Enterohepatic Recirculation-Mediated Reabsorption of Aristolochic Acid I: Revealed by Toxicokinetics and Metabolite Identification in Rats
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Toxicokinetic Study
2.2.1. Animals for Toxicokinetic Study
2.2.2. Plasma Sample Preparation
2.2.3. LC-MS/MS Parameters for Quantitation of AAI in Rat Plasma
2.2.4. Method Validation for Quantitation of AAI in Rat Plasma
2.2.5. Data Analysis
2.3. Bile Analysis
2.3.1. Animals for Bile Analysis
2.3.2. Bile Sample Preparation
2.3.3. Qualitative Analysis of AAI Metabolites in Bile
3. Results
3.1. LC-MS/MS Method Validation for the Detection of AAI in Rat Plasma
3.2. Toxicokinetic Study of AAI in Rats
3.2.1. Double-Peak Phenomenon of Plasma Concentration–Time Profiles
3.2.2. Non-Linear Elimination of AAI Indicated by Toxicokinetic Parameters
3.3. Identification of AAI Metabolites in Bile
3.3.1. Detection of AAI-O-Glucuronide in Bile
3.3.2. Detection of Genotoxic Intermediates in Bile
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AA | Aristolochic acid |
| AAN | Aristolochic acid nephropathy |
| ALI | Aristolactam I |
| ALI-9-OH | 9-Hydroxyaristolactam I |
| ALI-N-OAc | Aristolactam I-N-acetoxy ester |
| ALI-N-OH | N-hydroxyaristolactam I |
| ALI-N-OSO3H | Aristolactam I-N-sulfate |
| AUC | Area under the curve |
| AUC0→t | Area under the concentration–time curve from 0 to the last observation |
| CL | Clearance |
| Cmax | Maximum concentration |
| CMC-Na | Sodium carboxymethyl cellulose |
| CYP1A1/2 | Microsomal cytochrome P450 1A1 and 1A2 |
| dA-ALI | 7-(Deoxyadenosine-N6-yl)-aristolactam I |
| dG-ALI | 7-(Deoxyguanosine-N2-yl)-aristolactam I |
| EHR | Enterohepatic recirculation |
| F344 | Fisher 344 |
| HQC | High-quality control |
| IACUC | Institutional Animal Care and Use Committee |
| ICH | M10 guideline |
| IS | Internal standard |
| LC-MS/MS | Liquid chromatography coupled with tandem mass spectrometry |
| LLOQ | Lower limit of quantification |
| LQC | Low-quality control |
| MQC | Medium-quality control |
| MRM | Multiple reaction monitoring |
| NAT | N-acetyltransferase |
| NCA | Non-compartmental analysis |
| NONMEM | Non-linear mixed-effect modeling |
| NQO1 | NAD(P)H: quinone oxidoreductase 1 |
| OAT | Organic anion transporter |
| QC | Quality control |
| SULT | Sulfotransferase |
| t1/2 | Half-life time |
| tmax | Time to maximum concentration |
| UHPLC | Ultra-high-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry |
| ULOQ | Upper limit of quantification |
| UPLC-QQQ-MS/MS | Ultra-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry |
| Vd | Apparent volume of distribution |
References
- Chan, W.; Lee, K.C.; Liu, N.; Cai, Z.W. A sensitivity enhanced high-performance liquid chromatography fluorescence method for the detection of nephrotoxic and carcinogenic aristolochic acid in herbal medicines. J. Chromatogr. A 2007, 1164, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Vanherweghem, J.L.; Depierreux, M.; Tielemans, C.; Abramowicz, D.; Dratwa, M.; Jadoul, M.; Richard, C.; Vandervelde, D.; Verbeelen, D.; Vanhaelen-Fastre, R.; et al. Rapidly progressive interstitial renal fibrosis in young women: Association with slimming regimen including Chinese herbs. Lancet 1993, 341, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.K.; Liu, Y.S.; Pavlovic, N.M.; Chan, W. Aristolochic acids: Newly identified exposure pathways of this class of environmental and food-borne contaminants and its potential link to chronic kidney diseases. Toxics 2019, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Debelle, F.D.; Vanherweghem, J.L.; Nortier, J.L. Aristolochic acid nephropathy: A worldwide problem. Kidney Int. 2008, 74, 158–169. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China, 1st ed.; China Medical Science Press: Beijing, China, 2025; pp. 248–249. [Google Scholar]
