Linking Atmospheric and Soil Contamination: A Comparative Study of PAHs and Metals in PM10 and Surface Soil near Urban Monitoring Stations
Abstract
1. Introduction
- To determine the concentrations and distribution of selected PAHs and PTEs in PM10 and surface soil samples collected near urban air quality monitoring stations over three years.
- To investigate spatial and vertical variability in soil pollutant concentrations (0–5 cm vs. 5–10 cm) and explore seasonal differences in pollutant accumulation.
- To compare pollutant profiles across air and soil compartments and assess the extent of their correlation, to evaluate atmospheric deposition as a potential pathway for soil contamination.
- To apply descriptive and multivariate statistical techniques to identify common pollution sources and better understand the inter-compartmental behavior of pollutants.
2. Materials and Methods
2.1. Study Area and Pollutant Characterization
2.2. Data Processing and Statistical Analysis
3. Results and Discussion
3.1. General Pollution Levels in Air and Soil
3.2. Relationships Between Air and Soil Pollutants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bezberdaya, L.A.; Kasimov, N.S.; Chernitsova, O.V.; Tkachenko, A.N.; Lychagin, M.Y. Heavy metals and Metalloids in Soils, Road Dust, and Their PM10 Fractions in Sebastopol: Levels, Sources, and Pollution Risk. Eurasian Soil Sci. 2022, 55, 1871–1890. [Google Scholar] [CrossRef]
- Ciarkowska, K.; Gambus, F.; Antonkiewicz, J.; Koliopoulos, T. Polycyclic Aromatic Hydrocarbon and Heavy Metal Contents in the Urban Soils in Southern Poland. Chemosphere 2019, 229, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Di Vaio, P.; Cocozziello, B.; Corvino, A.; Fiorino, F.; Frecentese, F.; Magli, E.; Onorati, G.; Saccone, I.; Santagada, V.; Settimo, G.; et al. Level, Potential Sources of Polycyclic Aromatic Hydrocarbons (PAHs) in Particulate Matter (PM10) in Naples. Atmos. Environ. 2016, 129, 186–196. [Google Scholar] [CrossRef]
- Fazeli, G.; Karbassi, A.; Khoramnejadian, S.; Nasrabadi, T. Evaluation of Urban Soil Pollution: A Combined Approach of Toxic Metals and Polycyclic Aromatic Hydrocarbons (PAHs). Int. J. Environ. Res. 2019, 13, 801–811. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Cao, Z.; Lin, C.; Yang, Z. Spatial Distribution and Health Risk of Heavy Metals and Polycyclic Aromatic Hydrocarbons (PAHs) in the Water of the Luanhe River Basin, China. Environ. Monit. Assess. 2010, 163, 1–13. [Google Scholar] [CrossRef]
- Morillo, E.; Romero, A.S.; Maqueda, C.; Madrid, L.; Ajmone-Marsan, F.; Grcman, H.; Davidson, C.M.; Hursthouse, A.S.; Villaverde, J. Soil Pollution by PAHs in Urban Soils: A Comparison of Three European Cities. J. Environ. Monit. 2007, 9, 1001. [Google Scholar] [CrossRef]
- Peng, K.; Li, Z.; Gao, T.-R.; Lv, J.; Wang, W.-J.; Zhan, P.; Yao, W.-C.; Zhao, H.; Wang, H.; Xu, D.-X.; et al. Polycyclic Aromatic Hydrocarbon Exposure Burden: Individual and Mixture Analyses of Associations with Chronic Obstructive Pulmonary Disease Risk. Environ. Res. 2023, 222, 115334. [Google Scholar] [CrossRef]
- Liu, J.; Jia, J.; Grathwohl, P. Dilution of Concentrations of PAHs from Atmospheric Particles, Bulk Deposition to Soil: A Review. Environ. Geochem. Health 2022, 44, 4219–4234. [Google Scholar] [CrossRef]
