series. Environ. Sci. Pollut. Res. Int. 2008, 15, 363–393. [Google Scholar] [CrossRef]
- Dai, Q.; Xu, X.; Eskenazi, B.; Asante, K.A.; Chen, A.; Fobil, J.; Bergman, Å.; Brennan, L.; Sly, P.D.; Nnorom, I.C.; et al. Severe dioxin-like compound (DLC) contamination in e-waste recycling areas: An under-recognized threat to local health. Environ. Int. 2020, 139, 105731. [Google Scholar] [CrossRef]
- Hoang, A.Q.; Tue, N.M.; Tu, M.B.; Suzuki, G.; Matsukami, H.; Tuyen, L.H.; Viet, P.H.; Kunisue, T.; Sakai, S.-I.; Takahashi, S. A review on management practices, environmental impacts, and human exposure risks related to electrical and electronic waste in Vietnam: Findings from case studies in informal e-waste recycling areas. Environ. Geochem. Health 2023, 45, 2705–2728. [Google Scholar] [CrossRef]
- Zhang, M.; Buekens, A.; Li, X. Dioxins from Biomass Combustion: An Overview. Waste Biomass Valor. 2017, 8, 1–20. [Google Scholar] [CrossRef]
- Ummik, M.L.; Järvik, O.; Konist, A. Dioxin concentrations and congener distribution in biomass ash from small to large scale biomass combustion plants. Environ. Sci. Pollut. Res. Int. 2024, 31, 58946–58956. [Google Scholar] [CrossRef] [PubMed]
- Lei, R.; Xu, Z.; Xing, Y.; Liu, W.; Wu, X.; Jia, T.; Sun, S.; He, Y. Global status of dioxin emission and China’s role in reducing the emission. J. Hazard. Mater. 2021, 418, 126265. [Google Scholar] [CrossRef]
- Morales, L.; Dachs, J.; González-Gaya, B.; Hernán, G.; Abalos, M.; Abad, E. Background concentrations of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in the global oceanic atmosphere. Environ. Sci. Technol. 2014, 48, 10198–10207. [Google Scholar] [CrossRef]
- Tanaka, F.; Fukushima, M.; Kikuchi, A.; Yabuta, H.; Ichikawa, H.; Tatsumi, K. Influence of chemical characteristics of humic substances on the partition coefficient of a chlorinated dioxin. Chemosphere 2005, 58, 1319–1326. [Google Scholar] [CrossRef]
- Brinkmann, M.; Eichbaum, K.; Reininghaus, M.; Koglin, S.; Kammann, U.; Baumann, L.; Segner, H.; Zennegg, M.; Buchinger, S.; Reifferscheid, G.; et al. Towards science-based sediment quality standards-Effects of field-collected sediments in rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 2015, 166, 50–62. [Google Scholar] [CrossRef]
- Rimayi, C.; Odusanya, D.; Chimuka, L. Survey of bioavailable PCDDs, PCDFs, dioxin-like PCBs, and PBBs in air, water, and sediment media using semipermeable membrane devices (SPMDs) deployed in the Hartbeespoort Dam area, South Africa. Environ. Monit. Assess. 2022, 194, 117. [Google Scholar] [CrossRef] [PubMed]
- Borgå, K.; McKinney, M.A.; Routti, H.; Fernie, K.J.; Giebichenstein, J.; Hallanger, I.; Muir, D.C.G. The influence of global climate change on accumulation and toxicity of persistent organic pollutants and chemicals of emerging concern in Arctic food webs. Environ. Sci. Process. Impacts 2022, 24, 1544–1576. [Google Scholar] [CrossRef]
- de Wit, C.A.; Vorkamp, K.; Muir, D. Influence of climate change on persistent organic pollutants and chemicals of emerging concern in the Arctic: State of knowledge and recommendations for future research. Environ. Sci. Process. Impacts 2022, 24, 1530–1543. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Zhang, P.; Wu, Z.; Zhang, S.; Wei, L.; Mi, L.; Kuester, A.; Gandrass, J.; Ebinghaus, R.; Yang, R.; et al. Legacy and emerging organic contaminants in the polar regions. Sci. Total Environ. 2022, 835, 155376. [Google Scholar] [CrossRef] [PubMed]
- Menéndez-Pedriza, A.; Jaumot, J. Interaction of Environmental Pollutants with Microplastics: A Critical Review of Sorption Factors, Bioaccumulation and Ecotoxicological Effects. Toxics 2020, 8, 40. [Google Scholar] [CrossRef]
- Skogsberg, E.; McGovern, M.; Poste, A.; Jonsson, S.; Arts, M.T.; Varpe, Ø.; Borgå, K. Seasonal pollutant levels in littoral high-Arctic amphipods in relation to food sources and terrestrial run-off. Environ. Pollut. 2022, 306, 119361. [Google Scholar] [CrossRef]
- Muir, D.; Gunnarsdóttir, M.J.; Koziol, K.; von Hippel, F.A.; Szumińska, D.; Ademollo, N.; Corsolini, S.; De Silva, A.; Gabrielsen, G.; Kallenborn, R.; et al. Local sources versus long-range transport of organic contaminants in the Arctic: Future developments related to climate change. Environ. Sci. Adv. 2025, 4, 355–408. [Google Scholar] [CrossRef]
- Muniz, R.; Rahman, M.S. Microplastics in coastal and marine environments: A critical issue of plastic pollution on marine organisms, seafood contaminations, and human health implications. J. Hazard. Mat. Advan. 2025, 18, 100663. [Google Scholar]