- Tung, K.K.; Chan, C.K.; Zhao, Y.; Chan, K.K.J.; Liu, G.R.; Pavlovic, N.M.; Chan, W. Occurrence and environmental stability of aristolochic acids in groundwater collected from Serbia: Links to human exposure and Balkan endemic nephropathy. Environ. Sci. Technol. 2020, 54, 1554–1561. [Google Scholar] [CrossRef]
- Nault, J.C.; Letouzé, E. Mutational processes in hepatocellular carcinoma: The story of aristolochic acid. Semin. Liver Dis. 2019, 39, 334–340. [Google Scholar] [CrossRef]
- Wu, F.; Wang, T.X. Risk assessment of upper tract urothelial carcinoma related to aristolochic acid. Cancer Epidemiol. Biomark. Prev. 2013, 22, 812–820. [Google Scholar] [CrossRef]
- Lu, Z.N.; Luo, Q.; Zhao, L.N.; Shi, Y.; Wang, N.; Wang, L.; Han, Z.G. The mutational features of aristolochic acid-induced mouse and human liver cancers. Hepatology 2020, 71, 929–942. [Google Scholar] [CrossRef]
- Arlt, V.M.; Stiborová, M.; vom Brocke, J.; Simoes, M.L.; Lord, G.M.; Nortier, J.L.; Hollstein, M.; Phillips, D.H.; Schmeiser, H.H. Aristolochic acid mutagenesis: Molecular clues to the aetiology of Balkan endemic nephropathy-associated urothelial cancer. Carcinogenesis 2007, 28, 2253–2261. [Google Scholar] [CrossRef]
- Bellamri, M.; Brandt, K.; Brown, C.V.; Wu, M.T.; Turesky, R.J. Cytotoxicity and genotoxicity of the carcinogen aristolochic acid I (AA-I) in human bladder RT4 cells. Arch. Toxicol. 2021, 95, 2189–2199. [Google Scholar] [CrossRef]
- Lukinich, A.T.; Nortier, J.; Pavlovic, N.M.; Milovanovic, D.; Popovic, M.; Draghia, L.P.; Paunescu, V.; Tatu, C.A. Aristolochic acid I as an emerging biogenic contaminant involved in chronic kidney diseases: A comprehensive review on exposure pathways, environmental health issues and future challenges. Chemosphere 2022, 297, 134111. [Google Scholar] [CrossRef] [PubMed]
- Stiborová, M.; Frei, E.; Schmeiser, H.H.; Arlt, V.M.; Martínek, V. Mechanisms of enzyme-catalyzed reduction of two carcinogenic nitro-aromatics, 3-nitrobenzanthrone and aristolochic acid I: Experimental and theoretical approaches. Int. J. Mol. Sci. 2014, 15, 10271–10295. [Google Scholar] [CrossRef] [PubMed]
- Anger, E.E.; Yu, F.; Li, J. Aristolochic acid-induced nephrotoxicity: Molecular mechanisms and potential protective approaches. Int. J. Mol. Sci. 2020, 21, 1157. [Google Scholar] [CrossRef] [PubMed]
- Jadot, I.; Declèves, A.E.; Nortier, J.; Caron, N. An integrated view of aristolochic acid nephropathy: Update of the literature. Int. J. Mol. Sci. 2017, 18, 297. [Google Scholar] [CrossRef]
- Xue, X.; Gong, L.K.; Maeda, K.; Luan, Y.; Qi, X.M.; Sugiyama, Y.; Ren, J. Critical role of organic anion transporters 1 and 3 in kidney accumulation and toxicity of aristolochic acid I. Mol. Pharm. 2011, 8, 2183–2192. [Google Scholar] [CrossRef]
- Sidorenko, V.S.; Attaluri, S.; Zaitseva, I.; Iden, C.R.; Dickman, K.G.; Johnson, F.; Grollman, A.P. Bioactivation of the human carcinogen aristolochic acid. Carcinogenesis 2014, 35, 1814–1822. [Google Scholar] [CrossRef]
- Pfau, W.; Poolzobel, B.L.; von der Lieth, C.W.; Weibler, M. The structural basis for the mutagenicity of aristolochic acid. Cancer Lett. 1990, 55, 7–11. [Google Scholar] [CrossRef]
- Purohit, V.; Basu, A.K. Mutagenicity of nitroaromatic compounds. Chem. Res. Toxicol. 2000, 13, 673–692. [Google Scholar] [CrossRef]
