Prenatal Dietary Exposure to Endocrine Disruptors and Its Lasting Impact on Offspring Health
Abstract
1. Introduction
Methodological Note
2. Prenatal Dietary Sources of Endocrine Disruptors
2.1. Bisphenols
2.2. Phthalates
2.3. Pesticides and Agricultural Chemicals
2.4. Persistent Organic Pollutants (POPs)
3. Mechanistic Insights
3.1. Epigenetic Reprogramming
3.2. Hormonal Signaling Disruption
3.3. OS and Inflammation
3.4. Placental Dysfunction
4. Offspring Health Outcomes
4.1. Neurodevelopment
4.2. Metabolic Health
4.3. Reproductive Outcomes
4.4. Immune System Changes
5. Public Health Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EDCs | Endocrine-Disrupting Chemicals |
POPs | Persistent Organic Pollutants |
OS | Oxidative Stress |
PCBs | Polychlorinated Bisphenols |
BPA | Bisphenol A |
BPS | Bisphenol S |
BPF | Bisphenol F |
ROS | Reactive Oxygen Species |
ADHD | Attention-deficit/hyperactivity disorder |
References
- Davis, E.P.; Narayan, A.J. Pregnancy as a period of risk, adaptation, and resilience for mothers and infants. Dev. Psychopathol. 2020, 32, 1625–1639. [Google Scholar] [CrossRef]
- Nobile, S.; Di Sipio Morgia, C.; Vento, G. Perinatal Origins of Adult Disease and Opportunities for Health Promotion: A Narrative Review. J. Pers. Med. 2022, 12, 157. [Google Scholar] [CrossRef]
- Lacagnina, S. The Developmental Origins of Health and Disease (DOHaD). Am. J. Lifestyle Med. 2020, 14, 47–50. [Google Scholar] [CrossRef]
- Braun, J.M. Early-life exposure to EDCs: Role in childhood obesity and neurodevelopment. Nat. Rev. Endocrinol. 2017, 13, 161–173. [Google Scholar] [CrossRef]
- Cernigliaro, F.; Santangelo, A.; Nardello, R.; Lo Cascio, S.; D’Agostino, S.; Correnti, E.; Marchese, F.; Pitino, R.; Valdese, S.; Rizzo, C.; et al. Prenatal Nutritional Factors and Neurodevelopmental Disorders: A Narrative Review. Life 2024, 14, 1084. [Google Scholar] [CrossRef] [PubMed]
- Segal, T.R.; Giudice, L.C. Before the beginning: Environmental exposures and reproductive and obstetrical outcomes. Fertil. Steril. 2019, 112, 613–621. [Google Scholar] [CrossRef]
- Toledano, J.M.; Puche-Juarez, M.; Moreno-Fernandez, J.; Gonzalez-Palacios, P.; Rivas, A.; Ochoa, J.J.; Diaz-Castro, J. Implications of Prenatal Exposure to Endocrine-Disrupting Chemicals in Offspring Development: A Narrative Review. Nutrients 2024, 16, 1556. [Google Scholar] [CrossRef] [PubMed]
- Karakoltzidis, A.; Karakitsios, S.P.; Gabriel, C.; Sarigiannis, D.A. Integrated PBPK modelling for PFOA exposure and risk assessment. Environ. Res. 2025, 282, 121947. [Google Scholar] [CrossRef] [PubMed]
- Jaskulak, M.; Zimowska, M.; Rolbiecka, M.; Zorena, K. Understanding the role of endocrine disrupting chemicals as environmental obesogens in the obesity epidemic: A comprehensive overview of epidemiological studies between 2014 and 2024. Ecotoxicol. Environ. Saf. 2025, 299, 118401. [Google Scholar] [CrossRef]
- Martyniuk, C.J.; Martínez, R.; Navarro-Martín, L.; Kamstra, J.H.; Schwendt, A.; Reynaud, S.; Chalifour, L. Emerging concepts and opportunities for endocrine disruptor screening of the non-EATS modalities. Environ. Res. 2022, 204, 111904. [Google Scholar] [CrossRef]
- Merrill, A.K.; Sobolewski, M.; Susiarjo, M. Exposure to endocrine disrupting chemicals impacts immunological and metabolic status of women during pregnancy. Mol. Cell Endocrinol. 2023, 577, 112031. [Google Scholar] [CrossRef]
- Gupta, R.K.; Pipliya, S.; Karunanithi, S.; Eswaran, U.G.M.; Kumar, S.; Mandliya, S.; Srivastav, P.P.; Suthar, T.; Shaikh, A.M.; Harsányi, E.; et al. Migration of Chemical Compounds from Packaging Materials into Packaged Foods: Interaction, Mechanism, Assessment, and Regulations. Foods 2024, 13, 3125. [Google Scholar] [CrossRef]
- Raheem, D.; Trovò, M.; Carmona Mora, C.; Vassent, C. Persistent Organic Pollutants’ Threats and Impacts on Food Safety in the Polar Regions—A Concise Review. Pollutants 2025, 5, 14. [Google Scholar] [CrossRef]
- Đokić, M.; Nekić, T.; Varenina, I.; Varga, I.; Solomun Kolanović, B.; Sedak, M.; Čalopek, B.; Vratarić, D.; Bilandžić, N. Pesticides and Polychlorinated Biphenyls in Milk and Dairy Products in Croatia: A Health Risk Assessment. Foods 2024, 13, 1155. [Google Scholar] [CrossRef]
- Yan, Y.; Guo, F.; Liu, K.; Ding, R.; Wang, Y. The effect of endocrine-disrupting chemicals on placental development. Front. Endocrinol. 2023, 14, 1059854. [Google Scholar] [CrossRef]
- Rabotnick, M.H.; Ehlinger, J.; Haidari, A.; Goodrich, J.M. Prenatal exposures to endocrine disrupting chemicals: The role of multi-omics in understanding toxicity. Mol. Cell Endocrinol. 2023, 578, 112046. [Google Scholar] [CrossRef]