- Bolan, S.; Padhye, L.P.; Jasemizad, T.; Govarthanan, M.; Karmegam, N.; Wijesekara, H.; Amarasiri, D.; Hou, D.; Zhou, P.; Biswal, B.K.; et al. Impacts of climate change on the fate of contaminants through extreme weather events. Sci. Total Environ. 2024, 909, 168388. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C.; Zhu, T.; Gong, P.; Fu, J.; Cong, Z. Persistent organic pollutants in the polar regions and the Tibetan Plateau: A review of current knowledge and future prospects. Environ. Pollut. 2019, 248, 191–208. [Google Scholar] [CrossRef]
- Weber, R.; Girones, L.; Förstner, U.; Tysklind, M.; Laner, D.; Hollert, H.; Forter, M.; Vijgen, J. Review on the need for inventories and management of reservoirs of POPs and other persistent, bioaccumulating and toxic substances (PBTs) in the face of climate change. Environ. Sci. Eur. 2025, 37, 48. [Google Scholar] [CrossRef]
- Chai, Y.; Currie, R.J.; Davis, J.W.; Wilken, M.; Martin, G.D.; Fishman, V.N.; Ghosh, U. Effectiveness of activated carbon and biochar in reducing the availability of polychlorinated dibenzo-p-dioxins/dibenzofurans in soils. Environ. Sci. Technol. 2012, 46, 1035–1043. [Google Scholar] [CrossRef]
- Khan, N.; Chowdhary, P.; Gnansounou, E.; Chaturvedi, P. Biochar and environmental sustainability: Emerging trends and techno-economic perspectives. Bioresour. Technol. 2021, 332, 125102. [Google Scholar] [CrossRef]
- Okey, A.B. An aryl hydrocarbon receptor odyssey to the shores of toxicology: The Deichmann Lecture, International Congress of Toxicology-XI. Toxicol. Sci. 2007, 98, 5–38. [Google Scholar] [CrossRef]
- Pohjanvirta, R.; Viluksela, M. Novel Aspects of Toxicity Mechanisms of Dioxins and Related Compounds. Int. J. Mol. Sci. 2020, 21, 2342. [Google Scholar] [CrossRef] [PubMed]
- Mohsenzadeh, M.S.; Zanjani, B.R.; Karimi, G. Mechanisms of 2,3,7,8-tetrachlorodibenzo-p-dioxin- induced cardiovascular toxicity: An overview. Chem. Biol. Interact. 2018, 282, 1–6. [Google Scholar] [CrossRef]
- White, S.S.; Birnbaum, L.S. An overview of the effects of dioxins and dioxin-like compounds on vertebrates, as documented in human and ecological epidemiology. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2009, 27, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhang, X.; Yuan, Y.; Zhao, Y.; Fares, H.M.; Yang, M.; Wen, Q.; Taha, R.; Sun, L. Species-Specific Differences in Aryl Hydrocarbon Receptor Responses: How and Why? Int. J. Mol. Sci. 2021, 22, 13293. [Google Scholar] [CrossRef]
- Zhang, W.; Xie, H.Q.; Li, Y.; Zhou, M.; Zhou, Z.; Wang, R.; Hahn, M.E.; Zhao, B. The aryl hydrocarbon receptor: A predominant mediator for the toxicity of emerging dioxin-like compounds. J. Hazard. Mater. 2022, 426, 128084. [Google Scholar] [CrossRef]
- DeVito, M.; Bokkers, B.; van Duursen, M.B.; van Ede, K.; Feeley, M.; Gáspár, E.A.F.; Haws, L.; Kennedy, S.; Peterson, R.E.; Hoogenboom, R.; et al. The 2022 world health organization reevaluation of human and mammalian toxic equivalency factors for polychlorinated dioxins, dibenzofurans and biphenyls. Regul. Toxicol. Pharmacol. 2024, 146, 105525. [Google Scholar] [CrossRef]
- Van Den Berg, M.; Birnbaum, L.S.; Denison, M.; De Vito, M.; Farland, W.; Feeley, M.; Fiedler, H.; Håkansson, H.; Hanberg, A.; Haws, L.; et al. The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol. Sci. 2006, 93, 223–241. [Google Scholar] [CrossRef]
- Birnbaum, L.S. Dioxin and the AH Receptor: Synergy of Discovery. Curr. Opin. Toxicol. 2017, 2, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Motta, S.; Bonati, L. TCDD-Induced Allosteric Perturbation of the AhR:ARNT Binding to DNA. Int. J. Mol. Sci. 2023, 24, 9339. [Google Scholar] [CrossRef] [PubMed]
- Lamas, B.; Natividad, J.M.; Sokol, H. Aryl hydrocarbon receptor and intestinal immunity. Mucosal. Immunol. 2018, 11, 1024–1038. [Google Scholar] [CrossRef]
- Avilla, M.N.; Malecki, K.M.C.; Hahn, M.E.; Wilson, R.H.; Bradfield, C.A. The Ah Receptor: Adaptive Metabolism, Ligand Diversity, and the Xenokine Model. Chem. Res. Toxicol. 2020, 33, 860–879. [Google Scholar] [CrossRef]
- Fitch, S.; Blanchette, A.; Haws, L.; Franke, K.; Ring, C.; DeVito, M.; Wheeler, M.; Walker, N.; Birnbaum, L.; Van Ede, K.; et al. Systematic update to the mammalian relative potency estimate database and development of best estimate toxic equivalency factors for dioxin-like compounds. Regul. Toxicol. Pharmacol. 2024, 147, 105571. [Google Scholar] [CrossRef] [PubMed]