- Mwangi, J.K.; Degrendele, C.; Bandowe, B.A.M.; Bohlin-Nizzetto, P.; Halse, A.K.; Šmejkalová, A.H.; Kim, J.-T.; Kukučka, P.; Martiník, J.; Nežiková, B.P.; et al. Air-Soil Cycling of Oxygenated, Nitrated, and Parent Polycyclic Aromatic Hydrocarbons in Source and Receptor Areas. Sci. Total Environ. 2024, 921, 170495. [Google Scholar] [CrossRef]
- Ambade, B.; Kumar, A.; Latif, M. Emission Sources, Characteristics and Risk Assessment of Particulate Bound Polycyclic Aromatic Hydrocarbons (PAHs) from Traffic Sites. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Chen, L.-C.; Maciejczyk, P.; Thurston, G.D. Metals and Air Pollution. In Handbook on the Toxicology of Metals; Elsevier: Amsterdam, The Netherlands, 2022; pp. 137–182. ISBN 978-0-12-823292-7. [Google Scholar]
- Turnbull, A.B.; Harrison, R.M. Major Component Contributions to PM10 Composition in the UK Atmosphere. Atmos. Environ. 2000, 34, 3129–3137. [Google Scholar] [CrossRef]
- Hassanvand, M.S.; Naddafi, K.; Faridi, S.; Nabizadeh, R.; Sowlat, M.H.; Momeniha, F.; Gholampour, A.; Arhami, M.; Kashani, H.; Zare, A.; et al. Characterization of PAHs and Metals in Indoor/Outdoor PM10/PM2.5/PM1 in a Retirement Home and a School Dormitory. Sci. Total Environ. 2015, 527–528, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Callén, M.S.; López, J.M.; Iturmendi, A.; Mastral, A.M. Nature and Sources of Particle Associated Polycyclic Aromatic Hydrocarbons (PAH) in the Atmospheric Environment of an Urban Area. Environ. Pollut. 2013, 183, 166–174. [Google Scholar] [CrossRef]
- Dat, N.-D.; Chang, M.B. Review on Characteristics of PAHs in Atmosphere, Anthropogenic Sources and Control Technologies. Sci. Total Environ. 2017, 609, 682–693. [Google Scholar] [CrossRef] [PubMed]
- Račić, N.; Ružičić, S.; Terzić, T.; Pehnec, G.; Jakovljević, I.; Štrukil, Z.S.; Žužul, S.; Rinkovec, J.; Lovrić, M. Analyzing the Relationship between Gas Consumption and Airborne Pollutants: Case Study of Zagreb, Croatia. Air Qual. Atmos. Health 2024, 18, 507–519. [Google Scholar] [CrossRef]
- Ravindra, K.; Sokhi, R.; Vangrieken, R. Atmospheric Polycyclic Aromatic Hydrocarbons: Source Attribution, Emission Factors and Regulation. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar] [CrossRef]
- Beslic, I.; Burger, J.; Cadoni, F.; Centioli, D.; Kranjc, I.; Van Den Bril, B.; Rinkovec, J.; Sega, K.; Zang, T.; Zuzul, S.; et al. Determination of As, Cd, Ni and Pb in PM10—Comparison of Different Sample Work-up and Analysis Methods/Bestimmung von As, Cd, Ni Und Pb in PM10—Vergleich Verschiedener Probenaufbereitungs- Und Analysenverfahren. GrdL 2020, 80, 227–233. [Google Scholar] [CrossRef]
- Idani, E.; Geravandi, S.; Akhzari, M.; Goudarzi, G.; Alavi, N.; Yari, A.R.; Mehrpour, M.; Khavasi, M.; Bahmaei, J.; Bostan, H.; et al. Characteristics, Sources, and Health Risks of Atmospheric PM10-Bound Heavy metals in a Populated Middle Eastern City. Toxin Rev. 2020, 39, 266–274. [Google Scholar] [CrossRef]
- Lee, B.K.; Hieu, N.T. Seasonal Variation and Sources of Heavy Metals in Atmospheric Aerosols in a Residential Area of Ul-san, Korea. Aerosol Air Qual. Res. 2011, 11, 679–688. [Google Scholar] [CrossRef]
- Halamic, J.; Miko, S.; Peh, Z.; Galović, L. Geochemical Atlas of the Republic of Croatia; Halamic, J., Miko, S., Eds.; HGI Hrvatski Geoloski Institut: Zagreb, Croatia, 2009; ISBN 978-953-6907-18-2. [Google Scholar]
