Quantitative Microbial Risk Assessment of E. coli in Riverine and Deltaic Waters of Northeastern Greece: Monte Carlo Simulation and Predictive Perspectives
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Campaign
2.2. Microbiological and Physicochemical Analyses
2.3. Data Analysis and Modelling
2.4. QMRA Framework
2.4.1. Hazard Identification
2.4.2. Exposure Assessment
2.4.3. Dose–Response Modelling
2.4.4. Risk Characterization
3. Results
3.1. Microbiological and Physicochemical Analyses and ML Approach
3.2. QMRA Framework
4. Discussion
4.1. Seasonal and Spatial Dynamics of Microbial Indicators
4.2. QMRA and Prediction Perspectives for E. coli
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Angelakis, A.N.; Vuorinen, H.S.; Nikolaidis, C.; Juuti, P.S.; Katko, T.S.; Juuti, R.P.; Zhang, J.; Samonis, G. Water Quality and Life Expectancy: Parallel Courses in Time. Water 2021, 13, 752. [Google Scholar] [CrossRef]
- Alexakis, D.E. Linking DPSIR Model and Water Quality Indices to Achieve Sustainable Development Goals in Groundwater Resources. Hydrology 2021, 8, 90. [Google Scholar] [CrossRef]
- Angelakis, A.N.; Dercas, N.; Tzanakakis, V.A. Water Quality Focusing on the Hellenic World: From Ancient to Modern Times and the Future. Water 2022, 14, 1887. [Google Scholar] [CrossRef]
- Wang, H.; Naghavi, M.; Allen, C.; Barber, R.M.; Bhutta, Z.A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coates, M.M.; et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study. Lancet 2015, 388, 1459–1544. [Google Scholar] [CrossRef]
- Brouwer, A.F.; Masters, N.B.; Eisenberg, J.N.S. Quantitative Microbial Risk Assessment and Infectious Disease Transmission Modeling of Waterborne Enteric Pathogens. Curr. Environ. Health Rep. 2018, 5, 293–304. [Google Scholar] [CrossRef]
- Stauber, C.E.; Wedgworth, J.C.; Johnson, P.; Olson, J.B.; Ayers, T.; Elliott, M.; Brown, J. Associations between Self-Reported Gastrointestinal Illness and Water System Characteristics in Community Water Supplies in Rural Alabama: A Cross-Sectional Study. PLoS ONE 2016, 11, e0148102. [Google Scholar] [CrossRef]
- Megan, L.; Moriarty, D.E.; Weaver, L.; Cookson, A.; Gilpin, B. Fecal indicator bacteria from environmental sources; strategies for identification to improve water quality monitoring. Water Res. 2020, 185, 116204. [Google Scholar] [CrossRef]
- Pachepsky, Y.A.; Shelton, D.R. Escherichia coli and Fecal Coliforms in Freshwater and Estuarine Sediments. Crit. Rev. Environ. Sci. Technol. 2011, 41, 1067–1110. [Google Scholar] [CrossRef]
- Anjum, M.F.; Schmitt, H.; Börjesson, S.; Berendonk, T.U.; Donner, E.; Stehling, E.G.; Boerlin, P.; Topp, E.; Jardine, C.; Li, X.; et al. The potential of using E. coli as an indicator for the surveillance of antimicrobial resistance (AMR) in the environment. Curr. Opin. Microbiol. 2021, 64, 152–158. [Google Scholar] [CrossRef]
- Patricia, M.C.; Huijbers, D.G.; Larsson, H.; Flach, C.F. Surveillance of antibiotic resistant Escherichia coli in human populations through urban wastewater in ten European countries. Environ. Pollut. 2020, 261, 114200. [Google Scholar] [CrossRef]
- Delgado-Blas, J.F.; Ovejero, C.M.; David, S.; Montero, N.; Calero-Caceres, W.; Garcillan-Barcia, M.P.; de la Cruz, F.; Muniesa, M.; Aanensen, D.M. Population genomics and antimicrobial resistance dynamics of Escherichia coli in wastewater and river environments. Commun. Biol. 2021, 4, 457. [Google Scholar] [CrossRef]
- Mouratidis, A.; Perivolioti, T.-M.; Vladenidis, P.; Nikolaidis, A.; Pantazopoulou, Z.; Papadopoulos, E.; Bobori, D.; Vergos, G.S.; Triantafyllou, A. The Contribution of Remote Sensing to the Development of an Observatory System for Integrated Management of the Coastal Zone: The Case Study of Central Macedonia, Greece. In Proceedings of the IGARSS 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; IEEE: New York, NY, USA; pp. 7091–7094. [Google Scholar]
- Vatitsi, K.; Siachalou, S.; Latinopoulos, D.; Kagalou, I.; Akratos, C.S.; Mallinis, G. Monitoring Water Quality Parameters in Small Rivers Using SuperDove Imagery. Water 2024, 16, 758. [Google Scholar] [CrossRef]