- Akemann, C.; Meyer, D.N.; Gurdziel, K.; Baker, T.R. TCDD-induced multi- and transgenerational changes in the methylome of male zebrafish gonads. Environ. Epigenet. 2020, 6, dvaa010. [Google Scholar] [CrossRef]
- Chatterjee, N.; Gim, J.; Choi, J. Epigenetic profiling to environmental stressors in model and non-model organisms: Ecotoxicology perspective. Environ. Health Toxicol. 2018, 33, e2018015. [Google Scholar] [CrossRef]
- Kim, K.-H.; Park, H.-J.; Kim, J.H.; Kim, S.; Williams, D.R.; Kim, M.-K.; Jung, Y.D.; Teraoka, H.; Park, H.-C.; Choy, H.E.; et al. Cyp1a reporter zebrafish reveals target tissues for dioxin. Aquat. Toxicol. 2013, 134, 57–65. [Google Scholar] [CrossRef]
- Ben Maamar, M.; Nilsson, E.; Thorson, J.L.M.; Beck, D.; Skinner, M.K. Transgenerational disease specific epigenetic sperm biomarkers after ancestral exposure to dioxin. Environ. Res. 2021, 192, 110279. [Google Scholar] [CrossRef]
- Van Cauwenbergh, O.; Di Serafino, A.; Tytgat, J.; Soubry, A. Transgenerational epigenetic effects from male exposure to endocrine-disrupting compounds: A systematic review on research in mammals. Clin. Epigenetics 2020, 12, 65. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, B.; Sun, W.; Wang, G.; Liu, Z.; Zhang, X.; Ding, J.; Han, Y.; Zhang, H. Paternal exposures to endocrine-disrupting chemicals induce intergenerational epigenetic influences on offspring: A review. Environ. Int. 2024, 187, 108689. [Google Scholar] [CrossRef] [PubMed]
- Franchini, A.M.; Myers, J.R.; Jin, G.B.; Shepherd, D.M.; Lawrence, B.P. Genome-Wide Transcriptional Analysis Reveals Novel AhR Targets That Regulate Dendritic Cell Function during Influenza A Virus Infection. Immunohorizons 2019, 3, 219–235. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; He, R.; Zhang, Y.; Yan, Q. The Role of the Aryl Hydrocarbon Receptor (AhR) in the Immune Response against Microbial Infections. In Antimicrobial Immune Response; IntechOpen: London, UK, 2021. [Google Scholar]
- Desforges, J.P.; Sonne, C.; Levin, M.; Siebert, U.; De Guise, S.; Dietz, R. Immunotoxic effects of environmental pollutants in marine mammals. Environ. Int. 2016, 86, 126–139. [Google Scholar] [CrossRef]
- Romero, M.B.; Polizzi, P.S.; Chiodi, L.; Dolagaratz, A.; Gerpe, M. Legacy and emerging contaminants in marine mammals from Argentina. Sci. Total Environ. 2024, 906, 167561. [Google Scholar] [CrossRef]
- Domingo, J.L.; Bocio, A. Levels of PCDD/PCDFs and PCBs in edible marine species and human intake: A literature review. Environ. Int. 2007, 33, 397–405. [Google Scholar] [CrossRef] [PubMed]
- González, N.; Domingo, J.L. Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in food and human dietary intake: An update of the scientific literature. Food Chem. Toxicol. 2021, 157, 112585. [Google Scholar] [CrossRef]
- Perelló, G.; Díaz-Ferrero, J.; Llobet, J.M.; Castell, V.; Vicente, E.; Nadal, M.; Domingo, J.L. Human exposure to PCDD/Fs and PCBs through consumption of fish and seafood in Catalonia (Spain): Temporal trend. Food Chem. Toxicol. 2015, 81, 28–33. [Google Scholar] [CrossRef]
- García, F.; Barbería, E.; Torralba, P.; Landin, I.; Laguna, C.; Marquès, M.; Nadal, M.; Domingo, J.L. Decreasing temporal trends of polychlorinated dibenzo-p-dioxins and dibenzofurans in adipose tissue from residents near a hazardous waste incinerator. Sci. Total Environ. 2021, 751, 141844. [Google Scholar] [CrossRef]
- Marquès, M.; Domingo, J.L. Concentrations of PCDD/Fs in Human Blood: A Review of Data from the Current Decade. Int. J. Environ. Res. Public Health 2019, 16, 3566. [Google Scholar] [CrossRef]
- Palaniswamy, S.; Nevala, L.; Pesonen, P.; Rautio, A.; Järvelin, M.-R.; Abass, K.; Charles, D. Environmental contaminants in Arctic human populations: Trends over 30 years. Environ. Int. 2024, 189, 108777. [Google Scholar] [CrossRef]
- Ajay, S.V.; Kirankumar, P.S.; Varghese, A.; Prathish, K.P. Assessment of dioxin-like POP’s emissions and human exposure risk from open burning of municipal solid wastes in streets and dumpyard fire breakouts. Expo. Health 2022, 14, 763–778. [Google Scholar] [CrossRef]
- Davy, C.W. Legislation with respect to dioxins in the workplace. Environ. Int. 2004, 30, 219–233. [Google Scholar] [CrossRef] [PubMed]
- Miyabara, Y.; Nishimura, N.; Tohyama, C. Determination of dioxins in human hair: Estimation of external and internal exposure to dioxins. Environ. Health Prev. Med. 2005, 10, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Nakao, T.; Aozasa, O.; Ohta, S.; Miyata, H. Assessment of human exposure to PCDDs, PCDFs and Co-PCBs using hair as a human pollution indicator sample I: Development of analytical method for human hair and evaluation for exposure assessment. Chemosphere 2002, 48, 885–896. [Google Scholar] [CrossRef]
