Probing the Cardiovascular Toxic Effects of Long-Term Exposure to Dibutyl Phthalate in Sprague-Dawley Rats Based on Oxidative Inflammation and Metabolic Pathways: Implications for the Heart and Blood Vessel
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Reagents and Kits
2.3. Experimental Protocol
2.4. Echocardiography Evaluation
2.5. Histopathological and Immunohistochemical Analysis
2.6. ROS, MDA and GSH Assay
2.7. IL-1β and IL-18 ELISA Assay
2.8. Untargeted Metabolomics Analysis of Rat Serum
2.9. Statistical Analysis
3. Results
3.1. Long-Term Exposure to DBP Can Cause Heart and Vascular Dysfunction in SD Rats
3.2. Long-Term Exposure to DBP Can Cause Histopathological Damage to the Heart and Blood Vessels in SD Rats
3.3. Long-Term Exposure to DBP Leads to Oxidative Stress in the Cardiac and Blood Vessels of SD Rats
3.4. Long-Term Exposure to DBP Can Induce Oxidative Inflammation in the Heart and Blood Vessels of SD Rats Through ROS-Mediated Pyroptosis
3.5. The Impact of Long-Term Exposure to DBP on Serum Metabolites in SD Rats
3.6. The Impact of Long-Term Exposure to DBP on KEGG Signaling Pathways Related to Metabolism in SD Rats
4. Discussion
4.1. Evidence of the Cardiovascular Toxic Effects Exhibited by DBP
4.2. Molecular Mechanism of Oxidative Inflammation Mediated by DBP
4.3. Various Effects of DBP on Metabolites in Rat Serum
4.4. The Protective Effect of Vitamin E
4.5. Innovation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAT | Aortic acceleration time |
AET | Aortic ejection time |
Caspase-1 | Cysteine-requiring aspartate protease-1 |
CVD | Cerebrovascular disease |
DBP | Dibutyl phthalate |
GSDMD | Gasdermin D |
GSH | Glutathione |
IL-18 | Interleukin-18 |
IL-1β | Interleukin-1β |
LVEF | Left ventricular ejection fraction |
LVFS | Left ventricular fraction shortening |
MDA | Malondialdehyde |
MPI | Myocardial performance index |
NLRP3 | NOD-like receptor thermal protein domain associated protein 3 |
ROS | Reactive Oxygen Species |
SD | Sprague-Dawley |
TCA | Tricarboxylic acid |
TD | Deceleration time |
VTI | Velocity time integral |
References
- Lin, L.; Yuan, B.; Liu, H.; Ke, Y.; Zhang, W.; Li, H.; Lu, H.; Liu, J.; Hong, H.; Yan, C. Microplastics emerge as a hotspot for dibutyl phthalate sources in rivers and oceans: Leaching behavior and potential risks. J. Hazard. Mater. 2024, 475, 134920. [Google Scholar] [CrossRef]
- Xie, X.; Li, Y.; Yan, B.; Peng, Q.; Yao, R.; Deng, Q.; Li, J.; Wu, Y.; Chen, S.; Yang, X.; et al. Mediation of the JNC/ILC2 pathway in DBP-exacerbated allergic asthma: A molecular toxicological study on neuroimmune positive feedback mechanism. J. Hazard. Mater. 2024, 465, 133360. [Google Scholar] [CrossRef]
- Tan, H.; Gao, P.; Luo, Y.; Gou, X.; Xia, P.; Wang, P.; Yan, L.; Zhang, S.; Guo, J.; Zhang, X.; et al. Are New Phthalate Ester Substitutes Safer than Traditional DBP and DiBP? Comparative Endocrine-Disrupting Analyses on Zebrafish Using In Vivo, Transcriptome, and In Silico Approaches. Environ. Sci. Technol. 2023, 57, 13744–13756. [Google Scholar] [CrossRef]
- Maestre-Batlle, D.; Huff, R.D.; Schwartz, C.; Alexis, N.E.; Tebbutt, S.J.; Turvey, S.; Bølling, A.K.; Carlsten, C. Dibutyl Phthalate Augments Allergen-induced Lung Function Decline and Alters Human Airway Immunology. A Randomized Crossover Study. Am. J. Respir. Crit. Care Med. 2020, 202, 672–680. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, X.; Yin, K.; Qi, X.; Zhang, Y.; Zhang, J.; Li, S.; Lin, H. Dibutyl phthalate-induced oxidative stress, inflammation and apoptosis in grass carp hepatocytes and the therapeutic use of taxifolin. Sci. Total Environ. 2021, 764, 142880. [Google Scholar] [CrossRef]