- Castel, R.; Bertoldo, R.; Lebarillier, S.; Noack, Y.; Orsière, T.; Malleret, L. Toward an Interdisciplinary Approach to Assess the Adverse Health Effects of Dust-Containing Polycyclic Aromatic Hydrocarbons (PAHs) and Metal(Loid)s on Preschool Children. Environ. Pollut. 2023, 336, 122372. [Google Scholar] [CrossRef]
- Bukowska, B.; Mokra, K.; Michałowicz, J. Benzo[a]Pyrene—Environmental Occurrence, Human Exposure, and Mechanisms of Toxicity. Int. J. Mol. Sci. 2022, 23, 6348. [Google Scholar] [CrossRef]
- Guerreiro, C.B.B.; Horálek, J.; De Leeuw, F.; Couvidat, F. Benzo(a)Pyrene in Europe: Ambient Air Concentrations, Population Exposure and Health Effects. Environ. Pollut. 2016, 214, 657–667. [Google Scholar] [CrossRef]
- Kebe, M.; Traore, A.; Sow, M.; Fall, S.; Tahri, M. Human Health Risk Evaluation of Particle Air Pollution (PM10 and PM2.5) and Heavy metals in Dakar’s Two Urban Areas. Asian J. Atmos. Environ. 2025, 19, 7. [Google Scholar] [CrossRef]
- Kumari, S.; Jain, M.K.; Elumalai, S.P. Assessment of Pollution and Health Risks of Heavy metals in Particulate Matter and Road Dust Along the Road Network of Dhanbad, India. J. Health Pollut. 2021, 11, 210305. [Google Scholar] [CrossRef] [PubMed]
- Uzoekwe, S.A.; Izah, S.C.; Aigberua, A.O. Environmental and Human Health Risk of Heavy metals in Atmospheric Particulate Matter (PM10) around Gas Flaring Vicinity in Bayelsa State, Nigeria. Toxicol. Environ. Health Sci. 2021, 13, 323–335. [Google Scholar] [CrossRef]
- Desboeufs, K. Trace Metals and Contaminants Deposition. In Atmospheric Chemistry in the Mediterranean Region; Dulac, F., Sauvage, S., Hamonou, E., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 345–369. ISBN 978-3-030-82384-9. [Google Scholar]
- Jiang, S.; Dong, X.; Han, Z.; Zhao, J.; Zhang, Y. Emissions and Atmospheric Dry and Wet Deposition of Trace Metals from Natural and Anthropogenic Sources in Mainland China. Atmosphere 2024, 15, 402. [Google Scholar] [CrossRef]
- Xia, W.; Liang, B.; Chen, L.; Zhu, Y.; Gao, M.; Chen, J.; Wang, F.; Chen, Y.; Tian, M. Atmospheric Wet and Dry Depositions of Polycyclic Aromatic Compounds in a Megacity of Southwest China. Environ. Res. 2022, 204, 112151. [Google Scholar] [CrossRef] [PubMed]
- Balcioğlu, E.B.; Çevik, F.E.; Aksu, A. Source Determination and Seasonal Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Soil of the Megacity Istanbul. Polycycl. Aromat. Compd. 2021, 41, 626–634. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Walker, T.R.; Wang, Y.; Wu, H.; Wang, X.; Luo, Q. Characterization, Source Apportionment, and Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Soils from 23 Cities in China. Environ. Sci. Pollut. Res. 2022, 29, 73401–73413. [Google Scholar] [CrossRef]
- Binner, H.; Sullivan, T.; Jansen, M.A.K.; McNamara, M.E. Metals in Urban Soils of Europe: A Systematic Review. Sci. Total Environ. 2023, 854, 158734. [Google Scholar] [CrossRef]
- Zheng, F.; Guo, X.; Tang, M.; Zhu, D.; Wang, H.; Yang, X.; Chen, B. Variation in Pollution Status, Sources, and Risks of Soil Heavy metals in Regions with Different Levels of Urbanization. Sci. Total Environ. 2023, 866, 161355. [Google Scholar] [CrossRef]