- IARC. Polychlorinated Dibenzo-para-Dioxins and Polychlorinated Dibenzofurans. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 1997; Volume 69. [Google Scholar]
- Steenland, K.; Bertazzi, P.; Baccarelli, A.; Kogevinas, M. Dioxin revisited: Developments since the 1997 IARC classification of dioxin as a human carcinogen. Environ. Health Perspect. 2004, 112, 1265–1268. [Google Scholar] [CrossRef]
- McGregor, D.B.; Partensky, C.; Wilbourn, J.; Rice, J.M. An IARC evaluation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans as risk factors in human carcinogenesis. Environ. Health Perspect. 1998, 106 (Suppl. S2), 755–760. [Google Scholar]
- Hardell, L.; Eriksson, M. Epidemiological studies on cancer and exposure to dioxins and related compounds. In Dioxins and Health: Including Other Persistent Organic Pollutants and Endocrine Disruptors; Wiley: Hoboken, NJ, USA, 2012; pp. 303–358. [Google Scholar]
- Xu, J.; Ye, Y.; Huang, F.; Chen, H.; Wu, H.; Huang, J.; Hu, J.; Xia, D.; Wu, Y. Association between dioxin and cancer incidence and mortality: A meta-analysis. Sci. Rep. 2016, 6, 38012. [Google Scholar] [CrossRef] [PubMed]
- Vuong, T.P. Research on the Relationship between Exposure to Dioxins and Cancer Incidence in Vietnam. Toxics 2022, 10, 384. [Google Scholar] [CrossRef] [PubMed]
- ten Tusscher, G.W.; Koppe, J.G. Perinatal dioxin exposure and later effects—A review. Chemosphere 2004, 54, 1329–1336. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Liu, X.; Li, X.; Niu, N.; Yin, X.; Li, N.; Yu, Z. Association between Environmental Dioxin-Related Toxicants Exposure and Adverse Pregnancy Outcome: Systematic Review and Meta-Analysis. Int. J. Fertil. Steril. 2015, 8, 351–366. [Google Scholar]
- Wesselink, A.; Warner, M.; Samuels, S.; Parigi, A.; Brambilla, P.; Mocarelli, P.; Eskenazi, B. Maternal dioxin exposure and pregnancy outcomes over 30 years of follow-up in Seveso. Environ. Int. 2014, 63, 143–148. [Google Scholar] [CrossRef]
- Baccarelli, A.; Mocarelli, P.; Patterson, D.G.; Bonzini, M.; Pesatori, A.C.; Caporaso, N.; Landi, M.T. Immunologic effects of dioxin: New results from Seveso and comparison with other studies. Environ. Health Perspect. 2002, 110, 1169–1173. [Google Scholar] [CrossRef]
- Dec, M.; Arasiewicz, H. Aryl hydrocarbon receptor role in chronic inflammatory skin diseases: A narrative review. Postepy Dermatol. Alergol. 2024, 41, 9–19. [Google Scholar] [CrossRef]
- Birnbaum, L.S. Endocrine effects of prenatal exposure to PCBs, dioxins, and other xenobiotics: Implications for policy and future research. Environ. Health Perspect. 1994, 102, 676–679. [Google Scholar] [CrossRef]
- Chen, S.C.; Liao, T.L.; Wei, Y.H.; Tzeng, C.R.; Kao, S.H. Endocrine disruptor, dioxin (TCDD)-induced mitochondrial dysfunction and apoptosis in human trophoblast-like JAR cells. Mol. Hum. Reprod. 2010, 16, 361–372. [Google Scholar] [CrossRef]
- Celik, M.N.; Yesildemir, O. Endocrine Disruptors in Child Obesity and Related Disorders: Early Critical Windows of Exposure. Curr. Nutr. Rep. 2025, 14, 14. [Google Scholar] [CrossRef]
- The, T.P.; Ngoc, T.P.; Van, T.H.; Nishijo, M.; Ngoc, N.T.; Thi, H.V.; Van, L.H.; Hai, A.T.; Nishino, Y.; Nishijo, H. Effects of perinatal dioxin exposure on learning abilities of 8-year-old children in Vietnam. Int. J. Hyg. Environ. Health. 2020, 223, 132–141. [Google Scholar]
- Furue, M.; Tsuji, G. Chloracne and Hyperpigmentation Caused by Exposure to Hazardous Aryl Hydrocarbon Receptor Ligands. Int. J. Environ. Res. Public Health 2019, 16, 4864. [Google Scholar] [CrossRef] [PubMed]
- Humblet, O.; Birnbaum, L.; Rimm, E.; Mittleman, M.A.; Hauser, R. Dioxins and cardiovascular disease mortality. Environ. Health Perspect. 2008, 116, 1443–1448. [Google Scholar] [CrossRef]
- Sany, S.B.T.; Hashim, R.; Salleh, A.; Rezayi, M.; Karlen, D.J.; Razavizadeh, B.B.M.; Abouzari-Lotf, E. Dioxin risk assessment: Mechanisms of action and possible toxicity in human health. Environ. Sci. Pollut. Res. Int. 2015, 22, 19434–19450. [Google Scholar] [CrossRef]
- Gandhi, N.; Gewurtz, S.B.; Drouillard, K.G.; Kolic, T.; MacPherson, K.; Reiner, E.J.; Bhavsar, S.P. Dioxins in Great Lakes fish: Past, present and implications for future monitoring. Chemosphere 2019, 222, 479–488. [Google Scholar] [CrossRef]