- Perivolioti, T.-M.; Zachopoulos, K.; Zioga, M.; Tompoulidou, M.; Katsavouni, S.; Kemitzoglou, D.; Terzopoulos, D.; Mouratidis, A.; Tsiaoussi, V. Monitoring the Impact of Floods on Water Quality Using Optical Remote Sensing Imagery: The Case of Lake Karla (Greece). Water 2024, 16, 3502. [Google Scholar] [CrossRef]
- Kalaitzidou, K.; Ntona, M.M.; Zavridou, E.; Tzeletas, S.; Patsialis, T.; Kallioras, A.; Zouboulis, A.; Virgiliou, C.; Mitrakas, M.; Kazakis, N. Water Quality Evaluation of Groundwater and Dam Reservoir Water: Application of the Water Quality Index to Study Sites in Greece. Water 2023, 15, 4170. [Google Scholar] [CrossRef]
- Ntona, M.M.; Chalikakis, K.; Busico, G.; Mastrocicco, M.; Kalaitzidou, K.; Kazakis, N. Application of Judgmental Sampling Approach for the Monitoring of Groundwater Quality and Quantity Evolution in Mediterranean Catchments. Water 2023, 15, 4018. [Google Scholar] [CrossRef]
- Stefanidis, K.; Dimitrellos, G.; Sarika, M.; Tsoukalas, D.; Papastergiadou, E. Ecological Quality Assessment of Greek Lowland Rivers with Aquatic Macrophytes in Compliance with the EU Water Framework Directive. Water 2022, 14, 2771. [Google Scholar] [CrossRef]
- Panagopoulos, Y.; Alexakis, D.E.; Skoulikidis, N.T.; Laschou, S.; Papadopoulos, A.; Dimitriou, E. Implementing the CCME Water Quality Index for the Evaluation of the Physicochemical Quality of Greek Rivers. Water 2022, 14, 2738. [Google Scholar] [CrossRef]
- Karamoutsou, L.; Psilovikos, A. Deep Learning in Water Resources Management: Τhe Case Study of Kastoria Lake in Greece. Water 2021, 13, 3364. [Google Scholar] [CrossRef]
- Mamassis, N.; Mazi, K.; Dimitriou, E.; Kalogeras, D.; Malamos, N.; Lykoudis, S.; Koukouvinos, A.; Tsirogiannis, I.; Papageorgaki, I.; Papadopoulos, A.; et al. OpenHi.net: A Synergistically Built, National-Scale Infrastructure for Monitoring the Surface Waters of Greece. Water 2021, 13, 2779. [Google Scholar] [CrossRef]
- Lyra, A.; Loukas, A.; Sidiropoulos, P.; Tziatzios, G.; Mylopoulos, N. An Integrated Modeling System for the Evaluation of Water Resources in Coastal Agricultural Watersheds: Application in Almyros Basin, Thessaly, Greece. Water 2021, 13, 268. [Google Scholar] [CrossRef]
- Pisinaras, V.; Paraskevas, C.; Panagopoulos, A. Investigating the Effects of Agricultural Water Management in a Mediterranean Coastal Aquifer under Current and Projected Climate Conditions. Water 2021, 13, 108. [Google Scholar] [CrossRef]
- Giakoumatos, S.D.V.; Skoulikidis, N.T.; Karavoltsos, S.; Sakellari, A.; Dimitriou, E. Spatiotemporal Variations in Water Physicochemical Status in Pinios River Catchment, at Eastern Mediterranean Region. Land 2024, 13, 1959. [Google Scholar] [CrossRef]
- Zoidou, M.; Kokkos, N.; Sylaios, G. Dynamics of Water, Salt, and Nutrients Exchange at the Inlets of Three Coastal Lagoons. J. Mar. Sci. Eng. 2022, 10, 205. [Google Scholar] [CrossRef]
- Tselemponis, A.; Stefanis, C.; Giorgi, E.; Kalmpourtzi, A.; Olmpasalis, I.; Tselemponis, A.; Adam, M.; Kontogiorgis, C.; Dokas, I.M.; Bezirtzoglou, E.; et al. Coastal Water Quality Modelling Using E. coli, Meteorological Parameters and Machine Learning Algorithms. Int. J. Environ. Res. Public Health 2023, 20, 6216. [Google Scholar] [CrossRef]
- Kokkinos, P.; Karayanni, H.; Meziti, A.; Feidaki, R.; Paparrodopoulos, S.; Vantarakis, A. Assessment of the Virological Quality of Marine and Running Surface Waters in NW Greece: A Case Study. Food Environ. Virol. 2018, 10, 316–326. [Google Scholar] [CrossRef]
- Papaioannou, A.; Rigas, G.; Papastergiou, P.; Hadjichristodoulou, C. Application of chemometric methods for assessment and modelling of microbiological quality data concerning coastal bathing water in Greece. J. Public Health Res. 2014, 3, 357. [Google Scholar] [CrossRef]
- Kourgialas, N.N. A critical review of water resources in Greece: The key role of agricultural adaptation to climate-water effects. Sci. Total Environ. 2021, 775, 145857. [Google Scholar] [CrossRef] [PubMed]
- Consultation, Geneva, Switzerland, 13–17 March 1995. Available online: https://apps.who.int/iris/handle/10665/58913 (accessed on 30 May 2025).