- Khan, Y.K.; Toqeer, M.; Shah, M.H. Mobility, Bioaccessibility, Pollution Assessment and Risk Characterization of Potentially Toxic Metals in the Urban Soil of Lahore, Pakistan. Environ. Geochem. Health 2023, 45, 1391–1412. [Google Scholar] [CrossRef] [PubMed]
- Rate, A.W. Urban Soil as a Source and Sink. In Urban Soils; Rate, A.W., Ed.; Progress in Soil Science; Springer International Publishing: Cham, Switzerland, 2022; pp. 293–317. ISBN 978-3-030-87315-8. [Google Scholar]
- Nipen, M.; Vogt, R.D.; Bohlin-Nizzetto, P.; Borgå, K.; Mwakalapa, E.B.; Borgen, A.R.; Jørgensen, S.J.; Ntapanta, S.M.; Mmochi, A.J.; Schlabach, M.; et al. Spatial Trends of Chlorinated Paraffins and Dechloranes in Air and Soil in a Tropical Urban, Suburban, and Rural Environment. Environ. Pollut. 2022, 292, 118298. [Google Scholar] [CrossRef] [PubMed]
- Ravi, S.; Li, J.; Meng, Z.; Zhang, J.; Mohanty, S. Generation, Resuspension, and Transport of Particulate Matter From Biochar-Amended Soils: A Potential Health Risk. GeoHealth 2020, 4, e2020GH000311. [Google Scholar] [CrossRef]
- Boahen, E. Heavy Metal Contamination in Urban Roadside Vegetables: Origins, Exposure Pathways, and Health Implications. Discov. Environ. 2024, 2, 145. [Google Scholar] [CrossRef]
- Izquierdo-Díaz, M.; Hansen, V.; Barrio-Parra, F.; De Miguel, E.; You, Y.; Magid, J. Assessment of Lettuces Grown in Urban Areas for Human Consumption and as Bioindicators of Atmospheric Pollution. Ecotoxicol. Environ. Saf. 2023, 256, 114883. [Google Scholar] [CrossRef]
- City of Zagreb Statistički Ljetopis Grada Zagreba. 2023. Available online: https://www.zagreb.hr/UserDocsImages/001/SLJZG23_web.pdf (accessed on 9 October 2025).
- Velić, J.; Saftić, B.; Malvić, T. Lithologic composition and stratigraphy of quaternary sediments in the area of the “Jakuševec” Waste Depository, Zagreb, Northern Croatia. Geol. Croat. 1999, 52, 119–130. [Google Scholar] [CrossRef]
- Račić, N.; Malvić, T. Relation between air and soil pollution based on statistical analysis and interpolation of Nickel (Ni) and Lead (Pb): Case study of Zagreb, Croatia. Min. Miner. Depos. 2023, 17, 112–120. [Google Scholar] [CrossRef]
- EN 12341:2023; Ambient Air—Standard Gravimetric Measurement Method for the Determination of the PM10 or PM2.5 Mass Concentration of Suspended Particulate Matter. European Committee for Standardization (CEN): Brussels, Belgium, 2023.
- EN 14902:2005; Ambient Air Quality—Standard Method for the Measurement of Pb, Cd, As and Ni in the PM10 Fraction of Suspended Particulate Matter. European Committee for Standardization (CEN): Brussels, Belgium, 2005.
- EN 14902:2005/AC:2006; Ambient Air Quality—Standard Method for the Measurement of Pb, Cd, As and Ni in the PM10 Fraction of Suspended Particulate Matter—Technical Corrigendum 1. European Committee for Standardization (CEN): Brussels, Belgium, 2006.
- EN 15549:2008; Ambient Air Quality—Standard Method for the Measurement of the Concentration of Benzo[a]pyrene in Ambient Air. European Committee for Standardization (CEN): Brussels, Belgium, 2008.
- CEN/TS 16645:2014; Ambient Air—Method for the Measurement of Benz[a]anthracene, Benzo[b]fluoranthene, Benzo[j]fluoranthene, Benzo[k]fluoranthene, Dibenz[a,h]anthracene, Indeno[1,2,3-cd]pyrene and Benzo[ghi]perylene. European Committee for Standardization (CEN): Brussels, Belgium, 2014.