- Moosavi, A.; Motevalizadeh Ardekani, A. Role of Epigenetics in Biology and Human Diseases. Iran. Biomed. J. 2016, 20, 246–258. [Google Scholar]
- Gapp, K.; Von Ziegler, L.; Tweedie-Cullen, R.Y.; Mansuy, I.M. Early life epigenetic programming and transmission of stress-induced traits in mammals: How and when can environmental factors influence traits and their transgenerational inheritance? BioEssays 2014, 36, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Peivasteh-Roudsari, L.; Barzegar-Bafrouei, R.; Sharifi, K.A.; Azimisalim, S.; Karami, M.; Abedinzadeh, S.; Asadinezhad, S.; Tajdar-Oranj, B.; Mahdavi, V.; Alizadeh, A.M.; et al. Origin, dietary exposure, and toxicity of endocrine-disrupting food chemical contaminants: A comprehensive review. Heliyon 2023, 9, e18140. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Zhou, G.; Cai, J.; Cao, C.; Zhu, Z.; Wu, Q.; Zhang, F.; Ding, Y. Maternal consumption of urbanized diet compromises early-life health in association with gut microbiota. Gut Microbes 2025, 17, 2483783. [Google Scholar] [CrossRef] [PubMed]
- Lazarevic, N.; Barnett, A.G.; Sly, P.D.; Knibbs, L.D. Statistical Methodology in Studies of Prenatal Exposure to Mixtures of Endocrine-Disrupting Chemicals: A Review of Existing Approaches and New Alternatives. Environ. Health Perspect. 2019, 127, 026001. [Google Scholar] [CrossRef]
- Lowe, K.; Dawson, J.; Phillips, K.; Minucci, J.; Wambaugh, J.F.; Qian, H.; Ramanarayanan, T.; Egeghy, P.; Ingle, B.; Brunner, R.; et al. Incorporating human exposure information in a weight of evidence approach to inform design of repeated dose animal studies. Regul. Toxicol. Pharmacol. RTP 2021, 127, 105073. [Google Scholar] [CrossRef] [PubMed]
- Puche-Juarez, M.; Toledano, J.M.; Moreno-Fernandez, J.; Gálvez-Ontiveros, Y.; Rivas, A.; Diaz-Castro, J.; Ochoa, J.J. The Role of Endocrine Disrupting Chemicals in Gestation and Pregnancy Outcomes. Nutrients 2023, 15, 4657. [Google Scholar] [CrossRef]
- Hoepner, L.A. Bisphenol a: A narrative review of prenatal exposure effects on adipogenesis and childhood obesity via peroxisome proliferator-activated receptor gamma. Environ. Res. 2019, 173, 54–68. [Google Scholar] [CrossRef]
- Manzoor, M.F.; Tariq, T.; Fatima, B.; Sahar, A.; Tariq, F.; Munir, S.; Khan, S.; Ranjha, M.M.A.N.; Sameen, A.; Zeng, X.-A.; et al. An insight into bisphenol A, food exposure and its adverse effects on health: A review. Front. Nutr. 2022, 9, 1047827. [Google Scholar] [CrossRef]
- Harnett, K.G.; Chin, A.; Schuh, S.M. BPA and BPA alternatives BPS, BPAF, and TMBPF, induce cytotoxicity and apoptosis in rat and human stem cells. Ecotoxicol. Environ. Saf. 2021, 216, 112210. [Google Scholar] [CrossRef]
- Hajjar, R.; Hatoum, S.; Mattar, S.; Moawad, G.; Ayoubi, J.M.; Feki, A.; Ghulmiyyah, L. Endocrine Disruptors in Pregnancy: Effects on Mothers and Fetuses-A Review. J. Clin. Med. 2024, 13, 5549. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.L.; Bräuner, E.V.; Uldbjerg, C.S.; Lim, Y.H.; Boye, H.; Frederiksen, H.; Andersson, A.-M.; Jensen, T.K. Maternal urinary concentrations of bisphenol A during pregnancy and birth size in children from the Odense Child Cohort. Environ. Health Glob. Access Sci. Source 2025, 24, 15. [Google Scholar] [CrossRef]
- Wiklund, L.; Beronius, A. Systematic evaluation of the evidence for identification of endocrine disrupting properties of Bisphenol F. Toxicology 2022, 476, 153255. [Google Scholar] [CrossRef] [PubMed]
- Reininger, N.; Oehlmann, J. Regrettable substitution? Comparative study of the effect profile of bisphenol A and eleven analogues in an in vitro test battery. Environ. Sci. Eur. 2024, 36, 76. [Google Scholar] [CrossRef]
- Giuliani, A.; Zuccarini, M.; Cichelli, A.; Khan, H.; Reale, M. Critical Review on the Presence of Phthalates in Food and Evidence of Their Biological Impact. Int. J. Environ. Res. Public Health 2020, 17, 5655. [Google Scholar] [CrossRef] [PubMed]
- Tanzer, M.; Boissiere-O’Neill, T.; Sly, P.D.; Vilcins, D. Phthalates, bisphenols and per-and polyfluoroalkyl substances migration from food packaging into food: A systematic review. Rev. Environ. Health 2025, 40, 616–625. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Toledano, L.; Navarro-Tapia, E.; Sebastiani, G.; Ferrero-Martínez, S.; Ferrer-Aguilar, P.; García-Algar, Ó.; Andreu-Fernández, V.; Gómez-Roig, M.D. Effect of prenatal phthalate exposure on fetal development and maternal/neonatal health consequences: A systematic review. Sci. Total Environ. 2024, 950, 175080. [Google Scholar] [CrossRef] [PubMed]