- Collineau, L.; Chapman, B.; Bao, X.; Sivapathasundaram, B.; Carson, C.A.; Fazil, A.; Reid-Smith, R.J.; Smith, B.A. A Farm-to-Fork Quantitative Risk Assessment Model for Salmonella Heidelberg Resistant to Third-Generation Cephalosporins in Broiler Chickens in Canada. Int. J. Food Microbiol. 2020, 330, 108559. [Google Scholar] [CrossRef] [PubMed]
- Application of Risk Analysis to Food Standards Issues: Report of the Joint FAO/WHO Expert. Available online: https://www.fao.org/4/ae922e/ae922e00.htm (accessed on 28 September 2025).
- Nakashima, A.A.; Gonzalez-Barron, U.; Bouchriti, N.; Hartnett, E.; Karunasagar, I.; Kiermeier, A.; Koutsoumanis, K.; Li, F.-Q.; Ross, T.; Schaffner, D.; et al. Microbiological Risk Assessment-Guidance for Food; Food & Agriculture Org.: Rome, Italy, 2021. [Google Scholar]
- Bevilacqua, A.; De Santis, A.; Sollazzo, G.; Speranza, B.; Racioppo, A.; Sinigaglia, M.; Corbo, M.R. Microbiological Risk Assessment in Foods: Background and Tools, with a Focus on Risk Ranger. Foods 2023, 12, 1483. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards. Scientific Opinion on the Development of a Risk Ranking Toolbox for the EFSA BIOHAZ Panel. EFSA J. 2015, 13, 3939. [Google Scholar] [CrossRef]
- Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32006L0007&qid=1673547450307 (accessed on 30 May 2025).
- International Organisation for Standardisation. 2006. Available online: https://www.iso.org/standard/55832.html (accessed on 1 June 2025).
- International Organisation for Standardisation. 2000. Available online: https://www.iso.org/obp/ui/#iso:std:iso:7899:-2:ed-2:v1:en (accessed on 1 June 2025).
- Bezirtzoglou, E.; Dimitriou, D.; Panagiou, A.; Kagalou, I.; Demoliates, Y. Distribution of Clostridium perfringens in different aquatic environments in Greece. Microbiol. Res. 1994, 149, 129–134. [Google Scholar] [CrossRef]
- International Organisation for Standardisation. 2010. Available online: https://fliphtml5.com/skigm/anxu/basic (accessed on 1 June 2025).
- Baird, R.; Bridgewater, L. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association; American Water Works Association; Water Environment Federation: Washington, DC, USA, 2017. [Google Scholar]
- Lew, S.; Glińska-Lewczuk, K.; Burandt, P.; Grzybowski, M.; Obolewski, K. Fecal bacteria in coastal lakes: An anthropogenic contamination or natural element of microbial diversity? Ecol. Indic. 2023, 152, 110370. [Google Scholar] [CrossRef]
- Islam, M.M.M.; Hofstra, N.; Islam, M.A. The Impact of Environmental Variables on Faecal Indicator Bacteria in the Betna River Basin, Bangladesh. Environ. Process. 2017, 4, 319–332. [Google Scholar] [CrossRef]
- Smith, J.E.; Stocker, M.D.; Hill, R.L.; Pachepsky, Y.A. The Effect of Temperature Oscillations and Sediment Texture on Fecal Indicator Bacteria Survival in Sediments. Water Air Soil Pollut. 2019, 230, 270. [Google Scholar] [CrossRef]
- Ahmed, U.; Mumtaz, R.; Anwar, H.; Shah, A.A.; Irfan, R.; García-Nieto, J. Efficient Water Quality Prediction Using Supervised Machine Learning. Water 2019, 11, 2210. [Google Scholar] [CrossRef]
- Wang, A.Y.-T.; Murdock, R.J.; Kauwe, S.K.; Oliynyk, A.O.; Gurlo, A.; Brgoch, J.; Persson, K.A.; Sparks, T.D. Machine learning for materials scientists: An introductory guide toward best practices. Chem. Mater. 2020, 3, 4954–4965. [Google Scholar] [CrossRef]
- Mogos, R.I.; Petrescu, I.; Chiotan, R.A.; Cret, R.C.; Troacă, V.A.; Mogos, P.L. Greenhouse Gas Emissions and Green Deal in the European Union. Front. Environ. Sci. 2023, 11, 1141473. [Google Scholar] [CrossRef]
- Guy, S.H.; Kok, J.; Chandra, R.V.; Razavi, A.H.; Huang, S.; Brooks, M.; Lee, M.J.; Asadi, H. Peering Into the Black Box of Artificial Intelligence: Evaluation Metrics of Machine Learning Methods. Am. J. Roentgenol. 2019, 212, 38–43. [Google Scholar] [CrossRef]
- Altmann, A.; Toloşi, L.; Sander, O.; Lengauer, T. Permutation importance: A corrected feature importance measure. Bioinformatics 2010, 26, 10. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.; Rudin, C.; Dominici, F. All Models are Wrong, but Many are Useful: Learning a Variable’s Importance by Studying an Entire Class of Prediction Models Simultaneously. J. Mach. Learn. Res. 2019, 20, 1–81. [Google Scholar]
- Miller, T. Explanation in artificial intelligence: Insights from the social sciences. Artif. Intell. 2019, 267, 1–38. [Google Scholar] [CrossRef]
- World Health Organization. Quantitative Microbial Risk Assessment: Application for Water Safety Management; World Health Organization: Geneva, Switzerland, 2016; Available online: https://iris.who.int/handle/10665/246195 (accessed on 1 August 2025).