- Kannan, K.; Koistinen, J.; Beckmen, K.; Evans, T.; Gorzelany, J.F.; Hansen, K.J.; Jones, P.D.; Helle, E.; Nyman, M.; Giesy, J.P. Accumulation of perfluorooctane sulfonate in marine mammals. Environ. Sci. Technol. 2001, 35, 1593–1598. [Google Scholar] [CrossRef]
- Sonne, C.; Siebert, U.; Gonnsen, K.; Desforges, J.-P.; Eulaers, I.; Persson, S.; Roos, A.; Bäcklin, B.-M.; Kauhala, K.; Olsen, M.T.; et al. Health effects from contaminant exposure in Baltic Sea birds and marine mammals: A review. Environ. Int. 2020, 139, 105725. [Google Scholar] [CrossRef]
- Segner, H.; Bailey, C.; Tafalla, C.; Bo, J. Immunotoxicity of Xenobiotics in Fish: A Role for the Aryl Hydrocarbon Receptor (AhR)? Int. J. Mol. Sci. 2021, 22, 9460. [Google Scholar] [CrossRef]
- Annamalai, J.; Namasivayam, V. Endocrine disrupting chemicals in the atmosphere: Their effects on humans and wildlife. Environ. Int. 2015, 76, 78–97. [Google Scholar] [CrossRef] [PubMed]
- Tyler, C.R.; Jobling, S.; Sumpter, J.P. Endocrine disruption in wildlife: A critical review of the evidence. Crit. Rev. Toxicol. 1998, 28, 319–361. [Google Scholar] [CrossRef] [PubMed]
- Polak-Juszczak, L.; Waszak, I.; Szlinder-Richert, J.; Wójcik, I. Levels, time trends, and distribution of dioxins and polychlorinated biphenyls in fishes from the Baltic Sea. Chemosphere 2022, 306, 135614. [Google Scholar] [CrossRef]
- Tiktak, G.P.; Butcher, D.; Lawrence, P.J.; Norrey, J.; Bradley, L.; Shaw, K.; Preziosi, R.; Megson, D. Are concentrations of pollutants in sharks, rays and skates (Elasmobranchii) a cause for concern? A systematic review. Mar. Pollut. Bull. 2020, 160, 111701. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, H.; Lewis, M.A. The impact of environmental toxins on predator-prey dynamics. J. Theor. Biol. 2015, 378, 12–30. [Google Scholar] [CrossRef]
- Chen, W.Y.; Wu, J.H.; Lin, Y.Y.; Huang, H.J.; Chang, J.E. Bioremediation potential of soil contaminated with highly substituted polychlorinated dibenzo-p-dioxins and dibenzofurans: Microcosm study and microbial community analysis. J. Hazard. Mater. 2013, 261, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Nhung, N.T.H.; Nguyen, X.T.; Long, V.D.; Wei, Y.; Fujita, T. A Review of Soil Contaminated with Dioxins and Biodegradation Technologies: Current Status and Future Prospects. Toxics 2022, 10, 278. [Google Scholar] [CrossRef] [PubMed]
- Nugent, A.; Allison, S.D. A framework for soil microbial ecology in urban ecosystems. Ecosphere 2022, 13, e3968. [Google Scholar] [CrossRef]
- Kelly, J.R.; Shelton, G.; Daniel, D.K.; Bhat, A.; Nipple, F.; Amro, H.; Bower, M.E.; Lsaac, G.; McHaney, G.; Martins, E.P.; et al. Wild Zebrafish Sentinels: Biological Monitoring of Site Differences Using Behavior and Morphology. Toxics 2021, 9, 165. [Google Scholar] [CrossRef] [PubMed]
- Pizzochero, A.C.; de la Torre, A.; Sanz, P.; Navarro, I.; Michel, L.N.; Lepoint, G.; Das, K.; Schnitzler, J.G.; Chenery, S.R.; McCarthy, I.D.; et al. Occurrence of legacy and emerging organic pollutants in whitemouth croakers from Southeastern Brazil. Sci. Total Environ. 2019, 682, 719–728. [Google Scholar] [CrossRef]
- Schiavon, M.; Torretta, V.; Rada, E.C.; Ragazzi, M. State of the art and advances in the impact assessment of dioxins and dioxin-like compounds. Environ. Monit. Assess. 2016, 188, 57. [Google Scholar] [CrossRef]
- Morales, P.; Roscales, J.L.; Muñoz-Arnanz, J.; Barbosa, A.; Jiménez, B. Evaluation of PCDD/Fs, PCBs and PBDEs in two penguin species from Antarctica. Chemosphere 2022, 286 Pt 3, 131871. [Google Scholar] [CrossRef]
- Falkowska, L.; Reindl, A.R.; Grajewska, A.; Lewandowska, A.U. Organochlorine contaminants in the muscle, liver and brain of seabirds (Larus) from the coastal area of the Southern Baltic. Ecotoxicol. Environ. Saf. 2016, 133, 63–72. [Google Scholar] [CrossRef]
- Fisk, A.T.; de Wit, C.A.; Wayland, M.; Kuzyk, Z.Z.; Burgess, N.; Letcher, R.; Braune, B.; Norstrom, R.; Blum, S.P.; Sandau, C.; et al. An assessment of the toxicological significance of anthropogenic contaminants in Canadian arctic wildlife. Sci. Total Environ. 2005, 351, 57–93. [Google Scholar] [CrossRef]
- Hao, Y.; Zheng, S.; Wang, P.; Sun, H.; Matsiko, J.; Li, W.; Li, Y.; Zhang, Q.; Jiang, G. Ecotoxicology of persistent organic pollutants in birds. Environ. Sci. Process. Impacts 2021, 23, 400–416. [Google Scholar] [CrossRef]