- Jakovljević, I.; Sever Štrukil, Z.; Godec, R.; Bešlić, I.; Davila, S.; Lovrić, M.; Pehnec, G. Pollution Sources and Carcinogenic Risk of PAHs in PM1 Particle Fraction in an Urban Area. Int. J. Environ. Res. Public Health 2020, 17, 9587. [Google Scholar] [CrossRef]
- Jakovljević, I.; Pehnec, G.; Vađić, V.; Čačković, M.; Tomašić, V.; Jelinić, J.D. Polycyclic Aromatic Hydrocarbons in PM10, PM2.5 and PM1 Particle Fractions in an Urban Area. Air Qual. Atmos. Health 2018, 11, 843–854. [Google Scholar] [CrossRef]
- Jakovljević, I.; Štrukil, Z.S.; Pehnec, G.; Horvat, T.; Sanković, M.; Šumanovac, A.; Davila, S.; Račić, N.; Gajski, G. Ambient Air Pollution and Carcinogenic Activity at Three Different Urban Locations. Ecotoxicol. Environ. Saf. 2025, 289, 117704. [Google Scholar] [CrossRef] [PubMed]
- Lovrić, M.; Antunović, M.; Šunić, I.; Vuković, M.; Kecorius, S.; Kröll, M.; Bešlić, I.; Šimić, I.; Pehnec, G. Insignificant Changes in Particulate Matter during the COVID-19 Lockdown: A Machine Learning Study in Zagreb, Croatia. In Proceedings of the 7th World Congress on Civil, Structural, and Environmental Engineering, CSEE 2022, Virtual Conference, 10–12 April 2022. [Google Scholar]
- Pehnec, G.; Jakovljević, I.; Šišović, A.; Bešlić, I.; Vađić, V. Influence of Ozone and Meteorological Parameters on Levels of Polycyclic Aromatic Hydrocarbons in the Air. Atmos. Environ. 2016, 131, 263–268. [Google Scholar] [CrossRef]
- Šišović, A.; Pehnec, G.; Jakovljević, I.; Šilović Hujić, M.; Vađić, V.; Bešlić, I. Polycyclic Aromatic Hydrocarbons at Different Crossroads in Zagreb, Croatia. Bull. Environ. Contam. Toxicol. 2012, 88, 438–442. [Google Scholar] [CrossRef]
- Wilcke, W. SYNOPSIS Polycyclic Aromatic Hydrocarbons (PAHs) in Soil—A Review. J. Plant Nutr. Soil Sci. 2000, 163, 229–248. [Google Scholar] [CrossRef]
- Li, G.; Sun, G.-X.; Ren, Y.; Luo, X.-S.; Zhu, Y.-G. Urban Soil and Human Health: A Review. Eur. J. Soil Sci. 2018, 69, 196–215. [Google Scholar] [CrossRef]
- Škrbić, B.D.; Đurišić-Mladenović, N.; Tadić, Đ.J.; Cvejanov, J.Đ. Polycyclic Aromatic Hydrocarbons in Urban Soil of Novi Sad, Serbia: Occurrence and Cancer Risk Assessment. Environ. Sci. Pollut. Res. 2017, 24, 16148–16159. [Google Scholar] [CrossRef]
- Stepinac, M.; Lourenço, P.B.; Atalić, J.; Kišiček, T.; Uroš, M.; Baniček, M.; Šavor Novak, M. Damage Classification of Residential Buildings in Historical Downtown after the ML5.5 Earthquake in Zagreb, Croatia in 2020. Int. J. Disaster Risk Reduct. 2021, 56, 102140. [Google Scholar] [CrossRef]
- Romic, M.; Romic, D. Heavy metals Distribution in Agricultural Topsoils in Urban Area. Environ. Geol. 2003, 43, 795–805. [Google Scholar] [CrossRef]
- Sollitto, D.; Romic, M.; Castrignanò, A.; Romic, D.; Bakic, H. Assessing Heavy Metal Contamination in Soils of the Zagreb Region (Northwest Croatia) Using Multivariate Geostatistics. CATENA 2010, 80, 182–194. [Google Scholar] [CrossRef]