- Soller, J.A.; Schoen, M.E.; Bartrand, T.; Ravenscroft, J.E.; Ashbolt, N.J. Estimated human health risks from exposure to recreational waters impacted by human and non-human sources of faecal contamination. Water Res. 2010, 44, 4674–4691. [Google Scholar] [CrossRef]
- Aragonés, L.; López, I.; Palazón, A.; López-Úbeda, R.; García, C. Evaluation of the quality of coastal bathing waters in Spain through fecal bacteria Escherichia coli and Enterococcus. Sci. Total Environ. 2016, 566–567, 288–297. [Google Scholar] [CrossRef]
- Abuzerr, S.; Hadi, M.; Zinszer, K.; Nasseri, S.; Yunesian, M.; Mahvi, A.H.; Nabizadeh, R.; Mohammed, S.H. Quantitative microbial risk assessment for Escherichia coli O157: H7 via drinking water in the Gaza Strip, Palestine. SAGE Open Med. 2024, 12, 20503121241258071. [Google Scholar] [CrossRef]
- Machdar, E.; van der Steen, N.P.; Raschid-Sally, L.; Lens, P.N.L. Application of Quantitative Microbial Risk Assessment to analyze the public health risk from poor drinking water quality in a low-income area in Accra, Ghana. Sci. Total Environ. 2013, 449, 134–142. [Google Scholar] [CrossRef]
- Strachan, N.J.; Doyle, M.P.; Kasuga, F.; Rotariu, O.; Ogden, I.D. Dose response modelling of Escherichia coli O157 incorporating data from foodborne and environmental outbreaks. Int. J. Food Microbiol. 2005, 103, 35–47. [Google Scholar] [CrossRef]
- Fewtrell, L.; Kay, D. Recreational Water and Infection: A Review of Recent Findings. Curr. Environ. Health Rep. 2015, 2, 85–94. [Google Scholar] [CrossRef]
- Gitter, A.; Mena, K.D.; Wagner, K.L.; Boellstorff, D.E.; Borel, K.E.; Gregory, L.F.; Gentry, T.J.; Karthikeyan, R. Human Health Risks Associated with Recreational Waters: Preliminary Approach of Integrating Quantitative Microbial Risk Assessment with Microbial Source Tracking. Water 2020, 12, 327. [Google Scholar] [CrossRef]
- Dorevitch, S.; Panthi, S.; Huang, Y.; Li, H.; Michalek, A.M.; Pratap, P.; Wroblewski, M.; Liu, L.; Scheff, P.A.; Li, A. Water ingestion during water recreation. Water Res. 2011, 45, 2020–2028. [Google Scholar] [CrossRef]
- Haas, C.N.; Rose, J.B.; Gerba, C.P. Quantitative Microbial Risk Assessment, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Tyagi, N.; Kumar, A. Evaluation of recreational risks due to exposure of antibiotic-resistance bacteria from environmental water: A proposed framework. J. Environ. Manag. 2021, 279, 111626. [Google Scholar] [CrossRef] [PubMed]
- Haas, C.N.; Rose, J.B.; Gerba, C.P. Quantitative Microbial Risk Assessment; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Chhipi-Shrestha, G.; Rodriguez, M.; Behmel, S.; Pulicharla, R.; Proulx, F.; Hewage, K.; Sadiq, R. Probabilistic framework for assessing ecological risk of Contaminants of Emerging Concern: Application to a Canadian lake system. Chemosphere 2022, 287, 131910. [Google Scholar] [CrossRef]
- Pouillot, R.; Kelly, D.L.; Denis, J. Tools for Two-Dimensional Monte-Carlo Simulations: The mc2d Package [WWW Document]. 2016. Available online: https://cran.r-project.org/web/packages/mc2d/vignettes/docmcEnglish.pdf (accessed on 1 August 2025).