- Carra, M.C.; Rangé, H.; Caligiuri, G.; Bouchard, P. Periodontitis and atherosclerotic cardiovascular disease: A critical appraisal. Periodontology 2000 2023, 1–34. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, J.; Wang, M.; Zhang, X.; Zhou, M. Epidemiology of cardiovascular disease in China: Current features and implications. Nat. Rev. Cardiol. 2019, 16, 203–212. [Google Scholar] [CrossRef]
- Ding, E.; Deng, F.; Fang, J.; Liu, J.; Yan, W.; Yao, Q.; Miao, K.; Wang, Y.; Sun, P.; Li, C.; et al. Exposome-Wide Ranking to Uncover Environmental Chemicals Associated with Dyslipidemia: A Panel Study in Healthy Older Chinese Adults from the BAPE Study. Environ. Health Perspect. 2024, 132, 97005. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Zhang, D.; Hou, T.; Zhang, Q.; Tao, L.; Bian, C.; Wang, Z. Mitochondrial DNA Stress-Mediated Health Risk to Dibutyl Phthalate Contamination on Zebrafish (Danio rerio) at Early Life Stage. Environ. Sci. Technol. 2024, 58, 7731–7742. [Google Scholar] [CrossRef] [PubMed]
- Stanic, B.; Kokai, D.; Markovic Filipovic, J.; Tomanic, T.; Vukcevic, J.; Stojkov, V.; Andric, N. Vascular endothelial effects of dibutyl phthalate: In vitro and in vivo evidence. Chem.-Biol. Interact. 2024, 399, 111120. [Google Scholar] [CrossRef] [PubMed]
- Bai, B.; Yang, Y.; Wang, Q.; Li, M.; Tian, C.; Liu, Y.; Aung, L.H.H.; Li, P.F.; Yu, T.; Chu, X.M. NLRP3 inflammasome in endothelial dysfunction. Cell Death Dis. 2020, 11, 776. [Google Scholar] [CrossRef]
- Cong, L.; Liu, X.; Bai, Y.; Qin, Q.; Zhao, L.; Shi, Y.; Bai, Y.; Guo, Z. Melatonin alleviates pyroptosis by regulating the SIRT3/FOXO3α/ROS axis and interacting with apoptosis in Atherosclerosis progression. Biol. Res. 2023, 56, 62. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yan, B.; Wu, Y.; Peng, Q.; Wei, Y.; Chen, Y.; Zhang, Y.; Ma, N.; Yang, X.; Ma, P. Ferroptosis participates in dibutyl phthalate-aggravated allergic asthma in ovalbumin-sensitized mice. Ecotoxicol. Environ. Saf. 2023, 256, 114848. [Google Scholar] [CrossRef]
- Wei, H.; Lu, S.; Chen, M.; Yao, R.; Yan, B.; Li, Q.; Song, X.; Li, M.; Wu, Y.; Yang, X.; et al. Mechanisms of exacerbation of Th2-mediated eosinophilic allergic asthma induced by plastic pollution derivatives (PPD): A molecular toxicological study involving lung cell ferroptosis and metabolomics. Sci. Total Environ. 2024, 946, 174482. [Google Scholar] [CrossRef]
- Lu, S.; Feng, Q.; Chen, M.; Zeng, X.; Wei, H.; Chen, Q.; Guo, H.; Su, L.; Yan, B.; Wu, Y.; et al. Mechanisms underlying Th2-dominant pneumonia caused by plastic pollution derivatives (PPD): A molecular toxicology investigation that encompasses gut microbiomics and lung metabolomics. J. Hazard. Mater. 2024, 480, 136326. [Google Scholar] [CrossRef]
- Holbrook-Smith, D.; Trouillon, J.; Sauer, U. Metabolomics and Microbial Metabolism: Toward a Systematic Understanding. Annu. Rev. Biophys. 2024, 53, 41–64. [Google Scholar] [CrossRef]