- Haynes, D.; Müller, J.F.; McLachlan, M.S. Polychlorinated dibenzo-p-dioxins and dibenzofurans in Great Barrier Reef (Australia) dugongs (Dugong dugon). Chemosphere 1999, 38, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Weis, J.S. Physiological, Developmental and Behavioral Effects of Marine Pollution; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Ouédraogo, D.-Y.; Mell, H.; Perceval, O.; Burga, K.; Domart-Coulon, I.; Hédouin, L.; Delaunay, M.; Guillaume, M.M.M.; Castelin, M.; Calvayrac, C.; et al. What are the toxicity thresholds of chemical pollutants for tropical reef-building corals? A systematic review. Environ. Evid. 2023, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Field, J.A.; Sierra-Alvarez, R. Microbial degradation of chlorinated dioxins. Chemosphere 2008, 71, 1005–1018. [Google Scholar] [CrossRef] [PubMed]
- Saibu, S.; Adebusoye, S.A.; Oyetibo, G.O. Soil microbiome response to 2-chlorodibenzo-p-dioxin during bioremediation of contaminated tropical soil in a microcosm-based study. J. Hazard. Mater. 2023, 451, 131105. [Google Scholar] [CrossRef]
- Wang, Y.; Oyaizu, H. Enhanced remediation of dioxins-spiked soil by a plant-microbe system using a dibenzofuran-degrading Comamonas sp. and Trifolium repens L. Chemosphere 2011, 85, 1109–1114. [Google Scholar] [CrossRef]
- WHO. One Health Joint Plan of Action (2022–2026). In Working Together for the Health of Humans, Animals, Plants and the Environment; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Lundstedt-Enkel, K.; Tysklind, M.; Trygg, J.; Schüller, P.; Asplund, L.; Eriksson, U.; Häggberg, L.; Odsjö, T.; Hjelmberg, M.; Olsson, M.; et al. A statistical resampling method to calculate biomagnification factors exemplified with organochlorine data from herring (Clupea harengus) muscle and guillemot (Uria aalge) egg from the Baltic sea. Environ. Sci. Technol. 2005, 39, 8395–8402. [Google Scholar] [CrossRef]
- FAO. EMA-i: A Mobile APP for Timely Animal Disease Field Reporting to Enhance Surveillance, Food Chain Crisis Emergency Prevention System; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015.
- Bordier, M.; Uea-Anuwong, T.; Binot, A.; Hendrikx, P.; Goutard, F.L. Characteristics of One Health surveillance systems: A systematic literature review. Prev. Vet. Med. 2020, 181, 104560. [Google Scholar] [CrossRef]
- McNeil, C.; Verlander, S.; Divi, N.; Smolinski, M. The Landscape of Participatory Surveillance Systems Across the One Health Spectrum: Systematic Review. JMIR Public Health Surveill. 2022, 8, e38551. [Google Scholar] [CrossRef]
- Arshad, M.F.; Burrai, G.P.; Varcasia, A.; Sini, M.F.; Ahmed, F.; Lai, G.; Polinas, M.; Antuofermo, E.; Tamponi, C.; Cocco, R.; et al. The groundbreaking impact of digitalization and artificial intelligence in sheep farming. Res. Vet. Sci. 2024, 170, 105197. [Google Scholar] [CrossRef]
- Capps, B.; Lederman, Z. One Health and paradigms of public biobanking. J. Med. Ethics 2015, 41, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Destoumieux-Garzón, D.; Mavingui, P.; Boetsch, G.; Boissier, J.; Darriet, F.; Duboz, P.; Fritsch, C.; Giraudoux, P.; Le Roux, F.; Morand, S.; et al. The One Health Concept: 10 Years Old and a Long Road Ahead. Front. Vet. Sci. 2018, 5, 14. [Google Scholar] [CrossRef]
- Zinsstag, J.; Schelling, E.; Crump, L.; Whittaker, M.; Tanner, M.; Stephen, C. (Eds.) One Health: The Theory and Practice of Integrated Health Approaches, 2nd ed.; CABI: Wallingford, UK, 2021. [Google Scholar]
- Agnello, D.M.; Anand-Kumar, V.; An, Q.; de Boer, J.; Delfmann, L.R.; Longworth, G.R.; Loisel, Q.; McCaffrey, L.; Steiner, A.; Chastin, S. Co-creation methods for public health research—Characteristics, benefits, and challenges: A Health CASCADE scoping review. BMC Med. Res. Methodol. 2025, 25, 60. [Google Scholar] [CrossRef] [PubMed]
- McCaffrey, L.; McCann, B.; Giné-Garriga, M.; An, Q.; Cardon, G.; Chastin, S.F.M.; Chrifou, R.; Lippke, S.; Loisel, Q.; Longworth, G.R.; et al. Co-creation experiences among adults in diverse contexts: A Health CASCADE scoping review. Public Health 2025, 238, 29–36. [Google Scholar] [CrossRef] [PubMed]
- WHO. One Health; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Lascano Alcoser, V.H.; Velthuis, A.G.; Hoogenboom, L.A.; van der Fels-Klerx, H.J. Financial impact of a dioxin incident in the Dutch dairy chain. J. Food Prot. 2011, 74, 967–979. [Google Scholar] [CrossRef]
- EU Commission. Commission Regulation (EU) 2022/1616 of 15 September 2022 on Recycled Plastic Materials and Articles Intended to Come into Contact with Foods, and Repealing Regulation (EC) No 282/2008; European Commission: Brussels, Belgium, 2022.