- Jøhnk, C.; Høst, A.; Husby, S.; Schoeters, G.; Timmermann, C.A.G.; Kyhl, H.B.; Beck, I.H.; Andersson, A.-M.; Frederiksen, H.; Jensen, T.K. Maternal phthalate exposure and asthma, rhinitis and eczema in 552 children aged 5 years; a prospective cohort study. Environ. Health 2020, 19, 32. [Google Scholar] [CrossRef]
- Boissiere-O’Neill, T.; Lazarevic, N.; Sly, P.D.; Ponsonby, A.L.; Chen, A.; Azad, M.B.; Braun, J.M.; Brook, J.R.; Burgner, D.; Lanphear, B.P.; et al. Phthalates and Bisphenols Early-Life Exposure, and Childhood Allergic Conditions: A Pooled Analysis of Cohort Studies. J. Expo. Sci. Environ. Epidemiol. 2025, 1–16. Available online: https://www.nature.com/articles/s41370-025-00790-2. (accessed on 23 September 2025). [CrossRef]
- Hlisníková, H.; Petrovičová, I.; Kolena, B.; Šidlovská, M.; Sirotkin, A. Effects and Mechanisms of Phthalates’ Action on Reproductive Processes and Reproductive Health: A Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 6811. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Ahmad, F.A.; Alsayegh, A.A.; Zeyaullah, M.; AlShahrani, A.M.; Muzammil, K.; Saati, A.A.; Wahab, S.; Elbendary, E.Y.; Kambal, N.; et al. Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon 2024, 10, e29128. [Google Scholar] [CrossRef]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef]
- Peterson, B.S.; Delavari, S.; Bansal, R.; Sawardekar, S.; Gupte, C.; Andrews, H.; Hoepner, L.A.; Garcia, W.; Perera, F.; Rauh, V. Brain Abnormalities in Children Exposed Prenatally to the Pesticide Chlorpyrifos. JAMA Neurol. 2025. Available online: https://jamanetwork.com/journals/jamaneurology/fullarticle/2837712 (accessed on 23 September 2025). [CrossRef]
- Sagiv, S.K.; Baker, J.M.; Rauch, S.; Gao, Y.; Gunier, R.B.; Mora, A.M.; Kogut, K.; Bradman, A.; Eskenazi, B.; Reiss, A.L. Prenatal and childhood exposure to organophosphate pesticides and functional brain imaging in young adults. Environ. Res. 2024, 242, 117756. [Google Scholar] [CrossRef]
- Liu, J.; Schelar, E. Pesticide exposure and child neurodevelopment: Summary and implications. Workplace Health Saf. 2012, 60, 235–242; quiz 243. [Google Scholar] [CrossRef]
- Sittiwang, S.; Nimmapirat, P.; Suttiwan, P.; Promduang, W.; Chaikittipornlert, N.; Wouldes, T.; Prapamontol, T.; Naksen, W.; Promkam, N.; Pingwong, S.; et al. The relationship between prenatal exposure to organophosphate insecticides and neurodevelopmental integrity of infants at 5-weeks of age. Front. Epidemiol. 2022, 2, 1039922. [Google Scholar] [CrossRef]
- Guo, W.; Pan, B.; Sakkiah, S.; Yavas, G.; Ge, W.; Zou, W.; Tong, W.; Hong, H. Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. Int. J. Environ. Res. Public Health 2019, 16, 4361. [Google Scholar] [CrossRef]
- Maruyama, K.; Oshima, T.; Ohyama, K. Exposure to exogenous estrogen through intake of commercial milk produced from pregnant cows. Pediatr. Int. Off J. Jpn. Pediatr. Soc. 2010, 52, 33–38. [Google Scholar] [CrossRef]
- Lauritzen, H.B.; Larose, T.L.; Øien, T.; Sandanger, T.M.; Odland, J.Ø.; van de Bor, M.; Jacobsen, G.W. Prenatal exposure to persistent organic pollutants and child overweight/obesity at 5-year follow-up: A prospective cohort study. Environ. Health Glob. Access Sci. Source 2018, 17, 9. [Google Scholar] [CrossRef] [PubMed]
- Stratakis, N.; Rock, S.; La Merrill, M.A.; Saez, M.; Robinson, O.; Fecht, D.; Vrijheid, M.; Valvi, D.; Conti, D.V.; McConnell, R.; et al. Prenatal exposure to persistent organic pollutants and childhood obesity: A systematic review and meta-analysis of human studies. Obes. Rev. Off J. Int. Assoc. Study Obes. 2022, 23 (Suppl. S1), e13383. [Google Scholar] [CrossRef] [PubMed]
- Ashley-Martin, J.; Levy, A.R.; Arbuckle, T.E.; Platt, R.W.; Marshall, J.S.; Dodds, L. Maternal exposure to metals and persistent pollutants and cord blood immune system biomarkers. Environ. Health Glob. Access Sci. Source 2015, 14, 52. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Luo, D.; Wang, L.; Yu, M.; Zhao, S.; Wang, Y.; Mei, S.; Zhang, G. Levels and profiles of persistent organic pollutants in breast milk in China and their potential health risks to breastfed infants: A review. Sci. Total Environ. 2021, 753, 142028. [Google Scholar] [CrossRef]
- Algonaiman, R.; Almutairi, A.S.; Al Zhrani, M.M.; Barakat, H. Effects of Prenatal Exposure to Bisphenol A Substitutes, Bisphenol S and Bisphenol F, on Offspring’s Health: Evidence from Epidemiological and Experimental Studies. Biomolecules 2023, 13, 1616. [Google Scholar] [CrossRef]