- Li, J.; Guasch-Ferré, M.; Chung, W.; Ruiz-Canela, M.; Toledo, E.; Corella, D.; Bhupathiraju, S.N.; Tobias, D.K.; Tabung, F.K.; Hu, J.; et al. The Mediterranean diet, plasma metabolome, and cardiovascular disease risk. Eur. Heart J. 2020, 41, 2645–2656. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Food Contact Materials; Enzymes and Processing Aids (CEP); Silano, V.; Barat Baviera, J.M.; Bolognesi, C.; Chesson, A.; Cocconcelli, P.S.; Crebelli, R.; Gott, D.M.; Grob, K.; et al. Update of the risk assessment of di-butylphthalate (DBP), butyl-benzyl-phthalate (BBP), bis(2-ethylhexyl)phthalate (DEHP), di-isononylphthalate (DINP) and di-isodecylphthalate (DIDP) for use in food contact materials. EFSA J. Eur. Food Saf. Auth. 2019, 17, e05838. [Google Scholar] [CrossRef]
- Wu, Y.; Li, J.; Yan, B.; Zhu, Y.; Liu, X.; Chen, M.; Li, D.; Lee, C.C.; Yang, X.; Ma, P. Oral exposure to dibutyl phthalate exacerbates chronic lymphocytic thyroiditis through oxidative stress in female Wistar rats. Sci. Rep. 2017, 7, 15469. [Google Scholar] [CrossRef]
- Wang, X.; Yan, X.; Yang, Y.; Yang, W.; Zhang, Y.; Wang, J.; Ye, D.; Wu, Y.; Ma, P.; Yan, B. Dibutyl phthalate-mediated oxidative stress induces splenic injury in mice and the attenuating effects of vitamin E and curcumin. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2020, 136, 110955. [Google Scholar] [CrossRef]
- Shaki, F.; Ashari, S.; Ahangar, N. Melatonin can attenuate ciprofloxacin induced nephrotoxicity: Involvement of nitric oxide and TNF-α. Biomed. Pharmacother. 2016, 84, 1172–1178. [Google Scholar] [CrossRef]
- Ma, Y.; Deng, L.; Ma, P.; Wu, Y.; Yang, X.; Xiao, F.; Deng, Q. In vivo respiratory toxicology of cooking oil fumes: Evidence, mechanisms and prevention. J. Hazard. Mater. 2021, 402, 123455. [Google Scholar] [CrossRef]
- Grobbee, D.E.; Bots, M.L. Carotid artery intima-media thickness as an indicator of generalized atherosclerosis. J. Intern. Med. 1994, 236, 567–573. [Google Scholar] [CrossRef] [PubMed]
- LeBel, C.P.; Ischiropoulos, H.; Bondy, S.C. Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 1992, 5, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Draper, H.H.; Hadley, M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 1990, 186, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Rensvold, J.W.; Shishkova, E.; Sverchkov, Y.; Miller, I.J.; Cetinkaya, A.; Pyle, A.; Manicki, M.; Brademan, D.R.; Alanay, Y.; Raiman, J.; et al. Defining mitochondrial protein functions through deep multiomic profiling. Nature 2022, 606, 382–388. [Google Scholar] [CrossRef]
- Medina, C.B.; Mehrotra, P.; Arandjelovic, S.; Perry, J.S.A.; Guo, Y.; Morioka, S.; Barron, B.; Walk, S.F.; Ghesquière, B.; Krupnick, A.S.; et al. Metabolites released from apoptotic cells act as tissue messengers. Nature 2020, 580, 130–135. [Google Scholar] [CrossRef]
- Kuntz, E.M.; Baquero, P.; Michie, A.M.; Dunn, K.; Tardito, S.; Holyoake, T.L.; Helgason, G.V.; Gottlieb, E. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat. Med. 2017, 23, 1234–1240. [Google Scholar] [CrossRef]
- Wang, L.; Chen, P.; Pan, Y.; Wang, Z.; Xu, J.; Wu, X.; Yang, Q.; Long, M.; Liu, S.; Huang, W.; et al. Injectable photocurable Janus hydrogel delivering hiPSC cardiomyocyte-derived exosome for post-heart surgery adhesion reduction. Sci. Adv. 2023, 9, eadh1753. [Google Scholar] [CrossRef]
- Huang, J.; Yang, J.; Yang, Y.; Lu, X.; Xu, J.; Lu, S.; Pan, H.; Zhou, W.; Li, W.; Chen, S. Mitigating Doxorubicin-Induced Cardiotoxicity and Enhancing Anti-Tumor Efficacy with a Metformin-Integrated Self-Assembled Nanomedicine. Adv. Sci. 2025, 12, e2415227. [Google Scholar] [CrossRef]