- Amoah, I.D.; Kumari, S.; Bux, F. A probabilistic assessment of microbial infection risks due to occupational exposure to wastewater in a conventional activated sludge wastewater treatment plant. Sci. Total Environ. 2022, 843, 156849. [Google Scholar] [CrossRef]
- Marino, S.; Ian, B.; Hogue, A.; Ray, C.J.; Kirschner, D.E. A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 2008, 254, 178–196. [Google Scholar] [CrossRef]
- Muirhead, R.W.; Meenken, E.D. Variability of Escherichia coli Concentrations in Rivers during Base-Flow Conditions in New Zealand. J. Environ. Qual. 2018, 47, 967–973. [Google Scholar] [CrossRef]
- Sarker, S.K.; Dapkus, R.T.; Byrne, D.M.; Fryar, A.E.; Hutchison, J.M. Quantifying Temporal Dynamics of E. coli Concentration and Quantitative Microbial Risk Assessment of Pathogen in a Karst Basin. Water 2025, 17, 745. [Google Scholar] [CrossRef] [PubMed]
- Cata lao Dionisio, L.P.; Joao, M.; Soares Ferreiro, V.; Leo nor Fidalgo, M.; Garcia Rosado, M.E.; Borrego, J.J. Occurrence of Salmonella spp. in estuarine and coastal waters of Portugal. Antonie Van Leeuwenhoek 2000, 78, 9–106. [Google Scholar] [CrossRef] [PubMed]
- Dupray, E.; Caprais, M.P.; Derrien, A.; Fach, P. Salmonella DNA persistence in natural seawaters using PCR analysis. J. Appl. Microbiol. 1997, 82, 507–510. [Google Scholar] [CrossRef] [PubMed]
- Setti, I.; Rodriguez-Castro, A.; Pata, M.P.; Cadarso-Suarez, C.; Yacoubi, B.; Bensmael, L.; Moukrim, A.; Martinez-Urtaza, J. Characteristics and dynamics of Salmonella contamination along the coast of Agadir, Morocco. Appl. Environ. Microbiol. 2009, 75, 7700–7709. [Google Scholar] [CrossRef]
- Efstratiou, M.A.; Mavridou, A.; Richardson, C. Prediction of Salmonella in seawater by total and faecal coliforms and Enterococci. Mar. Pollut. Bull. 2009, 58, 201–205. [Google Scholar] [CrossRef]
- Weiskerger, C.J.; Brandão, J.; Ahmed, W.; Aslan, A.; Avolio, L.; Badgley, B.D.; Boehm, A.B.; Edge, T.A.; Fleisher, J.M.; Heaney, C.D.; et al. Impacts of a changing earth on microbial dynamics and human health risks in the continuum between beach water and sand. Water Res. 2019, 162, 456–470. [Google Scholar] [CrossRef]
- Huang, J.; Lv, C.; Li, M.; Rahman, T.; Chang, Y.-F.; Guo, X.; Song, Z.; Zhao, Y.; Li, Q.; Ni, P. Carbapenem-resistant Escherichia coli exhibit diverse spatiotemporal epidemiological characteristics across the globe. Commun. Biol. 2024, 7, 51. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Charmaine, N.; Goh, S.G.; Ching Khor, W.; Ong, G.H.M.; Aung, K.T.; Gin, K.Y.-E. Evaluation of public health impact risks associated with bacterial antimicrobial resistome in tropical coastal environments. Water Res. 2025, 282, 123621. [Google Scholar] [CrossRef] [PubMed]
- Assefa, A.; Garcias, B.; Mourkas, E.; Molina-López, R.A.; Darwich, L. Global distribution of antimicrobial resistance genes in Escherichia coli isolated from wild animals using genomes available in public databases. Sci. Total Environ. 2025, 985, 179742. [Google Scholar] [CrossRef]
- Hutinel, M.; Huijbers, P.M.C.; Fick, J.; Åhrén, C.; Larsson, D.G.J.; Flach, C.-F. Population-level surveillance of antibiotic resistance in Escherichia coli through sewage analysis. Euro Surveill. 2019, 24, 1800497. [Google Scholar] [CrossRef]
- Gomes, L.; Bordalo, A.A.; Machado, A. Characterization of Escherichia coli Isolates in Recreational Waters: Implications for Public Health and One Health Approach. Water 2024, 16, 2695. [Google Scholar] [CrossRef]
- Fernández-Trapote, E.; Oliveira, M.; Cobo-Díaz, J.F.; Alvarez-Ordóñez, A. The resistome of the food chain: A One Health perspective. Microb. Biotechnol. 2024, 17, e14530. [Google Scholar] [CrossRef] [PubMed]
- Milijasevic, M.; Veskovic-Moracanin, S.; Babic Milijasevic, J.; Petrovic, J.; Nastasijevic, I. Antimicrobial Resistance in Aquaculture: Risk Mitigation within the One Health Context. Foods 2024, 13, 2448. [Google Scholar] [CrossRef]
- Jorge-Romero, G.; Lercari, D.; Ortega, L.; Defeo, O. Long-term ecological footprints of a man-made freshwater discharge onto a sandy beach ecosystem. Ecol. Indic. 2019, 96, 412–420. [Google Scholar] [CrossRef]
- Alm, E.W.; Burke, J.; Spain, A. Fecal indicator bacteria are abundant in wet sand at freshwater beaches. Water Res. 2003, 37, 3978–3982. [Google Scholar] [CrossRef]