- Costa, H.E.; Medeiros, I.; Mariana, M.; Cairrao, E. Maternal–Foetal Effects of Exposure to Bisphenol A: Outcomes and Long-Term Consequences. Appl. Sci. 2025, 15, 697. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, J.; Wang, M.; Wang, X.; Liu, H.; Zhang, F.; Fan, H. Prenatal endocrine-disrupting chemicals exposure and impact on offspring neurodevelopment: A systematic review and meta-analysis. Neurotoxicology 2024, 103, 335–357. [Google Scholar] [CrossRef]
- Kahn, L.G.; Philippat, C.; Nakayama, S.F.; Slama, R.; Trasande, L. Endocrine-disrupting chemicals: Implications for human health. Lancet Diabetes Endocrinol. 2020, 8, 703–718. [Google Scholar] [CrossRef] [PubMed]
- Predieri, B.; Iughetti, L.; Bernasconi, S.; Street, M.E. Endocrine Disrupting Chemicals’ Effects in Children: What We Know and What We Need to Learn? Int. J. Mol. Sci. 2022, 23, 11899. [Google Scholar] [CrossRef]
- Alavian-Ghavanini, A.; Rüegg, J. Understanding Epigenetic Effects of Endocrine Disrupting Chemicals: From Mechanisms to Novel Test Methods. Basic Clin. Pharmacol. Toxicol. 2018, 122, 38–45. [Google Scholar] [CrossRef]
- Kunysz, M.; Mora-Janiszewska, O.; Darmochwał-Kolarz, D. Epigenetic Modifications Associated with Exposure to Endocrine Disrupting Chemicals in Patients with Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2021, 22, 4693. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Wrzecińska, M.; Czerniawska-Piątkowska, E.; Araújo, J.P.; Cwynar, P. Molecular consequences of the exposure to toxic substances for the endocrine system of females. Biomed. Pharmacother. 2022, 155, 113730. [Google Scholar] [CrossRef]
- Martini, M.; Corces, V.G.; Rissman, E.F. Mini-review: Epigenetic mechanisms that promote transgenerational actions of endocrine disrupting chemicals: Applications to behavioral neuroendocrinology. Horm. Behav. 2020, 119, 104677. [Google Scholar] [CrossRef]
- Pan, J.; Liu, P.; Yu, X.; Zhang, Z.; Liu, J. The adverse role of endocrine disrupting chemicals in the reproductive system. Front. Endocrinol. 2024, 14, 1324993. [Google Scholar] [CrossRef] [PubMed]
- Miranda, A.; Sousa, N. Maternal hormonal milieu influence on fetal brain development. Brain Behav. 2018, 8, e00920. [Google Scholar] [CrossRef] [PubMed]
- Zubeldia-Brenner, L.; Roselli, C.E.; Recabarren, S.E.; Gonzalez Deniselle, M.C.; Lara, H.E. Developmental and Functional Effects of Steroid Hormones on the Neuroendocrine Axis and Spinal Cord. J. Neuroendocrinol. 2016, 28. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rolfo, A.; Nuzzo, A.M.; De Amicis, R.; Moretti, L.; Bertoli, S.; Leone, A. Fetal-Maternal Exposure to Endocrine Disruptors: Correlation with Diet Intake and Pregnancy Outcomes. Nutrients 2020, 12, 1744. [Google Scholar] [CrossRef] [PubMed]
- Lite, C.; Raja, G.L.; Juliet, M.; Sridhar, V.V.; Subhashree, K.D.; Kumar, P.; Chakraborty, P.; Arockiaraj, J. In utero exposure to endocrine-disrupting chemicals, maternal factors and alterations in the epigenetic landscape underlying later-life health effects. Environ. Toxicol. Pharmacol. 2022, 89, 103779. [Google Scholar] [CrossRef]
- Aouache, R.; Biquard, L.; Vaiman, D.; Miralles, F. Oxidative Stress in Preeclampsia and Placental Diseases. Int. J. Mol. Sci. 2018, 19, 1496. [Google Scholar] [CrossRef] [PubMed]
- Meli, R.; Monnolo, A.; Annunziata, C.; Pirozzi, C.; Ferrante, M.C. Oxidative Stress and BPA Toxicity: An Antioxidant Approach for Male and Female Reproductive Dysfunction. Antioxidants 2020, 9, 405. [Google Scholar] [CrossRef]
- Aris, I.M.; Fleisch, A.F.; Oken, E. Developmental Origins of Disease: Emerging Prenatal Risk Factors and Future Disease Risk. Curr. Epidemiol. Rep. 2018, 5, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Guo, Y.; Xu, D.; Xiao, H.; Dai, Y.; Liu, K.; Chen, L.; Wang, H. Developmental toxicity and programming alterations of multiple organs in offspring induced by medication during pregnancy. Acta Pharm. Sin. B 2023, 13, 460–477. [Google Scholar] [CrossRef]
- Sferruzzi-Perri, A.N.; Lopez-Tello, J.; Salazar-Petres, E. Placental adaptations supporting fetal growth during normal and adverse gestational environments. Exp. Physiol. 2023, 108, 371–397. [Google Scholar] [CrossRef]
- Dumolt, J.H.; Powell, T.L.; Jansson, T. Placental Function and the Development of Fetal Overgrowth and Fetal Growth Restriction. Obstet. Gynecol. Clin. N. Am. 2021, 48, 247–266. [Google Scholar] [CrossRef]
- Schjenken, J.E.; Green, E.S.; Overduin, T.S.; Mah, C.Y.; Russell, D.L.; Robertson, S.A. Endocrine Disruptor Compounds-A Cause of Impaired Immune Tolerance Driving Inflammatory Disorders of Pregnancy? Front. Endocrinol. 2021, 12, 607539. [Google Scholar] [CrossRef]