- Jiang, M.; Zhu, Z.; Zhou, Z.; Yan, Z.; Huang, K.; Jiang, R.; Fan, X.; Jieensi, M.; Pang, L.; Wang, Y.; et al. A temperature-ultrasound sensitive nanoparticle delivery system for exploring central neuroinflammation mechanism in stroke-heart syndrome. J. Nanobiotechnol. 2024, 22, 681. [Google Scholar] [CrossRef]
- Rauch, J.N.; Luna, G.; Guzman, E.; Audouard, M.; Challis, C.; Sibih, Y.E.; Leshuk, C.; Hernandez, I.; Wegmann, S.; Hyman, B.T.; et al. LRP1 is a master regulator of tau uptake and spread. Nature 2020, 580, 381–385. [Google Scholar] [CrossRef]
- Hill, M.C.; Simonson, B.; Roselli, C.; Xiao, L.; Herndon, C.N.; Chaffin, M.; Mantineo, H.; Atwa, O.; Bhasin, H.; Guedira, Y.; et al. Large-scale single-nuclei profiling identifies role for ATRNL1 in atrial fibrillation. Nat. Commun. 2024, 15, 10002. [Google Scholar] [CrossRef]
- Francis, R.; Guo, H.; Streutker, C.; Ahmed, M.; Yung, T.; Dirks, P.B.; He, H.H.; Kim, T.H. Gastrointestinal transcription factors drive lineage-specific developmental programs in organ specification and cancer. Sci. Adv. 2019, 5, eaax8898. [Google Scholar] [CrossRef]
- Leach, J.P.; Heallen, T.; Zhang, M.; Rahmani, M.; Morikawa, Y.; Hill, M.C.; Segura, A.; Willerson, J.T.; Martin, J.F. Hippo pathway deficiency reverses systolic heart failure after infarction. Nature 2017, 550, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wang, Y.; Zhou, Z.; Pan, C.; Jiang, L.; Zhou, Z.; Meng, Y.; Charugundla, S.; Li, T.; Allayee, H.; et al. Liver-heart cross-talk mediated by coagulation factor XI protects against heart failure. Science 2022, 377, 1399–1406. [Google Scholar] [CrossRef] [PubMed]
- Obokata, M.; Kane, G.C.; Reddy, Y.N.; Olson, T.P.; Melenovsky, V.; Borlaug, B.A. Role of Diastolic Stress Testing in the Evaluation for Heart Failure With Preserved Ejection Fraction: A Simultaneous Invasive-Echocardiographic Study. Circulation 2017, 135, 825–838. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, H.; Gutiérrez Cortés, N.; Wu, D.; Wang, P.; Zhang, J.; Mattison, J.A.; Smith, E.; Bettcher, L.F.; Wang, M.; et al. Increased Drp1 Acetylation by Lipid Overload Induces Cardiomyocyte Death and Heart Dysfunction. Circ. Res. 2020, 126, 456–470. [Google Scholar] [CrossRef]
- Burns, D.; Kluger, R.; Uda, Y.; Cowie, B. Aortic Acceleration Time and the Intraoperative Assessment of Aortic Stenosis. J. Cardiothorac. Vasc. Anesth. 2021, 35, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Veerappan, A.; Oskuei, A.; Crowley, G.; Mikhail, M.; Ostrofsky, D.; Gironda, Z.; Vaidyanathan, S.; Wadghiri, Y.Z.; Liu, M.; Kwon, S.; et al. World Trade Center-Cardiorespiratory and Vascular Dysfunction: Assessing the Phenotype and Metabolome of a Murine Particulate Matter Exposure Model. Sci. Rep. 2020, 10, 3130. [Google Scholar] [CrossRef]
- González, A.; Schelbert, E.B.; Díez, J.; Butler, J. Myocardial Interstitial Fibrosis in Heart Failure: Biological and Translational Perspectives. J. Am. Coll. Cardiol. 2018, 71, 1696–1706. [Google Scholar] [CrossRef]
- Zhang, Y.; Murugesan, P.; Huang, K.; Cai, H. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: Novel therapeutic targets. Nat. Rev. Cardiol. 2020, 17, 170–194. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- Xie, C.; Ge, M.; Jin, J.; Xu, H.; Mao, L.; Geng, S.; Wu, J.; Zhu, J.; Li, X.; Zhong, C. Mechanism investigation on Bisphenol S-induced oxidative stress and inflammation in murine RAW264.7 cells: The role of NLRP3 inflammasome, TLR4, Nrf2 and MAPK. J. Hazard. Mater. 2020, 394, 122549. [Google Scholar] [CrossRef] [PubMed]