- Rumball, N.A.; Alm, E.W.; McLellan, S.L. Genetic Determinants of Escherichia coli Survival in Beach Sand. Appl. Environ. Microbiol. 2023, 89, e01423-22. [Google Scholar] [CrossRef]
- Petersen, F.; Hubbart, J.A. Physical Factors Impacting the Survival and Occurrence of Escherichia coli in Secondary Habitats. Water 2020, 12, 1796. [Google Scholar] [CrossRef]
- Carrasco-Acosta, M.; Garcia-Jimenez, P. Development of Multiplex RT qPCR Assays for Simultaneous Detection and Quantification of Faecal Indicator Bacteria in Bathing Recreational Waters. Microorganisms 2024, 12, 1223. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.A.; Law, J.Y.; Soupir, M.L. Spatial and temporal distribution of E. coli contamination on three inland lake and recreational beach systems in the upper Midwestern United States. Sci. Total Environ. 2020, 722, 137846. [Google Scholar] [CrossRef]
- Ndione, M.; Ory, P.; Agion, T.; Treilles, M.; Vacher, L.; Simon-Bouhet, B.; Le Beguec, M.; Pineau, P.; Montanié, H.; Agogué, H. Temporal variations in fecal indicator bacteria in bathing water and sediment in a coastal ecosystem (Aytré Bay, Charente-Maritime, France). Mar. Pollut. Bull. 2022, 175, 113360. [Google Scholar] [CrossRef]
- Dritsas, E.; Trigka, M. Efficient Data-Driven Machine Learning Models for Water Quality Prediction. Computation 2023, 11, 16. [Google Scholar] [CrossRef]
- Rossi, A.; Wolde, B.T.; Lee, L.H.; Wu, M. Prediction of recreational water safety using Escherichia coli as an indicator: Case study of the Passaic and Pompton rivers, New Jersey. Sci. Total Environ. 2020, 714, 136814. [Google Scholar] [CrossRef]
- Goh, S.G.; Saeidi, N.; Gu, X.; Vergara, G.G.R.; Liang, L.; Fang, H.; Kitajima, M.; Kushmaro, A.; Gin, K.Y.-A. Occurrence of microbial indicators, pathogenic bacteria and viruses in tropical surface waters subject to contrasting land use. Water Res. 2019, 150, 200–215. [Google Scholar] [CrossRef]
- Riascos-Flores, L.; Ho, L.; Echelpoel, W.V.; Forio, M.A.E.; Bruneel, S.; De Troyer, N.; de Saeyer, N.; Bermudez, R.; Berghe, W.V.; Dominguez-Granda, L.; et al. Chemical and microbiological analysis of urban and associated natural water systems of inhabited volcanic islands of the Galapagos (Ecuador). Water Res. 2025, 281, 123516. [Google Scholar] [CrossRef]
- Huang, G.; Falconer, R.A.; Lin, B. Integrated River and Coastal Flow, Sediment and Escherichia coli Modelling for Bathing Water Quality. Water 2015, 7, 4752–4777. [Google Scholar] [CrossRef]
- Bonamano, S.; Madonia, A.; Caruso, G.; Zappalà, G.; Marcelli, M. Development of a New Predictive index (Bathing Water Quality Index, BWQI) Based on Escherichia coli Physiological States for Bathing Waters Monitoring. J. Mar. Sci. Eng. 2021, 9, 120. [Google Scholar] [CrossRef]
- Wolska, L.; Kowalewski, M.; Potrykus, M.; Redko, V.; Rybak, B. Difficulties in the Modeling of E. coli Spreading from Various Sources in a Coastal Marine Area. Molecules 2022, 27, 4353. [Google Scholar] [CrossRef]
- Lopes, H.T.L.; Baumann, L.R.F.; Scalize, P.S. A Contamination Predictive Model for Escherichia coli in Rural Communities Dug Shallow Wells. Sustainability 2023, 15, 2408. [Google Scholar] [CrossRef]
- OECD. OECD Environmental Performance Reviews: Greece 2020; OECD Environmental Performance Reviews. OECD Publishing: Paris, France, 2020. [Google Scholar] [CrossRef]
- NCESD. Greece, State of the Environment Report, Summary; National Center of Environment and Sustainable Development: Athens, Greece, 2018; p. 63. ISBN 978-960-99033-3-2. [Google Scholar]
- Mohamedelfatieh, I.; Ali, M.; Muhammad, F.; Xin, L. Assessing drinking water quality based on physical, chemical and microbial parameters in the Red Sea State, Sudan using a combination of water quality index and artificial neural network model. Groundw. Sustain. Dev. 2021, 14, 100612. [Google Scholar] [CrossRef]
- Anagnostopoulos, D.A.; Parlapani, F.F.; Natoudi, S.; Syropoulou, F.; Kyritsi, M.; Vergos, I.; Hadjichristodoulou, C.; Kagalou, I.; Boziaris, I.S. Bacterial Communities and Antibiotic Resistance of Potential Pathogens Involved in Food Safety and Public Health in Fish and Water of Lake Karla, Thessaly, Greece. Pathogens 2022, 11, 1473. [Google Scholar] [CrossRef]
- Stefanidis, K.; Kouvarda, T.; Latsiou, A.; Papaioannou, G.; Gritzalis, K.; Dimitriou, E. A Comparative Evaluation of Hydromorphological Assessment Methods Applied in Rivers of Greece. Hydrology 2022, 9, 43. [Google Scholar] [CrossRef]