- Street, M.E.; Bernasconi, S. Endocrine-Disrupting Chemicals in Human Fetal Growth. Int. J. Mol. Sci. 2020, 21, 1430. [Google Scholar] [CrossRef]
- Di Pietro, G.; Forcucci, F.; Chiarelli, F. Endocrine Disruptor Chemicals and Children’s Health. Int. J. Mol. Sci. 2023, 24, 2671. [Google Scholar] [CrossRef]
- Kumar, M.; Sarma, D.K.; Shubham, S.; Kumawat, M.; Verma, V.; Prakash, A.; Tiwari, R. Environmental Endocrine-Disrupting Chemical Exposure: Role in Non-Communicable Diseases. Front. Public Health 2020, 8, 553850. [Google Scholar] [CrossRef]
- Minatoya, M.; Kishi, R. A Review of Recent Studies on Bisphenol A and Phthalate Exposures and Child Neurodevelopment. Int. J. Environ. Res. Public Health 2021, 18, 3585. [Google Scholar] [CrossRef]
- Stein, T.P.; Schluter, M.D.; Steer, R.A.; Ming, X. Bisphenol-A and phthalate metabolism in children with neurodevelopmental disorders. PLoS ONE 2023, 18, e0289841. [Google Scholar] [CrossRef]
- Symeonides, C.; Aromataris, E.; Mulders, Y.; Dizon, J.; Stern, C.; Barker, T.H.; Whitehorn, A.; Pollock, D.; Marin, T.; Dunlop, S. An Umbrella Review of Meta-Analyses Evaluating Associations between Human Health and Exposure to Major Classes of Plastic-Associated Chemicals. Ann. Glob. Health 2024, 90, 52. [Google Scholar] [CrossRef]
- Paoli, D.; Pallotti, F.; Dima, A.P.; Albani, E.; Alviggi, C.; Causio, F.; Dioguardi, C.C.; Conforti, A.; Ciriminna, R.; Fabozzi, G.; et al. Phthalates and Bisphenol A: Presence in Blood Serum and Follicular Fluid of Italian Women Undergoing Assisted Reproduction Techniques. Toxics 2020, 8, 91. [Google Scholar] [CrossRef] [PubMed]
- Tzouma, Z.; Dourou, P.; Diamanti, A.; Harizopoulou, V.; Papalexis, P.; Karampas, G.; Liepinaitienė, A.; Dėdelė, A.; Sarantaki, A. Associations Between Endocrine-Disrupting Chemical Exposure and Fertility Outcomes: A Decade of Human Epidemiological Evidence. Life 2025, 15, 993. [Google Scholar] [CrossRef]
- Berghuis, S.A.; Bos, A.F.; Sauer, P.J.J.; Roze, E. Developmental neurotoxicity of persistent organic pollutants: An update on childhood outcome. Arch. Toxicol. 2015, 89, 687–709. [Google Scholar] [CrossRef]
- O’Shaughnessy, K.L.; Fischer, F.; Zenclussen, A.C. Perinatal exposure to endocrine disrupting chemicals and neurodevelopment: How articles of daily use influence the development of our children. Best Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101568. [Google Scholar] [CrossRef] [PubMed]
- Zoppé, H.; Xavier, J.; Dupuis, A.; Migeot, V.; Bioulac, S.; Hary, R.; Bonnet-Brilhault, F.; Albouy, M. Is exposure to Bisphenol A associated with Attention-deficit hyperactivity disorder (ADHD) and associated executive or behavioral problems in children? A comprehensive systematic review. Neurosci. Biobehav. Rev. 2024, 167, 105938. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Chianese, R.; Troisi, J.; Richards, S.; Nori, S.L.; Fasano, S.; Guida, M.; Plunk, E.; Viggiano, A.; Pierantoni, R.; et al. Neuro-toxic and Reproductive Effects of BPA. Curr. Neuropharmacol. 2019, 17, 1109–1132. [Google Scholar] [CrossRef] [PubMed]
- Palanza, P.; Gioiosa, L.; Vom Saal, F.S.; Parmigiani, S. Effects of developmental exposure to bisphenol A on brain and behavior in mice. Environ. Res. 2008, 108, 150–157. [Google Scholar] [CrossRef]
- Kajta, M.; Wójtowicz, A.K. Impact of endocrine-disrupting chemicals on neural development and the onset of neurological disorders. Pharmacol. Rep. 2013, 65, 1632–1639. [Google Scholar] [CrossRef]
- Hojo, R.; Zareba, G.; Kai, J.W.; Baggs, R.B.; Weiss, B. Sex-specific alterations of cerebral cortical cell size in rats exposed prenatally to dioxin. J. Appl. Toxicol. 2006, 26, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Rebuli, M.E.; Speen, A.M.; Clapp, P.W.; Jaspers, I. Novel applications for a noninvasive sampling method of the nasal mucosa. Am. J. Physiol. Lung Cell Mol. Physiol. 2017, 312, L288–L296. [Google Scholar] [CrossRef]
- Swaab, D.F.; Wolff, S.E.C.; Bao, A.M. Sexual differentiation of the human hypothalamus: Relationship to gender identity and sexual orientation. Handb. Clin. Neurol. 2021, 181, 427–443. [Google Scholar] [CrossRef] [PubMed]
- Güil-Oumrait, N.; Stratakis, N.; Maitre, L.; Anguita-Ruiz, A.; Urquiza, J.; Fabbri, L.; Basagaña, X.; Heude, B.; Haug, L.S.; Sakhi, A.K.; et al. Prenatal Exposure to Chemical Mixtures and Metabolic Syndrome Risk in Children. JAMA Netw. Open. 2024, 7, e2412040. [Google Scholar] [CrossRef]
- Celik, M.N.; Yesildemir, O. Endocrine Disruptors in Child Obesity and Related Disorders: Early Critical Windows of Exposure. Curr. Nutr. Rep. 2025, 14, 14. [Google Scholar] [CrossRef]