- Pei, X.; Jiang, H.; Li, C.; Li, D.; Tang, S. Oxidative stress-related canonical pyroptosis pathway, as a target of liver toxicity triggered by zinc oxide nanoparticles. J. Hazard. Mater. 2023, 442, 130039. [Google Scholar] [CrossRef]
- Bredeck, G.; Busch, M.; Rossi, A.; Stahlmecke, B.; Fomba, K.W.; Herrmann, H.; Schins, R.P.F. Inhalable Saharan dust induces oxidative stress, NLRP3 inflammasome activation, and inflammatory cytokine release. Environ. Int. 2023, 172, 107732. [Google Scholar] [CrossRef] [PubMed]
- Christgen, S.; Place, D.E.; Kanneganti, T.D. Toward targeting inflammasomes: Insights into their regulation and activation. Cell Res. 2020, 30, 315–327. [Google Scholar] [CrossRef]
- Fu, J.; Wu, H. Structural Mechanisms of NLRP3 Inflammasome Assembly and Activation. Annu. Rev. Immunol. 2023, 41, 301–316. [Google Scholar] [CrossRef]
- Yue, R.; Zheng, Z.; Luo, Y.; Wang, X.; Lv, M.; Qin, D.; Tan, Q.; Zhang, Y.; Wang, T.; Hu, H. NLRP3-mediated pyroptosis aggravates pressure overload-induced cardiac hypertrophy, fibrosis, and dysfunction in mice: Cardioprotective role of irisin. Cell Death Discov. 2021, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Duewell, P.; Kono, H.; Rayner, K.J.; Sirois, C.M.; Vladimer, G.; Bauernfeind, F.G.; Abela, G.S.; Franchi, L.; Nuñez, G.; Schnurr, M.; et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010, 464, 1357–1361. [Google Scholar] [CrossRef]
- Hu, X.; Ouyang, S.; Mu, L.; An, J.; Zhou, Q. Effects of Graphene Oxide and Oxidized Carbon Nanotubes on the Cellular Division, Microstructure, Uptake, Oxidative Stress, and Metabolic Profiles. Environ. Sci. Technol. 2015, 49, 10825–10833. [Google Scholar] [CrossRef] [PubMed]
- Azzam, C.R.; Zaki, S.S.; Bamagoos, A.A.; Rady, M.M.; Alharby, H.F. Soaking Maize Seeds in Zeatin-Type Cytokinin Biostimulators Improves Salt Tolerance by Enhancing the Antioxidant System and Photosynthetic Efficiency. Plants 2022, 11, 1004. [Google Scholar] [CrossRef]
- Hu, Y.; Li, H.; Shi, W.; Ma, H. Ratiometric Fluorescent Probe for Imaging of Pantetheinase in Living Cells. Anal. Chem. 2017, 89, 11107–11112. [Google Scholar] [CrossRef]
- Cappel, D.A.; Deja, S.; Duarte, J.A.G.; Kucejova, B.; Iñigo, M.; Fletcher, J.A.; Fu, X.; Berglund, E.D.; Liu, T.; Elmquist, J.K.; et al. Pyruvate-Carboxylase-Mediated Anaplerosis Promotes Antioxidant Capacity by Sustaining TCA Cycle and Redox Metabolism in Liver. Cell Metab. 2019, 29, 1291–1305.e8. [Google Scholar] [CrossRef]
- Nasir, A.; Ur Rahman, M.; Khan, M.; Zahid, M.; Shahab, M.; Jiao, H.; Zeb, A.; Shah, S.A.; Khan, H. Vitamin B6 Via p-JNK/Nrf-2/NF-κB Signaling Ameliorates Cadmium Chloride-Induced Oxidative Stress Mediated Memory Deficits in Mice Hippocampus. Curr. Neuropharmacol. 2024, 23, 116–127. [Google Scholar] [CrossRef]
- Alphonse, M.P.; Rubens, J.H.; Ortines, R.V.; Orlando, N.A.; Patel, A.M.; Dikeman, D.; Wang, Y.; Vuong, I.; Joyce, D.P.; Zhang, J.; et al. Pan-caspase inhibition as a potential host-directed immunotherapy against MRSA and other bacterial skin infections. Sci. Transl. Med. 2021, 13, eabe9887. [Google Scholar] [CrossRef]
- Chen, X.; Kadier, M.; Shi, M.; Li, K.; Chen, H.; Xia, Y.; Wang, Q.; Li, R.; Long, Y.; Qin, J.; et al. Targeting Melatonin to Mitochondria Mitigates Castration-Resistant Prostate Cancer by Inducing Pyroptosis. Small 2025, 21, e2408996. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, T.; Zhou, Y.; Li, X. Palmitic acid and trans-4-hydroxy-3-methoxycinnamate, the active ingredients of Yaobishu formula, reduce inflammation and pain by regulating gut microbiota and metabolic changes after lumbar disc herniation to activate autophagy and the Wnt/β-catenin pathway. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1870, 166972. [Google Scholar] [CrossRef]