- Junaid, M.; Sultan, M.; Liu, S.; Hamid, N.; Yue, Q.; Pei, D.-S.; Wang, J.; Appenzeller, B.M. A meta-analysis highlighting the increasing relevance of the hair matrix in exposure assessment to organic pollutants. Sci. Total Environ. 2024, 917, 170535. [Google Scholar] [CrossRef]
- EU Commission. New EU Regulation Promotes the Procurement of Sustainable Packaging; European Commission: Brussels, Belgium, 2025.
- Barrett, J.R. Window for dioxin damage: Sperm quality in men born after the Seveso disaster. Environ. Health Perspect. 2011, 119, A219. [Google Scholar] [CrossRef]
- Eskenazi, B.; Warner, M.; Brambilla, P.; Signorini, S.; Ames, J.; Mocarelli, P. The Seveso accident: A look at 40 years of health research and beyond. Environ. Int. 2018, 121 Pt 1, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Pesatori, A.C.; Consonni, D.; Rubagotti, M.; Grillo, P.; Bertazzi, P.A. Cancer incidence in the population exposed to dioxin after the “Seveso accident”: Twenty years of follow-up. Environ. Health 2009, 8, 39. [Google Scholar] [CrossRef]
- Bernard, A.; Fierens, S. The Belgian PCB/dioxin incident: A critical review of health risks evaluations. Int. J. Toxicol. 2002, 21, 333–340. [Google Scholar] [CrossRef]
- Covaci, A.; Voorspoels, S.; Schepens, P.; Jorens, P.; Blust, R.; Neels, H. The Belgian PCB/dioxin crisis-8 years later An overview. Environ. Toxicol. Pharmacol. 2008, 25, 164–170. [Google Scholar] [CrossRef]
- Hammond, S.; Schecter, A. Agent Orange: Health and environmental issues in Vietnam, Cambodia, and Laos. In Dioxins and Health: Including Other Persistent Organic Pollutants and Endocrine Disruptors; Wiley: Hoboken, NJ, USA, 2012; pp. 469–520. [Google Scholar]
- Vo, R. The Impact of Agent Orange on Third and Fourth Generation Exposure Victims. Intersect Stanf. J. Sci. Technol. Soc. 2025, 18, 1–18. [Google Scholar]
- Young, A.L. Health Studies of Vietnamese Veterans and Civilians. In Agent Orange. Studies in History and Philosophy of Science; Springer: Cham, Switzerland, 2022; Volume 58. [Google Scholar]
- Li, M.C.; Tsai, P.C.; Chen, P.C.; Hsieh, C.J.; Leon Guo, Y.L.; Rogan, W.J. Mortality after exposure to polychlorinated biphenyls and dibenzofurans: 30 years after the “Yucheng accident”. Environ. Res. 2013, 120, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Mitoma, C.; Uchi, H.; Tsukimori, K.; Yamada, H.; Akahane, M.; Imamura, T.; Utani, A.; Furue, M. Yusho and its latest findings-A review in studies conducted by the Yusho Group. Environ. Int. 2015, 82, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Stockholm Convention. Stockholm Convention on Persistent Organic Pollutants (POPs); Stockholm Convention Secretariat: Geneva, Switzerland, 2025. [Google Scholar]
- Eurofins. Reduction of EU Maximum Levels for Dioxins and Dioxin-Like PCBs in Animal Feed Products Planned; Eurofins: Hamburg, Germany, 2024. [Google Scholar]
- US EPA. Cleanup Levels for Dioxin at Superfund Sites; United States Environmental Protection Agency: Washington, DC, USA, 2024.