- Wu, Y.L.; Lin, Z.J.; Li, C.C.; Lin, X.; Shan, S.K.; Guo, B.; Zheng, M.-H.; Li, F.; Yuan, L.-Q.; Li, Z.-H. Epigenetic regulation in metabolic diseases: Mechanisms and advances in clinical study. Signal Transduct. Target. Ther. 2023, 8, 98. [Google Scholar] [CrossRef]
- Quilichini, E.; Haumaitre, C. Implication of epigenetics in pancreas development and disease. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 883–898. [Google Scholar] [CrossRef]
- Xu, T.; Dong, C.; Shao, J.; Huo, C.; Chen, Z.; Shi, Z.; Yao, T.; Gu, C.; Wei, W.; Rui, D.; et al. Global burden of maternal disorders attributable to malnutrition from 1990 to 2019 and predictions to 2035: Worsening or improving? Front. Nutr. 2024, 11, 1343772. [Google Scholar] [CrossRef]
- Price, S.A.L.; Koye, D.N.; Lewin, A.; Nankervis, A.; Kane, S.C. Maternal Metabolic Health and Mother and Baby Health Outcomes (MAMBO): Protocol of a Prospective Observational Study. JMIR Res. Protoc. 2025, 14, e72542. [Google Scholar] [CrossRef]
- Perez-Escamilla, R.; Bermudez, O.; Buccini, G.S.; Kumanyika, S.; Lutter, C.K.; Monsivais, P.; Victora, C. Nutrition disparities and the global burden of malnutrition. BMJ 2018, 361, k2252. [Google Scholar] [CrossRef] [PubMed]
- Salami, E.A.; Rotimi, O.A. The impact of Bisphenol-A on human reproductive health. Toxicol. Rep. 2024, 13, 101773. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ma, X.; Liu, J. Adverse Effects of Pesticides on the Ovary: Evidence from Epidemiological and Toxicological Studies. Environ. Health 2025, 3, 575–595. [Google Scholar] [CrossRef]
- Zhou, C.; Gao, L.; Flaws, J.A. Prenatal exposure to an environmentally relevant phthalate mixture disrupts reproduction in F1 female mice. Toxicol. Appl. Pharmacol. 2017, 318, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Street, M.E.; Angelini, S.; Bernasconi, S.; Burgio, E.; Cassio, A.; Catellani, C.; Cirillo, F.; Deodati, A.; Fabbrizi, E.; Fanos, V.; et al. Current Knowledge on Endocrine Disrupting Chemicals (EDCs) from Animal Biology to Humans, from Pregnancy to Adulthood: Highlights from a National Italian Meeting. Int. J. Mol. Sci. 2018, 19, 1647. [Google Scholar] [CrossRef]
- Demir, A.; Aydin, A.; Büyükgebiz, A. Thematic Review of Endocrine Disruptors and Their Role in Shaping Pubertal Timing. Children 2025, 12, 93. [Google Scholar] [CrossRef]
- Emokpae, M.A.; Brown, S.I. Effects of lifestyle factors on fertility: Practical recommendations for modification. Reprod. Fertil. 2021, 2, R13–R26. [Google Scholar] [CrossRef]
- Sharma, R.; Biedenharn, K.R.; Fedor, J.M.; Agarwal, A. Lifestyle factors and reproductive health: Taking control of your fertility. Reprod. Biol. Endocrinol. 2013, 11, 66. [Google Scholar] [CrossRef]
- Ghozal, M.; Kadawathagedara, M.; Delvert, R.; Divaret-Chauveau, A.; Raherison, C.; Varraso, R.; Bédard, A.; Crépet, A.; Sirot, V.; Charles, M.A.; et al. Prenatal dietary exposure to mixtures of chemicals is associated with allergy or respiratory diseases in children in the ELFE nationwide cohort. Environ. Health 2024, 23, 5. [Google Scholar] [CrossRef] [PubMed]
- Moustakli, E.; Potiris, A.; Grigoriadis, T.; Zikopoulos, A.; Drakaki, E.; Zouganeli, I.; Theofanakis, C.; Gerede, A.; Zachariou, A.; Domali, E.; et al. Unraveling the Core of Endometriosis: The Impact of Endocrine Disruptors. Int. J. Mol. Sci. 2025, 26, 7600. [Google Scholar] [CrossRef]
- Schug, T.T.; Janesick, A.; Blumberg, B.; Heindel, J.J. Endocrine disrupting chemicals and disease susceptibility. J. Steroid Biochem. Mol. Biol. 2011, 127, 204–215. [Google Scholar] [CrossRef]
- Liang, Y.; Lu, Q.; Chen, M.; Zhao, X.; Chu, C.; Zhang, C.; Yuan, J.; Liu, H.; Lash, G.E. Impact of endocrine disrupting chemicals (EDCs) on epigenetic regulation in the uterus: A narrative review. Reprod. Biol. Endocrinol. 2025, 23, 80. [Google Scholar] [CrossRef]
- Marques, A.H.; O’Connor, T.G.; Roth, C.; Susser, E.; Bjørke-Monsen, A.L. The influence of maternal prenatal and early childhood nutrition and maternal prenatal stress on offspring immune system development and neurodevelopmental disorders. Front. Neurosci. 2013, 7, 120. [Google Scholar] [CrossRef]
- Fox, R.; Akinboro, S.; Kędzia, A.; Niechciał, E. The Effects of Maternal Endocrinopathies and Exposure to Endocrine Disruptors During Pregnancy on the Fetus and Newborn. Biomedicines 2025, 13, 1965. [Google Scholar] [CrossRef] [PubMed]
- Lenters, V.; Sugeng, E.; Van Duursen, M.B.M. Safeguarding Women’s Health Against Endocrine Disrupting Chemicals: Paving the Way to Successful Health Strategies. Available online: https://rgdoi.net/10.13140/RG.2.2.27889.29281 (accessed on 23 September 2025).