- Wang, Q.; Holmes, M.V.; Davey Smith, G.; Ala-Korpela, M. Genetic Support for a Causal Role of Insulin Resistance on Circulating Branched-Chain Amino Acids and Inflammation. Diabetes Care 2017, 40, 1779–1786. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Cheng, S.; Mu, J.; Yin, G.; Gao, H. Pantothenic acid alleviates osteoarthritis progression by inhibiting inflammatory response and ferroptosis through the SIRT1/Nrf2 signaling pathway. Chem.-Biol. Interact. 2025, 413, 111494. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Tan, K.S.; Beng, H.; Liu, F.; Huang, J.; Kuai, Y.; Zhang, R.; Tan, W. Protective effect of isosteviol sodium against LPS-induced multiple organ injury by regulating of glycerophospholipid metabolism and reducing macrophage-driven inflammation. Pharmacol. Res. 2021, 172, 105781. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Chen, H.; Zhang, W.; Liu, Y.; Ding, L.; Gong, J.; Ma, R.; Zheng, S.; Zhang, Y. Biomimetic Remodeling of Microglial Riboflavin Metabolism Ameliorates Cognitive Impairment by Modulating Neuroinflammation. Adv. Sci. 2023, 10, e2300180. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, P.; Munné-Bosch, S. Vitamin E in Plants: Biosynthesis, Transport, and Function. Trends Plant Sci. 2019, 24, 1040–1051. [Google Scholar] [CrossRef] [PubMed]
Group ID | Group Names | Treatments for Different Groups | |||
---|---|---|---|---|---|
Gavage DBP 0.01 mg/kg/d | Gavage DBP 1 mg/kg/d | Gavage DBP 50 mg/kg/d | Gavage Vitamin E | ||
Group 1 | Control | -- | -- | -- | -- |
Group 2 | DBP-Low | + | -- | -- | -- |
Group 3 | DBP-Medium | -- | + | -- | -- |
Group 4 | DBP-High | -- | -- | + | -- |
Group 5 | DBP-High + Vitamin E | -- | -- | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Huang, Q.; Wu, Y.; Zhu, D.; Wei, Z.; Feng, Q.; Ma, P.; Yang, X.; Bao, C.; Bao, X. Probing the Cardiovascular Toxic Effects of Long-Term Exposure to Dibutyl Phthalate in Sprague-Dawley Rats Based on Oxidative Inflammation and Metabolic Pathways: Implications for the Heart and Blood Vessel. Toxics 2025, 13, 815. https://doi.org/10.3390/toxics13100815
Liang X, Huang Q, Wu Y, Zhu D, Wei Z, Feng Q, Ma P, Yang X, Bao C, Bao X. Probing the Cardiovascular Toxic Effects of Long-Term Exposure to Dibutyl Phthalate in Sprague-Dawley Rats Based on Oxidative Inflammation and Metabolic Pathways: Implications for the Heart and Blood Vessel. Toxics. 2025; 13(10):815. https://doi.org/10.3390/toxics13100815
Chicago/Turabian StyleLiang, Xiao, Qi Huang, Yang Wu, Deyu Zhu, Zhuangzhuang Wei, Qing Feng, Ping Ma, Xu Yang, Cuiyu Bao, and Xinyu Bao. 2025. "Probing the Cardiovascular Toxic Effects of Long-Term Exposure to Dibutyl Phthalate in Sprague-Dawley Rats Based on Oxidative Inflammation and Metabolic Pathways: Implications for the Heart and Blood Vessel" Toxics 13, no. 10: 815. https://doi.org/10.3390/toxics13100815
APA StyleLiang, X., Huang, Q., Wu, Y., Zhu, D., Wei, Z., Feng, Q., Ma, P., Yang, X., Bao, C., & Bao, X. (2025). Probing the Cardiovascular Toxic Effects of Long-Term Exposure to Dibutyl Phthalate in Sprague-Dawley Rats Based on Oxidative Inflammation and Metabolic Pathways: Implications for the Heart and Blood Vessel. Toxics, 13(10), 815. https://doi.org/10.3390/toxics13100815