- Mentzafou, A.; Varlas, G.; Papadopoulos, A.; Poulis, G.; Dimitriou, E. Assessment of Automatically Monitored Water Levels and Water Quality Indicators in Rivers with Different Hydromorphological Conditions and Pollution Levels in Greece. Hydrology 2021, 8, 86. [Google Scholar] [CrossRef]
- Charoula, M.; Eleni, T.; Georgios, S.; George, P.; Lefteris, L.; Lazaros, T.; Elisavet, A. A Water Quality Assessment Tool for Decision Making, Based on Widely Used Water Quality Indices. Environ. Sci. Proc. 2020, 2, 16. [Google Scholar] [CrossRef]
- Mallik, S.; Saha, B.; Podder, K.; Muthuraj, M.; Mishra, U.; Deb, S. Comprehensive assessment of E. coli dynamics in river water using advanced machine learning and explainable AI. Process Saf. Environ. Prot. 2025, 195, 106816. [Google Scholar] [CrossRef]
- Talukdar, S.; Somnath Bera, S.; Naikoo, M.W.; Ramana, G.V.; Mallik, S.; Kumar, P.A.; Rahman, A. Optimisation and interpretation of machine and deep learning models for improved water quality management in Lake Loktak. J. Environ. Manag. 2024, 351, 119866. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.G.; Nash, S.; Rahman, A.; Olbert, A.I. A novel approach for estimating and predicting uncertainty in water quality index model using machine learning approaches. Water Res. 2023, 229, 119422. [Google Scholar] [CrossRef]
- Liu, X.; Zuo, C.; Guan, J.; Ma, Y.; Liu, Y.; Zhao, G.; Wang, R. Extreme rainfall disproportionately impacts E. coli concentrations in Texas recreational waterbodies. Sci. Total Environ. 2025, 958, 178062. [Google Scholar] [CrossRef]
- Gerdes, M.E.; Miko, S.; Kunz, J.M.; Hannapel, E.J.; Hlavsa, M.C.; Hughes, M.J.; Stuckey, M.J.; Watkins, L.K.F.; Cope, J.R.; Yoder, J.S.; et al. Estimating Waterborne Infectious Disease Burden by Exposure Route, United States, 2014. Emerg. Infect. Dis. 2023, 29, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Federigi, I.; Verani, M.; Donzelli, G.; Cioni, L.; Carducci, A. The application of quantitative microbial risk assessment to natural recreational waters: A review. Mar. Pollut. Bull. 2019, 144, 334–350. [Google Scholar] [CrossRef]
- Nicholas, J.; Ashbolt, M.E.; Schoen, J.A.; Soller, A.; Roser, D.J. Predicting pathogen risks to aid beach management: The real value of quantitative microbial risk assessment (QMRA). Water Res. 2010, 44, 4692–4703. [Google Scholar] [CrossRef]
- Ramírez-Castillo, F.Y.; Loera-Muro, A.; Jacques, M.; Garneau, P.; Avelar-González, F.J.; Harel, J.; Guerrero-Barrera, A.L. Waterborne Pathogens: Detection Methods and Challenges. Pathogens 2015, 4, 307–334. [Google Scholar] [CrossRef] [PubMed]
- Eregno, F.E.; Tryland, I.; Tjomsland, T.; Myrmel, M.; Robertson, L.; Heistad, A. Quantitative microbial risk assessment combined with hydrodynamic modelling to estimate the public health risk associated with bathing after rainfall events. Sci. Total Environ. 2016, 548–549, 270–279. [Google Scholar] [CrossRef]
- Chhipi-Shrestha, G.; Hewage, K.; Sadiq, R. Microbial quality of reclaimed water for urban reuses: Probabilistic risk-based investigation and recommendations. Sci. Total Environ. 2017, 576, 738–751. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, D.T.; Deletic, A.; Mitchell, V.G.; Fletcher, T.D.; Diaper, C. Uncertainties in stormwater E. coli levels. Water Res. 2008, 42, 1812–1824. [Google Scholar] [CrossRef]
- Harmel, R.D.; Hathaway, J.M.; Wagner, K.L.; Wolfe, J.E.; Karthikeyan, R.; Francesconi, W.; McCarthy, D.T. Uncertainty in monitoring E. coli concentrations in streams and stormwater runoff. J. Hydrol. 2016, 534, 524–533. [Google Scholar] [CrossRef]
- Russo, G.S.; Eftim, S.E.; Goldstone, A.E.; Dufour, A.P.; Nappier, S.P.; Wade, T.J. Evaluating health risks associated with exposure to ambient surface waters during recreational activities: A systematic review and meta-analysis. Water Res. 2020, 176, 115729. [Google Scholar] [CrossRef]
- Delair, Z.; Schoeman, M.; Reyneke, B.; Singh, A.; Barnard, T.G. Assessing the impact of Escherichia coli on recreational water safety using quantitative microbial risk assessment. J. Water Health 2024, 22, 1781–1793. [Google Scholar] [CrossRef]