- Chen, C.H.; Dickman, K.G.; Moriya, M.; Zavadil, J.; Sidorenko, V.S.; Edwards, K.L.; Gnatenko, D.V.; Wu, L.; Turesky, R.J.; Wu, X.R.; et al. Aristolochic acid-associated urothelial cancer in Taiwan. Proc. Natl. Acad. Sci. USA 2012, 109, 8241–8246. [Google Scholar] [CrossRef]
- Hoang, M.L.; Chen, C.H.; Sidorenko, V.S.; He, J.; Dickman, K.G.; Yun, B.H.; Moriya, M.; Niknafs, N.; Douville, C.; Karchin, R.; et al. Mutational signature of aristolochic acid exposure as revealed by whole-exome sequencing. Sci. Transl. Med. 2013, 5, 197ra102. [Google Scholar] [CrossRef]
- Shibutani, S.; Bonala, R.R.; Rosenquist, T.; Rieger, R.; Suzuki, N.; Johnson, F.; Miller, F.; Grollman, A.P. Detoxification of aristolochic acid I by O-demethylation: Less nephrotoxicity and genotoxicity of aristolochic acid Ia in rodents. Int. J. Cancer 2010, 127, 1021–1027. [Google Scholar] [CrossRef]
- Lemy, A.; Wissing, K.M.; Rorive, S.; Zlotta, A.; Roumeguere, T.; Martinez, M.C.M.; Decaestecker, C.; Salmon, I.; Abramowicz, D.; Vanherweghem, J.L.; et al. Late onset of bladder urothelial carcinoma after kidney transplantation for end-stage aristolochic acid nephropathy: A case series with 15-year follow-up. Am. J. Kidney Dis. 2008, 51, 471–477. [Google Scholar] [CrossRef]
- Yang, L.; Su, T.; Li, X.M.; Wang, X.; Cai, S.Q.; Meng, L.Q.; Zou, W.Z.; Wang, H.Y. Aristolochic acid nephropathy: Variation in presentation and prognosis. Nephrol. Dial. Transplant. 2012, 27, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wu, W.X.; Lin, Z.; Wang, C.; Yang, Y.W.; Miao, Y.F.; Geng, X.X.; Li, B. The hepatocarcinogenic effects of aristolochic acid I and associated mechanisms in C3H/HeN suckling mice. Drug Eval. Res. 2024, 47, 1827–1837. [Google Scholar]
- Schmeiser, H.H.; Nortier, J.L.; Singh, R.; da Costa, G.G.; Sennesael, J.; Cassuto-Viguier, E.; Ambrosetti, D.; Rorive, S.; Pozdzik, A.; Phillips, D.H.; et al. Exceptionally long-term persistence of DNA adducts formed by carcinogenic aristolochic acid I in renal tissue from patients with aristolochic acid nephropathy. Int. J. Cancer 2014, 135, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.M.; Lin, A.H.; Wu, Z.F.; Ou, R.M.; Huang, H.D. A liquid chromatography/tandem mass spectrometry method for determination of aristolochic acid-I in rat plasma. Biomed. Chromatogr. 2010, 24, 174–179. [Google Scholar] [CrossRef]
- Su, T.; Qu, L.; Zhang, C.L.; Cai, S.Q.; Li, X.M. Studies on pharmacodynamic characteristics of aristolochic acid I in rats. China J. Chin. Mater. Med. 2004, 29, 70–75. [Google Scholar]
- Ren, G.; Huang, Q.; Wu, J.G.; Yuan, J.B.; Yang, G.H.; Yan, Z.H.; Yao, S.Z. Cloud point extraction-HPLC method for the determination and pharmacokinetic study of aristolochic acids in rat plasma after oral administration of Aristolochiae Fructus. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014, 953, 73–79. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Han, Y.H.; Dong, C.L.; Li, C.; Liang, T.; Ling, G.N.; Nie, H.G. Rapid characterization and pharmacokinetic study of aristolochic acid analogues using ion mobility mass spectrometry. Anal. Bioanal. Chem. 2021, 413, 4247–4253. [Google Scholar] [CrossRef]
- Godfrey, K.R.; Arundel, P.A.; Dong, Z.M.; Bryant, R. Modelling the double peak phenomenon in pharmacokinetics. Comput. Methods Programs Biomed. 2011, 104, 62–69. [Google Scholar] [CrossRef]
- ICH Guidelines: M10 Bioanalytical Method Validation and Study Sample Analysis. Available online: https://www.ich.org/page/multidisciplinary-guidelines (accessed on 9 December 2024).