- Biga, R.; Nottebaum, S.; Kozlakidis, Z.; Psomiadis, S. Digitalization of Healthcare in LMICs: Digital Health and the Digital Divide Based on Technological Availability and Development. In Digitalization of Medicine in Low-and Middle-Income Countries: Paradigm Changes in Healthcare and Biomedical Research; Springer International Publishing: Cham, Switzerland, 2024; pp. 185–193. [Google Scholar]
- Bolt, H.M.; Hengstler, J.G. The rapid development of computational toxicology. Arch. Toxicol. 2020, 94, 1371–1372. [Google Scholar] [CrossRef]
- Liu, K.; Tan, Q.; Yu, J.; Wang, M. A global perspective on e-waste recycling. Circ. Econ. 2023, 2, 100028. [Google Scholar] [CrossRef]
- Lopez, A.M.; Roth, H.K.; Borch, T.; Fendorf, S.; Vanderroest, J.P.; Avila, C.C.E. Molecular insights and impacts of wildfire-induced soil chemical changes. Nat. Rev. Earth Environ. 2024, 5, 431–446. [Google Scholar] [CrossRef]
- Babaei, E.; Balaky, S.T.; Hadi, N.M.; Azeez, H.J. Nanozyme-assisted CRISPR/Cas systems as an emerging platform for food safety applications: Recent advances. Microchem. J. 2025, 212, 113270. [Google Scholar] [CrossRef]
- Ma, L.; Liao, D.; Zhao, Z.; Kou, J.; Guo, H.; Xiong, X.; Man, S. Sensitive Small Molecule Aptasensing based on Hybridization Chain Reaction and CRISPR/Cas12a Using a Portable 3D-Printed Visualizer. ACS Sens. 2023, 8, 1076–1084. [Google Scholar] [CrossRef] [PubMed]
- Himeur, Y.; Rimal, B.; Tiwary, A.; Amira, A. Using artificial intelligence and data fusion for environmental monitoring: A review and future perspectives. Inf. Fusion. 2022, 86, 44–75. [Google Scholar] [CrossRef]
- Aguirre, A.A.; Beasley, V.R.; Augspurger, T.; Benson, W.H.; Whaley, J.; Basu, N. One health-Transdisciplinary opportunities for SETAC leadership in integrating and improving the health of people, animals, and the environment. Environ. Toxicol. Chem. 2016, 35, 2383–2391. [Google Scholar] [CrossRef] [PubMed]
- Jasani, S. Using a one health approach can foster collaboration through transdisciplinary teaching. Med. Teach. 2019, 41, 839–841. [Google Scholar] [CrossRef] [PubMed]

| Domain | Intervention | Example | Effectiveness/Success Indicators | Limitations |
|---|---|---|---|---|
| Environmental | Enhanced biochar soil remediation | Optimized biochar amendment using carrier gas injection during pyrolysis effectively reduces dioxin bioavailability by limiting oxygen contact, achieving up to 65% reduction in soil dioxin concentrations [63,64]. | Quantifiable reduction in soil dioxin concentrations (target: >50%); decreased bioavailability to soil organisms; improved plant uptake profiles | Applicable to contaminated agricultural and urban soils; requires site-specific optimization and long-term stability monitoring |
| Environmental | Integrated phytoremediation systems | Trifolium repens combined with specialized microbial consortia (Comamonas sp.) enhances dioxin degradation through synergistic plant-microbe interactions [126,140]. | Measured dioxin degradation rates in contaminated soil; plant survival and growth metrics; microbial community stability assessments | Environmentally sustainable and cost-effective; slower remediation timeline; effectiveness varies with soil conditions and climate; requires ongoing maintenance |
| Human Health | Community-based hair biomonitoring programs | Non-invasive hair analysis demonstrates 95% correlation with adipose tissue dioxin levels, enabling population-wide exposure assessment in vulnerable communities [96,155]. | Statistical correlation with traditional biomarkers; community participation rates (target: >70%); early detection of exposure trends | Highly useful for population studies; requires standardized collection and analysis protocols; culturally acceptable across diverse communities; lower cost than invasive sampling |
| Wildlife | Multi-species sentinel monitoring networks | Coordinated monitoring of Baltic Sea seabirds, fish, and marine mammals providing integrated assessment of ecosystem contamination and early warning for human health risks [131,142]. | Temporal trends in tissue concentrations; reproductive success metrics; correlation with environmental contamination levels | Effective for ecosystem-scale monitoring; requires long-term commitment and taxonomic expertise; species selection must consider ecology and logistics; valuable for early warning systems |
| Policy | Circular economy enforcement with real-time monitoring | EU regulations mandating continuous dioxin sensors in waste processing facilities, coupled with recycled material screening to prevent re-entry into food packaging supply chains [154,156]. | Reduction in contamination incidents; compliance rates with detection requirements; decreased dioxin levels in recycled materials | High potential for global adoption; requires initial technology investment; enables rapid response to contamination events; supports sustainable materials management |
| Policy | Community-based digital surveillance systems | Mobile applications enabling farmers, fishers, and community members to report livestock health anomalies, unusual wildlife mortality, or environmental changes linked to potential dioxin contamination [145,146]. | Number and quality of community reports; correlation between reports and confirmed contamination events; response time to reported incidents | Promotion of environmental justice and community engagement; requires digital literacy and infrastructure; builds local monitoring capacity; enables rapid detection in remote areas |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, M.C.O.; Domingo, J.L. Dioxins and the One Health Paradigm: An Interdisciplinary Challenge in Environmental Toxicology. Toxics 2025, 13, 964. https://doi.org/10.3390/toxics13110964
Souza MCO, Domingo JL. Dioxins and the One Health Paradigm: An Interdisciplinary Challenge in Environmental Toxicology. Toxics. 2025; 13(11):964. https://doi.org/10.3390/toxics13110964
Chicago/Turabian StyleSouza, Marília Cristina Oliveira, and Jose L. Domingo. 2025. "Dioxins and the One Health Paradigm: An Interdisciplinary Challenge in Environmental Toxicology" Toxics 13, no. 11: 964. https://doi.org/10.3390/toxics13110964
APA StyleSouza, M. C. O., & Domingo, J. L. (2025). Dioxins and the One Health Paradigm: An Interdisciplinary Challenge in Environmental Toxicology. Toxics, 13(11), 964. https://doi.org/10.3390/toxics13110964