- Custodio, M.; Peñaloza, R.; Ochoa, S.; De la Cruz, H.; Rodríguez, C. Microbial and potentially toxic elements risk assessment in high Andean river water based on Monte Carlo simulation, Peru. Sci. Rep. 2023, 13, 21473. [Google Scholar] [CrossRef]
- Burch, T.R.; Stokdyk, J.P.; Firnstahl, A.D.; Opelt, S.A.; Cook, R.M.; Heffron, J.A.; Brown, A.; Hruby, C.; Borchardt, M.A. Quantitative Microbial Risk Assessment with Microbial Source Tracking for Mixed Fecal Sources Contaminating Recreational River Waters, Iowa, USA. ACS ES&T Water 2024, 4, 2789–2802. [Google Scholar] [CrossRef]
- Katukiza, A.Y.; Ronteltap, M.; Steen, P.; Foppen, J.W.A.; Lens, P.L.N. Quantification of microbial risks to human health caused by waterborne viruses and bacteria in an urban slum. J. Appl. Microbiol. 2014, 116, 447–463. [Google Scholar] [CrossRef] [PubMed]
- Haldar, Κ.; Kujawa-Roeleveld, K.; Hofstra, N.; Datta, D.K.; Rijnaarts, H. Microbial contamination in surface water and potential health risks for peri-urban farmers of the Bengal delta. Int. J. Hyg. Environ. Health 2022, 244, 114002. [Google Scholar] [CrossRef] [PubMed]
- Moncada Barragán, J.L.; Lucumí, D.I.; Cuesta, M.S.; Rodriguez, S. Quantitative microbial risk assessment to estimate the public health risk from exposure to enterotoxigenic E. coli in drinking water in the rural area of Villapinzon, Colombia. Microb. Risk Anal. 2021, 18, 100173. [Google Scholar] [CrossRef]
- Nikolopoulou, D.; Ntzani, E.; Kyriakopoulou, K.; Anagnostopoulos, C.; Machera, K. Priorities and Challenges in Methodology for Human Health Risk Assessment from Combined Exposure to Multiple Chemicals. Toxics 2023, 11, 401. [Google Scholar] [CrossRef]
- Stefanidis, K.; Oikonomou, A.; Stoumboudi, M.; Dimitriou, E.; Skoulikidis, N.T. Do Water Bodies Show Better Ecological Status in Natura 2000 Protected Areas Than Non-Protected Ones?—The Case of Greece. Water 2021, 13, 3007. [Google Scholar] [CrossRef]
Temperature (°C) | pH | Total Coliforms (CFU/100 mL) | E. coli (CFU/100 mL) | Enterococci (CFU/100 mL) | BOD5 (mg/L O2) | |
---|---|---|---|---|---|---|
Mean | 15.5 | 7.49 | 456.3 | 134.3 | 122.9 | 3.6 |
Median | 14.8 | 7.46 | 400.0 | 78.5 | 54.5 | 3.0 |
St. Deviation | 4.4 | 0.36 | 244.8 | 173.3 | 163.3 | 2.4 |
Skewness | 0.7 | 0.30 | 1.5 | 1.5 | 1.8 | 1.1 |
Kurtosis | 0.9 | 1.19 | 2.3 | 0.8 | 1.7 | 1.6 |
Range | 18.7 | 2.08 | 1170.0 | 500.0 | 500.0 | 11.3 |
Minimum | 7.2 | 6.54 | 130.0 | 0.0 | 0.0 | 0.8 |
Maximum | 25.9 | 8.62 | 1300.0 | 500.0 | 500.0 | 12.1 |
ML Model | Root Mean Squared Error (RMSE) | Mean Absolute Error (MAE) | Mean Absolute Percentage Error (MAPE) | Coefficient of Determination (R2)% |
---|---|---|---|---|
Random Forest Regressor | 12.87 | 9.06 | 6.36 | 93.21 |
Gradient Boosting Regressor | 7.29 | 4.43 | 5.22 | 91.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voltezou, A.; Giorgi, E.; Stefanis, C.; Kalentzis, K.; Stavropoulou, E.; Stavropoulos, A.; Nena, E.; Voidarou, C.; Tsigalou, C.; Konstantinidis, T.C.; et al. Quantitative Microbial Risk Assessment of E. coli in Riverine and Deltaic Waters of Northeastern Greece: Monte Carlo Simulation and Predictive Perspectives. Toxics 2025, 13, 863. https://doi.org/10.3390/toxics13100863
Voltezou A, Giorgi E, Stefanis C, Kalentzis K, Stavropoulou E, Stavropoulos A, Nena E, Voidarou C, Tsigalou C, Konstantinidis TC, et al. Quantitative Microbial Risk Assessment of E. coli in Riverine and Deltaic Waters of Northeastern Greece: Monte Carlo Simulation and Predictive Perspectives. Toxics. 2025; 13(10):863. https://doi.org/10.3390/toxics13100863
Chicago/Turabian StyleVoltezou, Agathi, Elpida Giorgi, Christos Stefanis, Konstantinos Kalentzis, Elisavet Stavropoulou, Agathangelos Stavropoulos, Evangelia Nena, Chrysoula (Chrysa) Voidarou, Christina Tsigalou, Theodoros C. Konstantinidis, and et al. 2025. "Quantitative Microbial Risk Assessment of E. coli in Riverine and Deltaic Waters of Northeastern Greece: Monte Carlo Simulation and Predictive Perspectives" Toxics 13, no. 10: 863. https://doi.org/10.3390/toxics13100863
APA StyleVoltezou, A., Giorgi, E., Stefanis, C., Kalentzis, K., Stavropoulou, E., Stavropoulos, A., Nena, E., Voidarou, C., Tsigalou, C., Konstantinidis, T. C., & Bezirtzoglou, E. (2025). Quantitative Microbial Risk Assessment of E. coli in Riverine and Deltaic Waters of Northeastern Greece: Monte Carlo Simulation and Predictive Perspectives. Toxics, 13(10), 863. https://doi.org/10.3390/toxics13100863