- Pastina, B.; Early, P.J.; Bergman, R.L.; Nettifee, J.; Maller, A.; Bray, K.Y.; Waldron, R.J.; Castel, A.M.; Munana, K.R.; Papich, M.G.; et al. The pharmacokinetics of cytarabine administered subcutaneously, combined with prednisone, in dogs with meningoencephalomyelitis of unknown etiology. J. Vet. Pharmacol. Ther. 2018, 41, 638–643. [Google Scholar] [CrossRef]
- Sebbag, L.; Mochel, J.P. Pharmacokinetics of oral prednisone at various doses in dogs: Preliminary findings using a naive pooled-data approach. Front. Vet. Sci. 2020, 7, 571457. [Google Scholar] [CrossRef]
- Chan, W.; Cui, L.; Xu, G.W.; Cai, Z.W. Study of the phase I and phase II metabolism of nephrotoxin aristolochic acid by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 1755–1760. [Google Scholar] [CrossRef]
- SwissADME. Available online: http://www.swissadme.ch/index.php (accessed on 12 April 2025).
- Liu, S.; Du, G.Y.; Li, L.; Xiao, Y.Q. Studies on toxicokinetics and distribution of aristolochic acid I in rats. Advers. Drug React. J. 2006, 3, 169–174. [Google Scholar]
- Chen, X.; Ma, Y.M.; Zhong, J. Research progress in double peak phenomenon of concentration-time curve. Chin. J. New Drugs Clin. Rem. 2012, 31, 432–437. [Google Scholar]
- Metsugi, Y.; Miyaji, Y.; Ogawara, K.I.; Higaki, K.; Kimura, T. Appearance of double peaks in plasma concentration-time profile after oral administration depends on gastric emptying profile and weight function. Pharm. Res. 2008, 25, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Plusquellec, Y.; Efthymiopoulos, C.; Duthil, P.; Houin, G. A pharmacokinetic model for multiple sites discontinuous gastrointestinal absorption. Med. Eng. Phys. 1999, 21, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Xiong, F.; Wang, H.; Jiang, Z.Z.; Huo, M.R.; Yan, C.Y.; Zheng, C.L.; Gu, N. Integrated pharmacokinetics and biodistribution of multiple flavonoid C-glycosides components in rat after oral administration of Abrus mollis extract and correlations with bio-effects. J. Ethnopharmacol. 2015, 163, 290–296. [Google Scholar] [CrossRef]
- Yang, G.Y.; Ge, S.F.; Singh, R.; Basu, S.; Shatzer, K.; Zen, M.; Liu, J.; Tu, Y.F.; Zhang, C.N.; Wei, J.B.; et al. Glucuronidation: Driving factors and their impact on glucuronide disposition. Drug Metab. Rev. 2017, 49, 105–138. [Google Scholar] [CrossRef]
- Zhang, D.L.; Wei, C.; Hop, C.E.; Wright, M.R.; Hu, M.; Lai, Y.R.; Khojasteh, S.C.; Humphreys, W.G. Intestinal excretion, intestinal recirculation, and renal tubule reabsorption are underappreciated mechanisms that drive the distribution and pharmacokinetic behavior of small molecule drugs. J. Med. Chem. 2021, 64, 7045–7059. [Google Scholar] [CrossRef]