- Ahmed, S.K.; Mohammed, R.A. Obesity: Prevalence, causes, consequences, management, preventive strategies and future research directions. Metab. Open 2025, 27, 100375. [Google Scholar] [CrossRef] [PubMed]
- Seref, N.; Cufaoglu, G. Food Packaging and Chemical Migration: A Food Safety Perspective. J. Food Sci. 2025, 90, e70265. [Google Scholar] [CrossRef]
- Li, X.; Shen, X.; Jiang, W.; Xi, Y.; Li, S. Comprehensive review of emerging contaminants: Detection technologies, environmental impact, and management strategies. Ecotoxicol. Environ. Saf. 2024, 278, 116420. [Google Scholar] [CrossRef]
- Okman, E.; Yalçın, S.S. Awareness and Knowledge of Endocrine-Disrupting Chemicals Among Pregnant Women and New Mothers: A Cross-Sectional Survey Study. Toxics 2024, 12, 890. [Google Scholar] [CrossRef]
- Rouillon, S.; El Ouazzani, H.; Hardouin, J.B.; Enjalbert, L.; Rabouan, S.; Migeot, V.; Albouy-Llaty, M. How to Educate Pregnant Women about Endocrine Disruptors? Int. J. Environ. Res. Public Health 2020, 17, 2156. [Google Scholar] [CrossRef]
- Chinglenthoiba, C.; Lani, M.N.; Anuar, S.T.; Amesho, K.T.T.; K L, P.; Santos, J.H. Microplastics in food packaging: Analytical methods, health risks, and sustainable alternatives. J. Hazard. Mater. Adv. 2025, 18, 100746. [Google Scholar] [CrossRef]
- Mafe, A.N.; Edo, G.I.; Makia, R.S.; Joshua, O.A.; Akpoghelie, P.O.; Gaaz, T.S.; Jikah, A.N.; Yousif, E.; Isoje, E.F.; Igbuku, U.A.; et al. A review on food spoilage mechanisms, food borne diseases and commercial aspects of food preservation and processing. Food Chem. Adv. 2024, 5, 100852. [Google Scholar] [CrossRef]
- Meyyazhagan, A.; Kuchi Bhotla, H.; Tsibizova, V.; Pappuswamy, M.; Chaudhary, A.; Arumugam, V.A.; Al Qasem, M.; Di Renzo, G.C. Nutrition paves the way to environmental toxicants and influences fetal development during pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2023, 89, 102351. [Google Scholar] [CrossRef]
- Brink, L.R.; Bender, T.M.; Davies, R.; Luo, H.; Miketinas, D.; Shah, N.; Loveridge, N.; Gross, G.; Fawkes, N. Optimizing Maternal Nutrition: The Importance of a Tailored Approach. Curr. Dev. Nutr. 2022, 6, nzac118. [Google Scholar] [CrossRef]
- Alehegn, M.A.; Fanta, T.K.; Ayalew, A.F. Exploring maternal nutrition counseling provided by health professionals during antenatal care follow-up: A qualitative study in Addis Ababa, Ethiopia-2019. BMC Nutr. 2021, 7, 20. [Google Scholar] [CrossRef] [PubMed]
- Duh-Leong, C.; Maffini, M.V.; Kassotis, C.D.; Vandenberg, L.N.; Trasande, L. The regulation of endocrine-disrupting chemicals to minimize their impact on health. Nat. Rev. Endocrinol. 2023, 19, 600–614. [Google Scholar] [CrossRef] [PubMed]
- Oyovwi, M.O.; Oyelami, J.O.; Babawale, K.H.; Ben-Azu, B. Preventive antioxidant strategies to reduce the effects of phthalate exposure on reproductive health. Discov. Environ. 2025, 3, 76. [Google Scholar] [CrossRef]
- Haggerty, D.K.; Upson, K.; Pacyga, D.C.; Franko, J.E.; Braun, J.M.; Strakovsky, R.S. REPRODUCTIVE TOXICOLOGY: Pregnancy exposure to endocrine disrupting chemicals: Implications for women’s health. Reprod. Camb. Engl. 2021, 162, F169–F180. [Google Scholar] [CrossRef]
- Trela-Kobędza, E.; Ajduk, A. The impact of bisphenol A and its analogs on female reproductive health. Reprod. Biol. 2025, 25, 101028. [Google Scholar] [CrossRef]
- Martin, L.; Zhang, Y.; First, O.; Mustieles, V.; Dodson, R.; Rosa, G.; Coburn-Sanderson, A.; Adams, C.D.; Messerlian, C. Lifestyle interventions to reduce endocrine-disrupting phthalate and phenol exposures among reproductive age men and women: A review and future steps. Environ. Int. 2022, 170, 107576. [Google Scholar] [CrossRef] [PubMed]
- Meeker, J.D. Exposure to environmental endocrine disruptors and child development. Arch. Pediatr. Adolesc. Med. 2012, 166, 952–958. [Google Scholar] [CrossRef] [PubMed]
Class of EDCs | Common Dietary Sources | Evidence of Maternal Exposure | Reported Offspring Health Outcomes | Key Notes |
---|---|---|---|---|
Bisphenols | Canned foods Bottled beverages Plastic food containers | Detected in maternal urine Serum, amniotic fluid; crosses placenta | Altered neurobehavior, changes in birth weight, metabolic alterations [49] | BPA restrictions led to substitution with BPS/BPF, which may have similar effects [50] |