- Dotaniya, M.L.; Dotaniya, C.K.; Kumar, K.; Doutaniya, R.K.; Meena, H.M. Type of Soil Pollutant and Their Degradation: Methods and Challenges. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Springer International Publishing: Cham, Switzerland, 2021; pp. 3103–3134. ISBN 978-3-030-36267-6. [Google Scholar]
- Guagliardi, I.; Astel, A.M.; Cicchella, D. Exploring Soil Pollution Patterns Using Self-Organizing Maps. Toxics 2022, 10, 416. [Google Scholar] [CrossRef]
- Montaño-López, F.; Biswas, A. Are Heavy metals in Urban Garden Soils Linked to Vulnerable Populations? A Case Study from Guelph, Canada. Sci. Rep. 2021, 11, 11286. [Google Scholar] [CrossRef]
- Tóth, Z.; Dombos, M.; Hornung, E. Urban Soil Quality Deteriorates Even with Low Heavy Metal Levels: An Arthropod-based Multi-indices Approach. Ecol. Appl. 2023, 33, e2848. [Google Scholar] [CrossRef] [PubMed]
- Silva, H.F.; Silva, N.F.; Oliveira, C.M.; Matos, M.J. Heavy metals Contamination of Urban Soils—A Decade Study in the City of Lisbon, Portugal. Soil Syst. 2021, 5, 27. [Google Scholar] [CrossRef]
- Cheng, K.; Tian, H.Z.; Zhao, D.; Lu, L.; Wang, Y.; Chen, J.; Liu, X.G.; Jia, W.X.; Huang, Z. Atmospheric emission inventory of cadmium from anthropogenic sources. Int. J. Environ. Sci. Technol. 2014, 11, 605–616. [Google Scholar] [CrossRef]
- Dinter, T.C.; Gerzabek, M.H.; Puschenreiter, M.; Strobel, B.W.; Couenberg, P.M.; Zehetner, F. Heavy metal contents, mobility and origin in agricultural topsoils of the Galápagos Islands. Chemosphere 2021, 272, 129821. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Račić, N.; Ružičić, S.; Pehnec, G.; Jakovljević, I.; Sever Štrukil, Z.; Rinkovec, J.; Žužul, S.; Smoljo, I.; Zgorelec, Ž.; Lovrić, M. Linking Atmospheric and Soil Contamination: A Comparative Study of PAHs and Metals in PM10 and Surface Soil near Urban Monitoring Stations. Toxics 2025, 13, 866. https://doi.org/10.3390/toxics13100866
Račić N, Ružičić S, Pehnec G, Jakovljević I, Sever Štrukil Z, Rinkovec J, Žužul S, Smoljo I, Zgorelec Ž, Lovrić M. Linking Atmospheric and Soil Contamination: A Comparative Study of PAHs and Metals in PM10 and Surface Soil near Urban Monitoring Stations. Toxics. 2025; 13(10):866. https://doi.org/10.3390/toxics13100866
Chicago/Turabian StyleRačić, Nikolina, Stanko Ružičić, Gordana Pehnec, Ivana Jakovljević, Zdravka Sever Štrukil, Jasmina Rinkovec, Silva Žužul, Iva Smoljo, Željka Zgorelec, and Mario Lovrić. 2025. "Linking Atmospheric and Soil Contamination: A Comparative Study of PAHs and Metals in PM10 and Surface Soil near Urban Monitoring Stations" Toxics 13, no. 10: 866. https://doi.org/10.3390/toxics13100866
APA StyleRačić, N., Ružičić, S., Pehnec, G., Jakovljević, I., Sever Štrukil, Z., Rinkovec, J., Žužul, S., Smoljo, I., Zgorelec, Ž., & Lovrić, M. (2025). Linking Atmospheric and Soil Contamination: A Comparative Study of PAHs and Metals in PM10 and Surface Soil near Urban Monitoring Stations. Toxics, 13(10), 866. https://doi.org/10.3390/toxics13100866