- Ma, L.P.; Qin, Y.H.; Shen, Z.W.; Bi, H.C.; Hu, H.Y.; Huang, M.; Zhou, H.; Yu, L.S.; Jiang, H.D.; Zeng, S. Aristolochic acid I is a substrate of BCRP but not P-glycoprotein or MRP2. J. Ethnopharmacol. 2015, 172, 430–435. [Google Scholar] [CrossRef]
- Lin, J.H. Dose-dependent pharmacokinetics: Experimental observations and theoretical considerations. Biopharm. Drug Dispos. 1994, 15, 1–31. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Li, Z.; Zhuang, X.M. The characters and mechanisms leading to nonlinear pharmacokinetics in small molecule drugs and the evaluation approaches: Research advances. J. Int. Pharm. Res. 2018, 45, 805–812. [Google Scholar]
- Yamazaki, M.; Suzuki, H.; Sugiyama, Y. Recent advances in carrier-mediated hepatic uptake and biliary excretion of xenobiotics. Pharm. Res. 1996, 13, 497–513. [Google Scholar] [CrossRef]
- Hashimoto, K.; Zaitseva, I.N.; Bonala, R.; Attaluri, S.; Ozga, K.; Iden, C.R.; Johnson, F.; Moriya, M.; Grollman, A.P.; Sidorenko, V.S. Sulfotransferase-1A1-dependent bioactivation of aristolochic acid I and N-hydroxyaristolactam I in human cells. Carcinogenesis 2016, 37, 647–655. [Google Scholar] [CrossRef]
- Okuno, Y.; Bonala, R.; Attaluri, S.; Johnson, F.; Grollman, A.P.; Sidorenko, V.S.; Oda, Y. Bioactivation mechanisms of N-hydroxyaristolactams: Nitroreduction metabolites of aristolochic acids. Environ. Mol. Mutagen. 2019, 60, 792–806. [Google Scholar] [CrossRef]
- Lin, J.Z.; Cao, Y.H.; Yang, X.; Li, G.Y.; Shi, Y.; Wang, D.X.; Long, J.Y.; Song, Y.; Mao, J.Z.; Xie, F.C.; et al. Mutational spectrum and precision oncology for biliary tract carcinoma. Theranostics 2021, 11, 4585–4598. [Google Scholar] [CrossRef]
- Ng, A.W.T.; Poon, S.L.; Huang, M.N.; Lim, J.Q.; Boot, A.; Yu, W.; Suzuki, Y.; Thangaraju, S.; Ng, C.C.Y.; Tan, P.; et al. Aristolochic acids and their derivatives are widely implicated in liver cancers in Taiwan and throughout Asia. Sci. Transl. Med. 2017, 9, eaan6446. [Google Scholar] [CrossRef]
- Cai, Y.; Sun, C.M.; Shen, Y. Progress on pharmacokinetics parameters calculation of nonlinear models. J. Pharm. Res. 2014, 33, 401–405. [Google Scholar] [CrossRef]
- Rouits, E.; Guichard, S.; Canal, P.; Chatelut, E. Non-linear pharmacokinetics of irinotecan in mice. Anti-Cancer Drugs 2002, 13, 631–635. [Google Scholar] [CrossRef]
- Davis, T.M.E.; Daly, F.; Walsh, J.P.; Ilett, K.F.; Beilby, J.P.; Dusci, L.J.; Barrett, P.H.R. Pharmacokinetics and pharmacodynamics of gliclazide in caucasians and australian aborigines with type 2 diabetes. Br. J. Clin. Pharmacol. 2000, 49, 223–230. [Google Scholar] [CrossRef]