Phthalates | Packaged and processed foods High-fat foods (dairy, meat, oils) | Maternal urinary metabolites widely detected | Altered reproductive development, increased asthma and wheeze risk, endocrine disruption [34,35] | Ubiquitous in food packaging; migrate easily into food [35] |
Pesticides | Fruits, Vegetables, Grains | Detected in maternal blood and urine | Reduced birth weight, impaired neurocognitive development, endocrine dysfunction [39,40] | Exposure continues despite regulatory controls; cumulative effects possible [41] |
Persistent Organic Pollutants | Fish, meat Dairy (bioaccumulation in fat) | Long biological half-life; detected in maternal blood, placenta, and breast milk | Thyroid disruption, immunotoxicity, metabolic disorders (obesity, diabetes) [47] | Persistent in environment; transgenerational effects of concern [47] |
System/Outcome | EDCs Implicated | Mechanisms | Observed Effects in Offspring |
---|---|---|---|
Neurodevelopment [73,74] | Bisphenols Phthalates | Hormonal disruption, OS Epigenetic reprogramming | ADHD, ASD-like traits Cognitive decline Lower IQ Altered synapse formation |
Metabolic Health [75] | BPA Phthalates POPs | Epigenetic changes Endocrine signaling disruption Pancreatic β-cell alterations | Obesity Insulin resistance Metabolic syndrome |
Reproductive Outcomes [76,77] | BPA Phthalates | Hormonal disruption Epigenetic alterations | Males: lower sperm count, disrupted testicular architecture, reduced motility Females: altered ovarian follicles, disrupted estrous cycles, hormonal changes |
Immune Function [78] | POPs Bisphenols | OS Epigenetic modifications Cytokine and immune cell dysregulation | Weaker vaccine response Higher susceptibility to infections Increased allergies, eczema, asthma |
Strategy | Target | Description/Examples | Potential Benefits |
---|---|---|---|
Regulatory Measures [118,121] | Governments, Regulatory agencies | Restrict use of bisphenols, phthalates, and other harmful chemicals in food packaging; enforce pesticide residue limits; monitor POPs in the food supply | Reduces maternal and fetal exposure; ensures safer food products |
Public Education [122] | Pregnant women, General public | Inform about dietary sources of EDCs; promote consumption of fresh/minimally processed foods; avoid heating food in plastic containers | Empowers consumers to make safer dietary choices; lowers cumulative exposure |
Clinical Guidance [4] | Healthcare providers | Integrate EDC risk awareness into prenatal care; provide practical advice on minimizing exposure | Enhances patient knowledge; supports informed decision-making during pregnancy |
Research and Monitoring [123] | Scientists, Public health agencies | Conduct studies on EDC exposure, mixture effects, and long-term outcomes; develop exposure guidelines | Informs policy and prevention strategies; fills knowledge gaps |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potiris, A.; Daponte, N.; Moustakli, E.; Zikopoulos, A.; Kokkosi, E.; Arkouli, N.; Anagnostaki, I.; Vogiatzoglou, A.L.; Tzeli, M.; Sarella, A.; et al. Prenatal Dietary Exposure to Endocrine Disruptors and Its Lasting Impact on Offspring Health. Toxics 2025, 13, 864. https://doi.org/10.3390/toxics13100864
Potiris A, Daponte N, Moustakli E, Zikopoulos A, Kokkosi E, Arkouli N, Anagnostaki I, Vogiatzoglou AL, Tzeli M, Sarella A, et al. Prenatal Dietary Exposure to Endocrine Disruptors and Its Lasting Impact on Offspring Health. Toxics. 2025; 13(10):864. https://doi.org/10.3390/toxics13100864
Chicago/Turabian StylePotiris, Anastasios, Nikoletta Daponte, Efthalia Moustakli, Athanasios Zikopoulos, Eriketi Kokkosi, Nefeli Arkouli, Ismini Anagnostaki, Aikaterini Lydia Vogiatzoglou, Maria Tzeli, Angeliki Sarella, and et al. 2025. "Prenatal Dietary Exposure to Endocrine Disruptors and Its Lasting Impact on Offspring Health" Toxics 13, no. 10: 864. https://doi.org/10.3390/toxics13100864
APA StylePotiris, A., Daponte, N., Moustakli, E., Zikopoulos, A., Kokkosi, E., Arkouli, N., Anagnostaki, I., Vogiatzoglou, A. L., Tzeli, M., Sarella, A., Domali, E., & Stavros, S. (2025). Prenatal Dietary Exposure to Endocrine Disruptors and Its Lasting Impact on Offspring Health. Toxics, 13(10), 864. https://doi.org/10.3390/toxics13100864