- Huntjens, D.; Strougo, A.; Chain, A.; Metcalf, A.; Summerfield, S.; Spalding, D.J.M.; Danhof, M.; Della Pasqua, O. Population pharmacokinetic modelling of the enterohepatic recirculation of diclofenac and rofecoxib in rats. Br. J. Pharmacol. 2008, 153, 1072–1084. [Google Scholar] [CrossRef]
- Malik, M.Y.; Jaiswal, S.; Sharma, A.; Shukla, M.; Lal, J. Role of enterohepatic recirculation in drug disposition: Cooperation and complications. Drug Metab. Rev. 2016, 48, 281–327. [Google Scholar] [CrossRef] [PubMed]
- Tvrdonova, M.; Dedik, L.; Mircioiu, C.; Miklovicova, D.; Durisova, M. Physiologically motivated time-delay model to account for mechanisms underlying enterohepatic circulation of piroxicam in human beings. Basic Clin. Pharmacol. Toxicol. 2009, 104, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Behnia, K.; Boroujerdi, M. Investigation of the enterohepatic recirculation of adriamycin and its metabolites by a linked-rat model. Cancer Chemother. Pharmacol. 1998, 41, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Marier, J.F.; Vachon, P.; Gritsas, A.; Zhang, J.; Moreau, J.P.; Ducharme, M.P. Metabolism and disposition of resveratrol in rats: Extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model. J. Pharmacol. Exp. Ther. 2002, 302, 369–373. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Tsai, T.H. Enterohepatic circulation and pharmacokinetics of genistin and genistein in rats. ACS Omega 2019, 4, 18428–18433. [Google Scholar] [CrossRef]







| Samples | AAI | IS | ||
|---|---|---|---|---|
| Retention Time (min) | Peak Area | Retention Time (min) | Peak Area | |
| S1 | 2.6 | 40.51 | 2.9 | 79.33 |
| S2 | / | / | 2.9 | 59.95 |
| S3 | 2.61 | 22.06 | 2.96 | 13.43 |
| S4 | 2.61 | 16.56 | 2.9 | 125.17 |
| S5 | 2.59 | 89.64 | 2.9 | 384.43 |
| S6 | 2.6 | 72.89 | 2.9 | 394.33 |
| LLOQ sample | 2.6 | 690.57 | 2.9 | 15,681.9 |
| Nominal Conc. (ng/mL) | Mean Calculated Conc. (ng/mL) | Accuracy (% Dev) | Precision (% CV) | |
|---|---|---|---|---|
| Between-run | 1 | 1.01 | 0.80 | 10.25 |
| 3 | 2.81 | −6.44 | 8.17 | |
| 400 | 389.67 | −2.58 | 3.65 | |
| 800 | 762.48 | −4.69 | 4.34 | |
| Within-run | 1 | 1.03 | 2.54 | 8.91 |
| 3 | 2.77 | −7.53 | 6.03 | |
| 400 | 387.25 | 3.19 | 2.13 | |
| 800 | 749.75 | −6.28 | 2.74 |
| Stability | Nominal Conc. (ng/mL) | Mean Calculated Conc. (ng/mL) | Accuracy (%Dev) | Precision (%CV) |
|---|---|---|---|---|
| Freeze–thaw | 3 | 3.12 | 4.10 | 3.71 |
| 800 | 810.42 | 1.30 | 2.79 | |
| Short-term | 3 | 3.10 | 3.46 | 3.43 |
| 800 | 776.07 | −2.99 | 3.28 | |
| Post-processing | 3 | 2.68 | −10.53 | 2.91 |
| 800 | 705.33 | −11.83 | 1.94 | |
| Long-term | 3 | 3.20 | 6.54 | 2.58 |
| 800 | 837.66 | 4.71 | 8.33 |
| Matrix Source | Nominal Conc. (ng/mL) | Mean Calculated Conc. (ng/mL) | Accuracy (%Dev) | Precision (%CV) |
|---|---|---|---|---|
| 1 | 3 | 3.03 | 1.04 | 1.64 |
| 800 | 712.88 | −10.89 | 2.89 | |
| 2 | 3 | 2.85 | −4.87 | 3.59 |
| 800 | 694.71 | −13.16 | 4.26 | |
| 3 | 3 | 2.98 | −0.64 | 3.81 |
| 800 | 683.17 | −14.60 | 2.87 | |
| 4 | 3 | 3.02 | 0.80 | 1.32 |
| 800 | 751.34 | −6.08 | 1.21 | |
| 5 | 3 | 2.95 | −1.54 | 0.99 |
| 800 | 714.51 | −10.69 | 2.41 | |
| 6 | 3 | 2.83 | −5.72 | 3.70 |
| 800 | 729.29 | −8.84 | 1.41 |
| Sample | Dilution Factor | Nominal Conc. (ng/mL) | Mean Calculated Conc. (ng/mL) | Accuracy (%Dev) | Precision (%CV) |
|---|---|---|---|---|---|
| 1 | 10 | 500 | 450.54 | −9.89 | 0.04 |
| 2 | 100 | 50 | 52.60 | 5.20 | 0.07 |
| Parameters | Units | Dosage | ||
|---|---|---|---|---|
| 10 mg/kg | 30 mg/kg | 100 mg/kg | ||
| Cmax | ng/mL | 457.36 ± 128.76 | 2453.15 ± 560.61 | 9106.17 ± 2177.55 |
| tmax | h | 0.69 ± 0.60 | 0.58 ± 0.17 | 1.17 ± 0.37 |
| t1/2 | h | 1.31 ± 0.51 | 2.79 ± 0.74 | 3.01 ± 0.45 |
| Vd | L | 3.36 ± 1.97 | 4.67 ± 0.81 | 8.42 ± 7.24 |
| CL/F | L/h | 1.66 ± 0.37 | 1.22 ± 0.30 | 1.13 ± 0.59 |
| AUC0→t | ng·h/mL | 968.66 ± 139.79 | 3954.49 ± 542.83 | 17,110.46 ± 7555.68 |
| Retention Time (min) | Precursor Ion (m/z) | Fragment Ion (m/z) | Identification Result |
|---|---|---|---|
| 12.6 | 310.0707 | 295.0473 [M+H-·CH3]+ | ALI-9-OH |
| 282.0755 [M+H-CO]+ | |||
| 266.0422 [M+H-CO-·OCH3]+ | |||
| 264.0626 [M+H-CO-H2O]+ | |||
| 240.0757 [M+H-CO-·N=C=O]+ | |||
| 239.0700 [M+H-CO-HN=C=O]+ | |||
| 12.9 | 310.0709 | 295.0474 [M+H-·CH3]+ | ALI-N-OH |
| 267.0523 [M+H-·CH3-CO]+ | |||
| 239.0360 [M+H-·CH3-CO-H2N≡ C·]+ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Nie, L.; Ye, X.; Lin, Z.; Liu, Y.; Wei, F. Enterohepatic Recirculation-Mediated Reabsorption of Aristolochic Acid I: Revealed by Toxicokinetics and Metabolite Identification in Rats. Toxics 2025, 13, 919. https://doi.org/10.3390/toxics13110919
Huang L, Nie L, Ye X, Lin Z, Liu Y, Wei F. Enterohepatic Recirculation-Mediated Reabsorption of Aristolochic Acid I: Revealed by Toxicokinetics and Metabolite Identification in Rats. Toxics. 2025; 13(11):919. https://doi.org/10.3390/toxics13110919
Chicago/Turabian StyleHuang, Lieyan, Lixing Nie, Xiao Ye, Zhi Lin, Ying Liu, and Feng Wei. 2025. "Enterohepatic Recirculation-Mediated Reabsorption of Aristolochic Acid I: Revealed by Toxicokinetics and Metabolite Identification in Rats" Toxics 13, no. 11: 919. https://doi.org/10.3390/toxics13110919
APA StyleHuang, L., Nie, L., Ye, X., Lin, Z., Liu, Y., & Wei, F. (2025). Enterohepatic Recirculation-Mediated Reabsorption of Aristolochic Acid I: Revealed by Toxicokinetics and Metabolite Identification in Rats. Toxics, 13(11), 919. https://doi.org/10.3390/toxics13110919

